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Static Program Analysis

• Many flavors
– Type system

– Dataflow analysis

– Information-flow analysis

• Useful properties
– Type safety

– Memory safety

– Information-flow security

• But, (sometimes) confusing error messages make 
static analyses hard to use
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Example 1: ML Type Inference

• OCaml
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1 let foo(lst: int list): (float*float) list =

2   …

3   let rec loop lst x y dir acc =

4     if lst = [] then

5       acc

6     else

7 

8 in

9     List.rev (loop lst 0.0 0.0 0.0            )

print_string “foo”

[(0.0,0.0)]

Mistake

OCaml: This expression has 
type 'a list but is here used 

with type unit

Locating the error cause is
• Time-consuming
• Difficult



Example 2: Information-Flow Analysis

• Jif: Java + Information-Flow control
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1 public final byte[  ] {this} encText;

2 …

3 public void m(FileOutputStream[      ]{this} encFos)

4   throws (IOException) {

5   try {

6     for (int i=0; i<encText.length; i++)

7       encFos.write(encText[i]);

8 } catch (IoException e) {}

9 }

Jif: This label is 
too restrictive

{}

Mistake

{this}

Better error report is needed



Toward Better Error Reports

• Limitations of previous work

– Methods reporting full explanation – Verbose reports

– Analysis-specific methods – Tailored heuristics

– Methods diagnosing false alarms – No diagnosis of true errors

• Our approach

– Applies to a large class of program analyses 

– Diagnoses the cause of both true errors and false alarms

– Reports error causes more accurately than existing tools
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Approach Overview
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The error cause is likely to be
• Simple
• Able to explain all errors
• Not used often on correct paths
• (false alarm) weak and simple

General Diagnosis Heuristics

Constraints Analysis via Graph 

Based on 
Bayesian 

interpretation

Constraints

Language-Agnostic

Language-Specific

Programs

let foo(lst: int list):(float*float) list =

let rec loop lst x y dir acc =

if lst = [] then

acc

else

print_string “foo”

in

List.rev(loop lst 0.0 0.0 0.0 [(0.0,0.0)])

OCaml

Jif

Others

Cause



From Programs to Constraints

• ML type inference

– Constraint elements: types

– Constraints: type equalities
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1 let foo(lst: int list): (float*float) list =

2   …

3   let rec loop lst x y dir acc =

4     if lst = [] then

5       acc

6     else

7       print_string “foo”

8 in

9     List.rev (loop lst 0.0 0.0 0.0 [(0.0,0.0)])[(0.0,0.0)]

acc

print_string “foo”

acc

Constructors: unit, float, list,∗
Variables: 𝑎𝑐𝑐3, 𝑎𝑐𝑐5



A General Constraint Language

• Element (𝐸): form a lattice, with an ordering ≤

• Inequality (𝐼): a partial order on elements
– E.g., “subtype of”, “subset of”, “less confidential than” 

• Constraint (Hypothesis ⊢Conclusion)
– Hypothesis captures programmer assumptions

– Variable-free constraint is valid when all ≤ in conclusion 
can be derived from hypothesis
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𝐸 ∷= 𝛼 𝑐 𝐸1, … , 𝐸𝑛  𝑐𝑖 𝐸 𝐸1 ⊔ 𝐸2 𝐸1 ⊓ 𝐸2| ⊥ |⊤
𝐼 ∷= 𝐸1 ≤ 𝐸2 𝐶 ∷=  𝑖 𝐼1𝑖 ⊢  𝑗 𝐼2𝑗

Syntax of Constraints



Properties of the Constraint Language

• Expressive

– ML type inference with polymorphism 

– Information-flow analysis with complex security model

– Dataflow analysis

(See formal translations in paper)

• Practical to calculate satisfiable/unsatisfiable subsets 
of constraints
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Approach Overview
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Constraints Analysis via Graph 

Programs

let foo(lst: int list):(float*float) list =

let rec loop lst x y dir acc =

if lst = [] then

acc

else

print_string “foo”

in

List.rev(loop lst 0.0 0.0 0.0 [(0.0,0.0)])

OCaml

Jif

Others

Constraints

Language-Agnostic



Constraint Graph in a Nutshell

• Graph construction (simple case)

– Node: constraint element

– Directed edge: partial ordering
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1.
2. 3.

4.
5. 6.

7.
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Constraint Analysis in a Nutshell

Type 
mismatch

P1

P2

P3



Constraint Analysis for the Full 
Constraint Language

• Handling constructors, hypotheses

– CFG Reachability [Barrett et al. 2000, Melski&Reps 2000]

– Also handles join/meet operations

(See details in paper)

• Performance

– Scalable: quadratic w.r.t. # graph nodes in practice

13



Error Diagnosis
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Constraints Analysis via Graph 

Programs

let foo(lst: int list):(float*float) list =

let rec loop lst x y dir acc =

if lst = [] then

acc

else

print_string “foo”

in

List.rev(loop lst 0.0 0.0 0.0 [(0.0,0.0)])

OCaml

Jif

Others

Constraints

Language-Agnostic

Bayesian 
reasoning



Possible Explanations

• When an analysis reports an error, either

– The program being analyzed is wrong (true alarm)

• E.g., an expression is wrong in OCaml program

– The program analysis reports an false alarm (false alarm)

• E.g., an assumption is missing in Jif program

• Explanations to find

– Wrong expressions

– Missing hypotheses
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Key insight: 
Bayesian reasoning



Inferring Most-Likely Error Cause

• The most likely explanation

– 𝒢: explanation (pair of constraint elements and hypotheses)

– o : observation (structure of a constraint graph)
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argmax
𝐸,𝐻 ∈𝒢

𝑃(𝐸,𝐻|𝑜)

Observation



Likelihood Estimation
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argmax
𝐸,𝐻 ∈𝒢

𝑃Ω 𝐸 𝑃 𝑜 𝐸,𝐻 𝑃Ψ(𝐻)

MAP
estimation



Likelihood Estimation

• Simplifying assumptions:

– All expressions are equally likely to be wrong (with 𝑃1)

– Errors are unlikely (with 𝑃2 < 0.5) to appear on satisfiable paths

• Intuitively, 
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argmax
𝐸,𝐻 ∈𝒢

𝑃Ω 𝐸 𝑃 𝑜 𝐸,𝐻 𝑃Ψ(𝐻)𝑃1
|𝐸| 𝑃2

1 − 𝑃2

𝑘𝐸

# sat paths use 
elements in E

The error cause is likely to be
• Simple
• Able to explain all errors
• Not used often on correct paths
• (missing hypotheses) weak and 

simple

General Diagnosis Heuristics

Explain later



Inferring Likely Wrong Expressions

• Search space

– all subsets of expressions (nodes in constraint graph)

• A* search

– Optimal: all most likely wrong expressions are returned

– Efficient: 10 seconds when the search space is over 21000
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argmax
𝐸

𝑃1
|𝐸| 𝑃2

1 − 𝑃2

𝑘𝐸

Evaluation suggests the accuracy is not 
sensitive to the value of 𝑷𝟏 and 𝑷𝟐



Inferring Likely Missing Hypotheses

• Simplicity is not the only metric

– ⊤ ≤ ⊥ “explains” all errors

• Likely missing hypotheses are both weak and simple

– Minimal weakest hypothesis
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argmax
𝐻

𝑃Ψ 𝐻

Bob ≤ Carol ⊢ Alice ≤ Bob
Bob ≤ Carol ⊢ Alice ≤ Carol
Bob ≤ Carol ⊢ Alice ≤ Carol ⊔⊥

Minimal weakest hypothesis
Alice ≤ Bob

Formal definition & search algorithm in paper



Evaluation

• Implementation

– Translation from analyses to constraints

• OCaml: modified EasyOCaml (500 on top of 9,000LoC)

• Jif: modified Jif (300 on top of 45,000LoC)

– General error diagnostic tool 

• ~5,500 LoC in Java
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OCaml

Jif

Constraints

Modest 
effort

Constraint 
Graph

Error 
Diagnosis

Reports

Error Diagnostic Tool



Accuracy of Error Reports: OCaml

• Data

– A corpus of previously collected programs [Lerner et al.’07]

– Analyzed 336 programs with type mismatch errors

• Metric of report quality

– Location of programmer mistake: user’s fix with larger 
timestamp

– Correctness: only when the programmer mistake is 
returned
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Comparison with OCaml and Seminal
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Comparison with the OCaml compiler
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Comparison with Jif

• 16 previously collected buggy programs
– An application with real-world security concern [Arden et al.’12] 

– Errors clearly marked by the application developer

– Contains both error types
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Comparison with the Jif compiler
(Wrong expression)
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Related Work

• Program analyses as constraint solving [e.g., Aiken’99, Foster et al.’06]

– No support for hypothesis; error report is verbose

• Diagnosing ML/Jif errors [e.g., McAdam’98, Heeren’05, Lerner’07, King’08, 
Chen&Erwig’14]

– Tailored to specific program analysis

• Probabilistic inference [e.g., Ball et al.’03, Kremenek et al.’06, Livshits et al.’09]

– Different contexts; errors are considered in isolation

• Diagnosing false alarms [e.g., Dillig et al.’12, Blackshear and Lahiri’13]

– Does not diagnose true errors in program
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Future Work

• More expressive language

– Add arithmetic to the language

• Refine the simplifying assumptions

– Remove assumptions on error independence

– Incorporate domain specific knowledge 
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Conclusion

General diagnosis of static errors

– Applies to a large class of program analyses 

– Diagnoses the cause of both true errors and false alarms

– Bayesian reasoning => more accurate reports than with 
existing tools
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Program Analyses

ML Type Inference

Information-flow analysis

Dataflow analysis

A demo is available at: http://apl.cs.cornell.edu/~zhangdf/diagnostic


