
Toward General Diagnosis of
Static Errors

Danfeng Zhang and Andrew C. Myers

Cornell University

POPL 2014

Static Program Analysis

• Many flavors
– Type system

– Dataflow analysis

– Information-flow analysis

• Useful properties
– Type safety

– Memory safety

– Information-flow security

• But, (sometimes) confusing error messages make
static analyses hard to use

2

Example 1: ML Type Inference

• OCaml

3

1 let foo(lst: int list): (float*float) list =

2 …

3 let rec loop lst x y dir acc =

4 if lst = [] then

5 acc

6 else

7

8 in

9 List.rev (loop lst 0.0 0.0 0.0)

print_string “foo”

[(0.0,0.0)]

Mistake

OCaml: This expression has
type 'a list but is here used

with type unit

Locating the error cause is
• Time-consuming
• Difficult

Example 2: Information-Flow Analysis

• Jif: Java + Information-Flow control

4

1 public final byte[] {this} encText;

2 …

3 public void m(FileOutputStream[]{this} encFos)

4 throws (IOException) {

5 try {

6 for (int i=0; i<encText.length; i++)

7 encFos.write(encText[i]);

8 } catch (IoException e) {}

9 }

Jif: This label is
too restrictive

{}

Mistake

{this}

Better error report is needed

Toward Better Error Reports

• Limitations of previous work

– Methods reporting full explanation – Verbose reports

– Analysis-specific methods – Tailored heuristics

– Methods diagnosing false alarms – No diagnosis of true errors

• Our approach

– Applies to a large class of program analyses

– Diagnoses the cause of both true errors and false alarms

– Reports error causes more accurately than existing tools

5

Approach Overview

6

The error cause is likely to be
• Simple
• Able to explain all errors
• Not used often on correct paths
• (false alarm) weak and simple

General Diagnosis Heuristics

Constraints Analysis via Graph

Based on
Bayesian

interpretation

Constraints

Language-Agnostic

Language-Specific

Programs

let foo(lst: int list):(float*float) list =

let rec loop lst x y dir acc =

if lst = [] then

acc

else

print_string “foo”

in

List.rev(loop lst 0.0 0.0 0.0 [(0.0,0.0)])

OCaml

Jif

Others

Cause

From Programs to Constraints

• ML type inference

– Constraint elements: types

– Constraints: type equalities

7

1 let foo(lst: int list): (float*float) list =

2 …

3 let rec loop lst x y dir acc =

4 if lst = [] then

5 acc

6 else

7 print_string “foo”

8 in

9 List.rev (loop lst 0.0 0.0 0.0 [(0.0,0.0)])[(0.0,0.0)]

acc

print_string “foo”

acc

Constructors: unit, float, list,∗
Variables: 𝑎𝑐𝑐3, 𝑎𝑐𝑐5

A General Constraint Language

• Element (𝐸): form a lattice, with an ordering ≤

• Inequality (𝐼): a partial order on elements
– E.g., “subtype of”, “subset of”, “less confidential than”

• Constraint (Hypothesis ⊢Conclusion)
– Hypothesis captures programmer assumptions

– Variable-free constraint is valid when all ≤ in conclusion
can be derived from hypothesis

8

𝐸 ∷= 𝛼 𝑐 𝐸1, … , 𝐸𝑛 𝑐𝑖 𝐸 𝐸1 ⊔ 𝐸2 𝐸1 ⊓ 𝐸2| ⊥ |⊤
𝐼 ∷= 𝐸1 ≤ 𝐸2 𝐶 ∷= 𝑖 𝐼1𝑖 ⊢ 𝑗 𝐼2𝑗

Syntax of Constraints

Properties of the Constraint Language

• Expressive

– ML type inference with polymorphism

– Information-flow analysis with complex security model

– Dataflow analysis

(See formal translations in paper)

• Practical to calculate satisfiable/unsatisfiable subsets
of constraints

9

Approach Overview

10

Constraints Analysis via Graph

Programs

let foo(lst: int list):(float*float) list =

let rec loop lst x y dir acc =

if lst = [] then

acc

else

print_string “foo”

in

List.rev(loop lst 0.0 0.0 0.0 [(0.0,0.0)])

OCaml

Jif

Others

Constraints

Language-Agnostic

Constraint Graph in a Nutshell

• Graph construction (simple case)

– Node: constraint element

– Directed edge: partial ordering

11

1.
2. 3.

4.
5. 6.

7.

12

Constraint Analysis in a Nutshell

Type
mismatch

P1

P2

P3

Constraint Analysis for the Full
Constraint Language

• Handling constructors, hypotheses

– CFG Reachability [Barrett et al. 2000, Melski&Reps 2000]

– Also handles join/meet operations

(See details in paper)

• Performance

– Scalable: quadratic w.r.t. # graph nodes in practice

13

Error Diagnosis

14

Constraints Analysis via Graph

Programs

let foo(lst: int list):(float*float) list =

let rec loop lst x y dir acc =

if lst = [] then

acc

else

print_string “foo”

in

List.rev(loop lst 0.0 0.0 0.0 [(0.0,0.0)])

OCaml

Jif

Others

Constraints

Language-Agnostic

Bayesian
reasoning

Possible Explanations

• When an analysis reports an error, either

– The program being analyzed is wrong (true alarm)

• E.g., an expression is wrong in OCaml program

– The program analysis reports an false alarm (false alarm)

• E.g., an assumption is missing in Jif program

• Explanations to find

– Wrong expressions

– Missing hypotheses

15

16

Key insight:
Bayesian reasoning

Inferring Most-Likely Error Cause

• The most likely explanation

– 𝒢: explanation (pair of constraint elements and hypotheses)

– o : observation (structure of a constraint graph)

17

argmax
𝐸,𝐻 ∈𝒢

𝑃(𝐸,𝐻|𝑜)

Observation

Likelihood Estimation

18

argmax
𝐸,𝐻 ∈𝒢

𝑃Ω 𝐸 𝑃 𝑜 𝐸,𝐻 𝑃Ψ(𝐻)

MAP
estimation

Likelihood Estimation

• Simplifying assumptions:

– All expressions are equally likely to be wrong (with 𝑃1)

– Errors are unlikely (with 𝑃2 < 0.5) to appear on satisfiable paths

• Intuitively,

19

argmax
𝐸,𝐻 ∈𝒢

𝑃Ω 𝐸 𝑃 𝑜 𝐸,𝐻 𝑃Ψ(𝐻)𝑃1
|𝐸| 𝑃2

1 − 𝑃2

𝑘𝐸

sat paths use
elements in E

The error cause is likely to be
• Simple
• Able to explain all errors
• Not used often on correct paths
• (missing hypotheses) weak and

simple

General Diagnosis Heuristics

Explain later

Inferring Likely Wrong Expressions

• Search space

– all subsets of expressions (nodes in constraint graph)

• A* search

– Optimal: all most likely wrong expressions are returned

– Efficient: 10 seconds when the search space is over 21000

20

argmax
𝐸

𝑃1
|𝐸| 𝑃2

1 − 𝑃2

𝑘𝐸

Evaluation suggests the accuracy is not
sensitive to the value of 𝑷𝟏 and 𝑷𝟐

Inferring Likely Missing Hypotheses

• Simplicity is not the only metric

– ⊤ ≤ ⊥ “explains” all errors

• Likely missing hypotheses are both weak and simple

– Minimal weakest hypothesis

21

argmax
𝐻

𝑃Ψ 𝐻

Bob ≤ Carol ⊢ Alice ≤ Bob
Bob ≤ Carol ⊢ Alice ≤ Carol
Bob ≤ Carol ⊢ Alice ≤ Carol ⊔⊥

Minimal weakest hypothesis
Alice ≤ Bob

Formal definition & search algorithm in paper

Evaluation

• Implementation

– Translation from analyses to constraints

• OCaml: modified EasyOCaml (500 on top of 9,000LoC)

• Jif: modified Jif (300 on top of 45,000LoC)

– General error diagnostic tool

• ~5,500 LoC in Java

22

OCaml

Jif

Constraints

Modest
effort

Constraint
Graph

Error
Diagnosis

Reports

Error Diagnostic Tool

Accuracy of Error Reports: OCaml

• Data

– A corpus of previously collected programs [Lerner et al.’07]

– Analyzed 336 programs with type mismatch errors

• Metric of report quality

– Location of programmer mistake: user’s fix with larger
timestamp

– Correctness: only when the programmer mistake is
returned

23

Comparison with OCaml and Seminal

24

Comparison with the OCaml compiler

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Our tool finds a correct error
Other tool misses the error

Both find correct error
Our tool finds multiple errors



Other tool finds a correct error
Our tool misses the error



Both find correct error

Both miss correct error


Comparison with the Seminal tool
[Lerner et al.’07]

2%

Comparison with Jif

• 16 previously collected buggy programs
– An application with real-world security concern [Arden et al.’12]

– Errors clearly marked by the application developer

– Contains both error types

25

Comparison with the Jif compiler
(Wrong expression)

0%

20%

40%

60%

80%

100%

Our tool finds a correct error
Other tool misses the error

Both find correct error

Both miss correct error

0%

20%

40%

60%

80%

100%

Accuracy on missing hypothesis

Correct

Wrong

Related Work

• Program analyses as constraint solving [e.g., Aiken’99, Foster et al.’06]

– No support for hypothesis; error report is verbose

• Diagnosing ML/Jif errors [e.g., McAdam’98, Heeren’05, Lerner’07, King’08,
Chen&Erwig’14]

– Tailored to specific program analysis

• Probabilistic inference [e.g., Ball et al.’03, Kremenek et al.’06, Livshits et al.’09]

– Different contexts; errors are considered in isolation

• Diagnosing false alarms [e.g., Dillig et al.’12, Blackshear and Lahiri’13]

– Does not diagnose true errors in program

26

Future Work

• More expressive language

– Add arithmetic to the language

• Refine the simplifying assumptions

– Remove assumptions on error independence

– Incorporate domain specific knowledge

27

Conclusion

General diagnosis of static errors

– Applies to a large class of program analyses

– Diagnoses the cause of both true errors and false alarms

– Bayesian reasoning => more accurate reports than with
existing tools

28

Program Analyses

ML Type Inference

Information-flow analysis

Dataflow analysis

A demo is available at: http://apl.cs.cornell.edu/~zhangdf/diagnostic

