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Chapter 2

Satisfiability Solvers

Carla P. Gomes, Henry Kautz,
Ashish Sabharwal, and Bart Selman

The past few years have seen an enormous progress in the performance of Boolean
satisfiability (SAT) solvers . Despite the worst-case exponential run time of all known
algorithms, satisfiability solvers are increasingly leaving their mark as a general-
purpose tool in areas as diverse as software and hardware verification [29–31, 228],
automatic test pattern generation [138, 221], planning [129, 197], scheduling [103],
and even challenging problems from algebra [238]. Annual SAT competitions have
led to the development of dozens of clever implementations of such solvers [e.g. 13,
19, 71, 93, 109, 118, 150, 152, 161, 165, 170, 171, 173, 174, 184, 198, 211, 213, 236],
an exploration of many new techniques [e.g. 15, 102, 149, 170, 174], and the cre-
ation of an extensive suite of real-world instances as well as challenging hand-crafted
benchmark problems [cf. 115]. Modern SAT solvers provide a “black-box” procedure
that can often solve hard structured problems with over a million variables and several
million constraints.

In essence, SAT solvers provide a generic combinatorial reasoning and search
platform. The underlying representational formalism is propositional logic. However,
the full potential of SAT solvers only becomes apparent when one considers their use
in applications that are not normally viewed as propositional reasoning tasks. For
example, consider AI planning, which is a PSPACE-complete problem. By restrict-
ing oneself to polynomial size plans, one obtains an NP-complete reasoning prob-
lem, easily encoded as a Boolean satisfiability problem, which can be given to a SAT
solver [128, 129]. In hardware and software verification, a similar strategy leads one
to consider bounded model checking, where one places a bound on the length of pos-
sible error traces one is willing to consider [30]. Another example of a recent appli-
cation of SAT solvers is in computing stable models used in the answer set program-
ming paradigm, a powerful knowledge representation and reasoning approach [81]. In
these applications—planning, verification, and answer set programming—the trans-
lation into a propositional representation (the “SAT encoding”) is done automatically
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and is hidden from the user: the user only deals with the appropriate higher-level
representation language of the application domain. Note that the translation to SAT
generally leads to a substantial increase in problem representation. However, large
SAT encodings are no longer an obstacle for modern SAT solvers. In fact, for many
combinatorial search and reasoning tasks, the translation to SAT followed by the use
of a modern SAT solver is often more effective than a custom search engine running
on the original problem formulation. The explanation for this phenomenon is that
SAT solvers have been engineered to such an extent that their performance is difficult
to duplicate, even when one tackles the reasoning problem in its original representa-
tion.1

Although SAT solvers nowadays have found many applications outside of knowl-
edge representation and reasoning, the original impetus for the development of such
solvers can be traced back to research in knowledge representation. In the early to
mid eighties, the tradeoff between the computational complexity and the expressive-
ness of knowledge representation languages became a central topic of research. Much
of this work originated with a seminal series of papers by Brachman and Levesque on
complexity tradeoffs in knowledge representation, in general, and description logics,
in particular [36–38, 145, 146]. For a review of the state of the art in this area, see
Chapter 3 of this Handbook. A key underling assumption in the research on complex-
ity tradeoffs for knowledge representation languages is that the best way to proceed
is to find the most elegant and expressive representation language that still allows for
worst-case polynomial time inference. In the early nineties, this assumption was chal-
lenged in two early papers on SAT [168, 213]. In the first [168], the tradeoff between
typical-case complexity versus worst-case complexity was explored. It was shown
that most randomly generated SAT instances are actually surprisingly easy to solve
(often in linear time), with the hardest instances only occurring in a rather small range
of parameter settings of the random formula model. The second paper [213] showed
that many satisfiable instances in the hardest region could still be solved quite effec-
tively with a new style of SAT solvers based on local search techniques. These results
challenged the relevance of the ”worst-case” complexity view of the world.2

The success of the current SAT solvers on many real-world SAT instances with
millions of variables further confirms that typical-case complexity and the complexity
of real-world instances of NP-complete problems is much more amenable to effective
general purpose solution techniques than worst-case complexity results might sug-
gest. (For some initial insights into why real-world SAT instances can often be solved
efficiently, see [233].) Given these developments, it may be worthwhile to reconsider
the study of complexity tradeoffs in knowledge representation languages by not insist-

1 Each year the International Conference on Theory and Applications of Satisfiability Testing hosts a
SAT competition or race that highlights a new group of “world’s fastest” SAT solvers, and presents detailed
performance results on a wide range of solvers [141–143, 215]. In the 2006 competition, over 30 solvers
competed on instances selected from thousands of benchmark problems. Most of these SAT solvers can
be downloaded freely from the web. For a good source of solvers, benchmarks, and other topics relevant
to SAT research, we refer the reader to the websites SAT Live! (http://www.satlive.org) and
SATLIB (http://www.satlib.org).

2 The contrast between typical- and worst-case complexity may appear rather obvious. However,
note that the standard algorithmic approach in computer science is still largely based on avoiding any
non-polynomial complexity, thereby implicitly acceding to a worst-case complexity view of the world.
Approaches based on SAT solvers provide the first serious alternative.

http://www.satlive.org
http://www.satlib.org
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ing on worst-case polynomial time reasoning but allowing for NP-complete reasoning
sub-tasks that can be handled by a SAT solver. Such an approach would greatly extend
the expressiveness of representation languages. The work on the use of SAT solvers
to reason about stable models is a first promising example in this regard.

In this chapter, we first discuss the main solution techniques used in modern SAT
solvers, classifying them as complete and incomplete methods. We then discuss recent
insights explaining the effectiveness of these techniques on practical SAT encodings.
Finally, we discuss several extensions of the SAT approach currently under devel-
opment. These extensions will further expand the range of applications to include
multi-agent and probabilistic reasoning. For a review of the key research challenges
for satisfiability solvers, we refer the reader to [127].

2.1 Definitions and Notation

A propositional or Boolean formula is a logic expressions defined over variables (or
atoms) that take value in the set {FALSE, TRUE}, which we will identify with {0,1}.
A truth assignment (or assignment for short) to a set V of Boolean variables is a map
σ : V → {0,1}. A satisfying assignment for F is a truth assignment σ such that F
evaluates to 1 under σ . We will be interested in propositional formulas in a certain
special form: F is in conjunctive normal form (CNF) if it is a conjunction (AND,∧) of
clauses, where each clause is a disjunction (OR, ∨) of literals, and each literal is either
a variable or its negation (NOT, ¬). For example, F = (a∨¬b)∧(¬a∨c∨d)∧(b∨d)
is a CNF formula with four variables and three clauses.

The Boolean Satisfiability Problem (SAT) is the following: Given a CNF for-
mula F, does F have a satisfying assignment? This is the canonical NP-complete
problem [51, 147]. In practice, one is not only interested in this decision (“yes/no”)
problem, but also in finding an actual satisfying assignment if there exists one. All
practical satisfiability algorithms, known as SAT solvers, do produce such an assign-
ment if it exists.

It is natural to think of a CNF formula as a set of clauses and each clause as
a set of literals. We use the symbol Λ to denote the empty clause, i.e., the clause
that contains no literals and is therefore unsatisfiable. A clause with only one literal
is referred to as a unit clause. A clause with two literals is referred to as a binary
clause. When every clause of F has k literals, we refer to F as a k-CNF formula.
The SAT problem restricted to 2-CNF formulas is solvable in polynomial time, while
for 3-CNF formulas, it is already NP-complete. A partial assignment for a formula
F is a truth assignment to a subset of the variables of F . For a partial assignment ρ
for a CNF formula F , F |ρ denotes the simplified formula obtained by replacing the
variables appearing in ρ with their specified values, removing all clauses with at least
one TRUE literal, and deleting all occurrences of FALSE literals from the remaining
clauses.

CNF is the generally accepted norm for SAT solvers because of its simplicity and
usefulness; indeed, many problems are naturally expressed as a conjunction of rela-
tively simple constraints. CNF also lends itself to the DPLL process to be described
next. The construction of Tseitin [225] can be used to efficiently convert any given
propositional formula to one in CNF form by adding new variables corresponding to
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its subformulas. For instance, given an arbitrary propositional formula G, one would
first locally re-write each of its logic operators in terms of ∧,∨, and ¬ to obtain, say,
G = (((a∧b)∨ (¬a∧¬b))∧¬c)∨d. To convert this to CNF, one possibility is to add
four auxiliary variables w,x,y, and z, construct clauses that encode the four relations
w↔ (a∧b), x↔ (¬a∧¬b), y↔ (w∨x), and z↔ (y∧¬c), and add to that the clause
(z∨d).

2.2 SAT Solver Technology—Complete Methods

A complete solution method for the SAT problem is one that, given the input formula
F , either produces a satisfying assignment for F or proves that F is unsatisfiable.
One of the most surprising aspects of the relatively recent practical progress of SAT
solvers is that the best complete methods remain variants of a process introduced
several decades ago: the DPLL procedure, which performs a backtrack search in the
space of partial truth assignments. A key feature of DPLL is efficient pruning of the
search space based on falsified clauses. Since its introduction in the early 1960’s, the
main improvements to DPLL have been smart branch selection heuristics, extensions
like clause learning and randomized restarts, and well-crafted data structures such as
lazy implementations and watched literals for fast unit propagation. This section is
devoted to understanding these complete SAT solvers, also known as “systematic”
solvers.3

2.2.1 The DPLL Procedure
The Davis-Putnam-Logemann-Loveland or DPLL procedure is a complete, system-
atic search process for finding a satisfying assignment for a given Boolean formula or
proving that it is unsatisfiable. Davis and Putnam [61] came up with the basic idea
behind this procedure. However, it was only a couple of years later that Davis, Lo-
gemann, and Loveland [60] presented it in the efficient top-down form in which it is
widely used today. It is essentially a branching procedure that prunes the search space
based on falsified clauses.

Algorithm 1, DPLL-recursive(F,ρ), sketches the basic DPLL procedure on
CNF formulas. The idea is to repeatedly select an unassigned literal ` in the input
formula F and recursively search for a satisfying assignment for F |` and F¬`. The
step where such an ` is chosen is commonly referred to as the branching step. Setting
` to TRUE or FALSE when making a recursive call is called a decision, and is asso-
ciated with a decision level which equals the recursion depth at that stage. The end
of each recursive call, which takes F back to fewer assigned variables, is called the
backtracking step.

A partial assignment ρ is maintained during the search and output if the formula
turns out to be satisfiable. If F |ρ contains the empty clause, the corresponding clause
of F from which it came is said to be violated by ρ . To increase efficiency, unit clauses
are immediately set to TRUE as outlined in Algorithm 1; this process is termed unit

3 Due to space limitation, we cannot do justice to a large amount of recent work on complete SAT
solvers, which consists of hundreds of publications. The aim of this section is to give the reader an overview
of several techniques commonly employed by these solvers.



C.P. Gomes et al. 93

Algorithm 2.1: DPLL-recursive(F,ρ)

Input : A CNF formula F and an initially empty partial assignment ρ
Output : UNSAT, or an assignment satisfying F
begin

(F,ρ)← UnitPropagate(F,ρ)
if F contains the empty clause then return UNSAT
if F has no clauses left then

Output ρ
return SAT

`← a literal not assigned by ρ // the branching step
if DPLL-recursive(F|`,ρ ∪{`}) = SAT then return SAT
return DPLL-recursive(F|¬`,ρ ∪{¬`})

end

sub UnitPropagate(F,ρ)
begin

while F contains no empty clause but has a unit clause x do
F ← F|x
ρ ← ρ ∪{x}

return (F,ρ)
end

propagation. Pure literals (those whose negation does not appear) are also set to
TRUE as a preprocessing step and, in some implementations, during the simplification
process after every branch.

Variants of this algorithm form the most widely used family of complete algo-
rithms for formula satisfiability. They are frequently implemented in an iterative
rather than recursive manner, resulting in significantly reduced memory usage. The
key difference in the iterative version is the extra step of unassigning variables when
one backtracks. The naive way of unassigning variables in a CNF formula is compu-
tationally expensive, requiring one to examine every clause in which the unassigned
variable appears. However, the watched literals scheme provides an excellent way
around this and will be described shortly.

2.2.2 Key Features of Modern DPLL-Based SAT Solvers
The efficiency of state-of-the-art SAT solvers relies heavily on various features that
have been developed, analyzed, and tested over the last decade. These include fast
unit propagation using watched literals, learning mechanisms, deterministic and ran-
domized restart strategies, effective constraint database management (clause deletion
mechanisms), and smart static and dynamic branching heuristics. We give a flavor of
some of these next.

Variable (and value) selection heuristic is one of the features that vary the most
from one SAT solver to another. Also referred to as the decision strategy, it can have
a significant impact on the efficiency of the solver (see e.g. [160] for a survey). The
commonly employed strategies vary from randomly fixing literals to maximizing a
moderately complex function of the current variable- and clause-state, such as the
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MOMS (Maximum Occurrence in clauses of Minimum Size) heuristic [121] or the
BOHM heuristic [cf. 32]. One could select and fix the literal occurring most fre-
quently in the yet unsatisfied clauses (the DLIS (Dynamic Largest Individual Sum)
heuristic [161]), or choose a literal based on its weight which periodically decays but
is boosted if a clause in which it appears is used in deriving a conflict, like in the
VSIDS (Variable State Independent Decaying Sum) heuristic [170]. Newer solvers
like BerkMin [93], Jerusat [171], MiniSat [71], and RSat [184] employ further
variations on this theme.

Clause learning has played a critical role in the success of modern complete
SAT solvers. The idea here is to cache “causes of conflict” in a succinct manner (as
learned clauses) and utilize this information to prune the search in a different part of
the search space encountered later. We leave the details to Section 2.2.3, which will
be devoted entirely to clause learning. We will also see how clause learning provably
exponentially improves upon the basic DPLL procedure.

The watched literals scheme of Moskewicz et al. [170], introduced in their solver
zChaff, is now a standard method used by most SAT solvers for efficient constraint
propagation. This technique falls in the category of lazy data structures introduced
earlier by Zhang [236] in the solver Sato. The key idea behind the watched literals
scheme, as the name suggests, is to maintain and “watch” two special literals for
each active (i.e., not yet satisfied) clause that are not FALSE under the current partial
assignment; these literals could either be set to TRUE or be as yet unassigned. Recall
that empty clauses halt the DPLL process and unit clauses are immediately satisfied.
Hence, one can always find such watched literals in all active clauses. Further, as
long as a clause has two such literals, it cannot be involved in unit propagation. These
literals are maintained as follows. Suppose a literal ` is set to FALSE. We perform
two maintenance operations. First, for every clause C that had ` as a watched literal,
we examine C and find, if possible, another literal to watch (one which is TRUE or
still unassigned). Second, for every previously active clause C′ that has now become
satisfied because of this assignment of ` to FALSE, we make ¬` a watched literal for
C′. By performing this second step, positive literals are given priority over unassigned
literals for being the watched literals.

With this setup, one can test a clause for satisfiability by simply checking whether
at least one of its two watched literals is TRUE. Moreover, the relatively small amount
of extra book-keeping involved in maintaining watched literals is well paid off when
one unassigns a literal ` by backtracking—in fact, one needs to do absolutely nothing!
The invariant about watched literals is maintained as such, saving a substantial amount
of computation that would have been done otherwise. This technique has played a
critical role in the success of SAT solvers, in particular those involving clause learn-
ing. Even when large numbers of very long learned clauses are constantly added to
the clause database, this technique allows propagation to be very efficient—the long
added clauses are not even looked at unless one assigns a value to one of the literals
being watched and potentially causes unit propagation.

Conflict-directed backjumping, introduced by Stallman and Sussman [220], al-
lows a solver to backtrack directly to a decision level d if variables at levels d or lower
are the only ones involved in the conflicts in both branches at a point other than the
branch variable itself. In this case, it is safe to assume that there is no solution extend-
ing the current branch at decision level d, and one may flip the corresponding variable
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at level d or backtrack further as appropriate. This process maintains the completeness
of the procedure while significantly enhancing the efficiency in practice.

Fast backjumping is a slightly different technique, relevant mostly to the now-
popular FirstUIP learning scheme used in SAT solvers Grasp [161] and zChaff [170].
It lets a solver jump directly to a lower decision level d when even one branch leads
to a conflict involving variables at levels d or lower only (in addition to the variable
at the current branch). Of course, for completeness, the current branch at level d is
not marked as unsatisfiable; one simply selects a new variable and value for level
d and continues with a new conflict clause added to the database and potentially a
new implied variable. This is experimentally observed to increase efficiency in many
benchmark problems. Note, however, that while conflict-directed backjumping is al-
ways beneficial, fast backjumping may not be so. It discards intermediate decisions
which may actually be relevant and in the worst case will be made again unchanged
after fast backjumping.

Assignment stack shrinking based on conflict clauses is a relatively new tech-
nique introduced by Nadel [171] in the solver Jerusat, and is now used in other
solvers as well. When a conflict occurs because a clause C′ is violated and the re-
sulting conflict clause C to be learned exceeds a certain threshold length, the solver
backtracks to almost the highest decision level of the literals in C. It then starts as-
signing to FALSE the unassigned literals of the violated clause C′ until a new conflict
is encountered, which is expected to result in a smaller and more pertinent conflict
clause to be learned.

Conflict clause minimization was introduced by Eén and Sörensson [71] in their
solver MiniSat. The idea is to try to reduce the size of a learned conflict clause
C by repeatedly identifying and removing any literals of C that are implied to be
FALSE when the rest of the literals in C are set to FALSE. This is achieved using
the subsumption resolution rule, which lets one derive a clause A from (x∨A) and
(¬x∨B) where B ⊆ A (the derived clause A subsumes the antecedent (x∨A)). This
rule can be generalized, at the expense of extra computational cost that usually pays
off, to a sequence of subsumption resolution derivations such that the final derived
clause subsumes the first antecedent clause.

Randomized restarts, introduced by Gomes et al. [102], allow clause learning
algorithms to arbitrarily stop the search and restart their branching process from de-
cision level zero. All clauses learned so far are retained and now treated as additional
initial clauses. Most of the current SAT solvers, starting with zChaff [170], employ
aggressive restart strategies, sometimes restarting after as few as 20 to 50 backtracks.
This has been shown to help immensely in reducing the solution time. Theoretically,
unlimited restarts, performed at the correct step, can provably make clause learning
very powerful. We will discuss randomized restarts in more detail later in the chapter.

2.2.3 Clause Learning and Iterative DPLL
Algorithm 2.2 gives the top-level structure of a DPLL-based SAT solver employing
clause learning. Note that this algorithm is presented here in the iterative format
(rather than recursive) in which it is most widely used in today’s SAT solvers.

The procedure DecideNextBranch chooses the next variable to branch on (and
the truth value to set it to) using either a static or a dynamic variable selection heuris-
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Algorithm 2.2: DPLL-ClauseLearning-Iterative
Input : A CNF formula
Output : UNSAT, or SAT along with a satisfying assignment
begin

while TRUE do
DecideNextBranch
while TRUE do

status← Deduce
if status = CONFLICT then

blevel← AnalyzeConflict
if blevel = 0 then return UNSAT
Backtrack(blevel)

else if status = SAT then
Output current assignment stack
return SAT

else break
end

tic. The procedure Deduce applies unit propagation, keeping track of any clauses that
may become empty, causing what is known as a conflict. If all clauses have been sat-
isfied, it declares the formula to be satisfiable.4 The procedure AnalyzeConflict
looks at the structure of implications and computes from it a “conflict clause” to learn.
It also computes and returns the decision level that one needs to backtrack. Note that
there is no explicit variable flip in the entire algorithm; one simply learns a conflict
clause before backtracking, and this conflict clause often implicitly “flips” the value
of a decision or implied variable by unit propagation. This will become clearer when
we discuss the details of conflict clause learning and unique implication point.

In terms of notation, variables assigned values through the actual variable selec-
tion process (DecideNextBranch) are called decision variables and those assigned
values as a result of unit propagation (Deduce) are called implied variables. Decision
and implied literals are analogously defined. Upon backtracking, the last decision
variable no longer remains a decision variable and might instead become an implied
variable depending on the clauses learned so far. The decision level of a decision
variable x is one more than the number of current decision variables at the time of
branching on x. The decision level of an implied variable y is the maximum of the
decision levels of decision variables used to imply y; if y is implied a value without
using any decision variable at all, y has decision level zero. The decision level at any
step of the underlying DPLL procedure is the maximum of the decision levels of all
current decision variables, and zero if there is no decision variable yet. Thus, for in-
stance, if the clause learning algorithm starts off by branching on x, the decision level
of x is 1 and the algorithm at this stage is at decision level 1.

A clause learning algorithm stops and declares the given formula to be unsatisfi-
able whenever unit propagation leads to a conflict at decision level zero, i.e., when

4 In some implementations involving lazy data structures, solvers do not keep track of the actual
number of satisfied clauses. Instead, the formula is declared to be satisfiable when all variables have been
assigned truth values and no conflict is created by this assignment.
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no variable is currently branched upon. This condition is sometimes referred to as a
conflict at decision level zero.

Clause learning grew out of work in artificial intelligence seeking to improve the
performance of backtrack search algorithms by generating explanations for failure
(backtrack) points, and then adding the explanations as new constraints on the original
problem. The results of Davis [62], de Kleer and Williams [63], Dechter [64], Gene-
sereth [82], Stallman and Sussman [220], and others proved this approach to be quite
promising. For general constraint satisfaction problems the explanations are called
“conflicts” or “no-goods”; in the case of Boolean CNF satisfiability, the technique
becomes clause learning—the reason for failure is learned in the form of a “conflict
clause” which is added to the set of given clauses. Despite the initial success, the early
work in this area was limited by the large numbers of no-goods generated during the
search, which generally involved many variables and tended to slow the constraint
solvers down. Clause learning owes a lot of its practical success to subsequent re-
search exploiting efficient lazy data structures and constraint database management
strategies. Through a series of papers and often accompanying solvers, Bayardo
Jr. and Miranker [17], Bayardo Jr. and Schrag [19], Marques-Silva and Sakallah
[161], Moskewicz et al. [170], Zhang [236], Zhang et al. [240], and others showed
that clause learning can be efficiently implemented and used to solve hard problems
that cannot be approached by any other technique.

In general, the learning process hidden in AnalyzeConflict is expected to save
us from redoing the same computation when we later have an assignment that causes
conflict due in part to the same reason. Variations of such conflict-driven learning
include different ways of choosing the clause to learn (different learning schemes)
and possibly allowing multiple clauses to be learned from a single conflict. We next
formalize the graph-based framework used to define and compute conflict clauses.

Implication Graph and Conflicts
Unit propagation can be naturally associated with an implication graph that captures
all possible ways of deriving all implied literals from decision literals. In what fol-
lows, we use the term known clauses to refer to the clauses of the input formula as
well as to all clauses that have been learned by the clause learning process so far.

Definition 1. The implication graph G at a given stage of DPLL is a directed acyclic
graph with edges labeled with sets of clauses. It is constructed as follows:

Step 1: Create a node for each decision literal, labeled with that literal. These
will be the indegree-zero source nodes of G.

Step 2: While there exists a known clause C = (l1∨ . . . lk∨ l) such that¬l1, . . . ,¬lk
label nodes in G,

i. Add a node labeled l if not already present in G.
ii. Add edges (li, l),1≤ i≤ k, if not already present.

iii. Add C to the label set of these edges. These edges are thought of as
grouped together and associated with clause C.
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Step 3: Add to G a special “conflict” node Λ. For any variable x that occurs both
positively and negatively in G, add directed edges from x and ¬x to Λ.

Since all node labels in G are distinct, we identify nodes with the literals labeling
them. Any variable x occurring both positively and negatively in G is a conflict vari-
able , and x as well as ¬x are conflict literals. G contains a conflict if it has at least
one conflict variable. DPLL at a given stage has a conflict if the implication graph at
that stage contains a conflict. A conflict can equivalently be thought of as occurring
when the residual formula contains the empty clause Λ. Note that we are using Λ to
denote the node of the implication graph representing a conflict, and Λ to denote the
empty clause.

By definition, the implication graph may not contain a conflict at all, or it may
contain many conflict variables and several ways of deriving any single literal. To
better understand and analyze a conflict when it occurs, we work with a subgraph of
the implication graph, called the conflict graph (see Figure 2.1), that captures only one
among possibly many ways of reaching a conflict from the decision variables using
unit propagation.

a cut corresponding
to clause (¬ a ∨ ¬ b)

¬ p

¬ q

b

a

¬ t

¬ x1

¬ x2

¬ x3

y

¬¬¬¬ y

Λ

reason side conflict side

conflict
variable

Figure 2.1: A conflict graph

Definition 2. A conflict graph H is any subgraph of the implication graph with the
following properties:

(a) H contains Λ and exactly one conflict variable.

(b) All nodes in H have a path to Λ.

(c) Every node l in H other than Λ either corresponds to a decision literal or has
precisely the nodes¬l1,¬l2, . . . ,¬lk as predecessors where (l1∨ l2∨ . . .∨ lk∨ l)
is a known clause.

While an implication graph may or may not contain conflicts, a conflict graph
always contains exactly one. The choice of the conflict graph is part of the strategy
of the solver. A typical strategy will maintain one subgraph of an implication graph
that has properties (b) and (c) from Definition 2, but not property (a). This can be
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thought of as a unique inference subgraph of the implication graph. When a conflict
is reached, this unique inference subgraph is extended to satisfy property (a) as well,
resulting in a conflict graph, which is then used to analyze the conflict.

Conflict clauses

For a subset U of the vertices of a graph, the edge-cut (henceforth called a cut) cor-
responding to U is the set of all edges going from vertices in U to vertices not in
U .

Consider the implication graph at a stage where there is a conflict and fix a conflict
graph contained in that implication graph. Choose any cut in the conflict graph that
has all decision variables on one side, called the reason side, and Λ as well as at least
one conflict literal on the other side, called the conflict side. All nodes on the reason
side that have at least one edge going to the conflict side form a cause of the conflict.
The negations of the corresponding literals forms the conflict clause associated with
this cut.

Learning Schemes

The essence of clause learning is captured by the learning scheme used to analyze and
learn the “cause” of a failure. More concretely, different cuts in a conflict graph sep-
arating decision variables from a set of nodes containing Λ and a conflict literal cor-
respond to different learning schemes (see Figure 2.2). One may also define learning
schemes based on cuts not involving conflict literals at all such as a scheme suggested
by Zhang et al. [240], but the effectiveness of such schemes is not clear. These will
not be considered here.

FirstNewCut clause
(x1 ∨ x2 ∨ x3)

Decision clause
(p ∨ q ∨ ¬ b)

1UIP clause
t

rel-sat clause
(¬ a ∨ ¬ b)

¬ p

¬ q

b

a

¬ t

¬ x1

¬ x2

¬ x3

y

¬¬¬¬ y

Λ

Figure 2.2: Learning schemes corresponding to different cuts in the conflict graph

It is insightful to think of the nondeterministic scheme as the most general learn-
ing scheme. Here we select the cut nondeterministically, choosing, whenever pos-
sible, one whose associated clause is not already known. Since we can repeatedly
branch on the same last variable, nondeterministic learning subsumes learning mul-
tiple clauses from a single conflict as long as the sets of nodes on the reason side of
the corresponding cuts form a (set-wise) decreasing sequence. For simplicity, we will
assume that only one clause is learned from any conflict.
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In practice, however, we employ deterministic schemes. The decision scheme
[240], for example, uses the cut whose reason side comprises all decision variables.
Relsat [19] uses the cut whose conflict side consists of all implied variables at the
current decision level. This scheme allows the conflict clause to have exactly one
variable from the current decision level, causing an automatic flip in its assignment
upon backtracking. In the example depicted in Figure 2.2, the decision clause (p∨
q∨¬b) has b as the only variable from the current decision level. After learning this
conflict clause and backtracking by unassigning b, the truth values of p and q (both
FALSE) immediately imply ¬b, flipping the value of b from TRUE to FALSE.

This nice flipping property holds in general for all unique implication points
(UIPs) [161]. A UIP of an implication graph is a node at the current decision level
d such that every path from the decision variable at level d to the conflict variable or
its negation must go through it. Intuitively, it is a single reason at level d that causes
the conflict. Whereas relsat uses the decision variable as the obvious UIP, Grasp
[161] and zChaff [170] use FirstUIP, the one that is “closest” to the conflict variable.
Grasp also learns multiple clauses when faced with a conflict. This makes it typically
require fewer branching steps but possibly slower because of the time lost in learning
and unit propagation.

The concept of UIP can be generalized to decision levels other than the current
one. The 1UIP scheme corresponds to learning the FirstUIP clause of the current de-
cision level, the 2UIP scheme to learning the FirstUIP clauses of both the current level
and the one before, and so on. Zhang et al. [240] present a comparison of all these
and other learning schemes and conclude that 1UIP is quite robust and outperforms
all other schemes they consider on most of the benchmarks.

Another learning scheme, which underlies the proof of a theorem to be presented
in the next section, is the FirstNewCut scheme [22]. This scheme starts with the cut
that is closest to the conflict literals and iteratively moves it back toward the decision
variables until a conflict clause that is not already known is found; hence the name
FirstNewCut.

2.2.4 A Proof Complexity Perspective
Propositional proof complexity is the study of the structure of proofs of validity of
mathematical statements expressed in a propositional or Boolean form. Cook and
Reckhow [52] introduced the formal notion of a proof system in order to study math-
ematical proofs from a computational perspective. They defined a propositional proof
system to be an efficient algorithm A that takes as input a propositional statement S
and a purported proof π of its validity in a certain pre-specified format. The crucial
property of A is that for all invalid statements S, it rejects the pair (S,π) for all π ,
and for all valid statements S, it accepts the pair (S,π) for some proof π . This notion
of proof systems can be alternatively formulated in terms of unsatisfiable formulas—
those that are FALSE for all assignments to the variables.

They further observed that if there is no propositional proof system that admits
short (polynomial in size) proofs of validity of all tautologies, i.e., if there exist com-
putationally hard tautologies for every propositional proof system, then the complex-
ity classes NP and co-NP are different, and hence P 6= NP. This observation makes
finding tautological formulas (equivalently, unsatisfiable formulas) that are computa-
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tionally difficult for various proof systems one of the central tasks of proof complexity
research, with far reaching consequences to complexity theory and Computer Science
in general. These hard formulas naturally yield a hierarchy of proof systems based on
the sizes of proofs they admit. Tremendous amount of research has gone into under-
standing this hierarchical structure. Beame and Pitassi [23] summarize many of the
results obtained in this area.

To understand current complete SAT solvers, we focus on the proof system called
resolution, denoted henceforth as RES. It is a very simple system with only one rule
which applies to disjunctions of propositional variables and their negations: (a OR B)
and ((NOT a) OR C) together imply (B OR C). Repeated application of this rule
suffices to derive an empty disjunction if and only if the initial formula is unsatisfiable;
such a derivation serves as a proof of unsatisfiability of the formula.

Despite its simplicity, unrestricted resolution as defined above (also called gen-
eral resolution) is hard to implement efficiently due to the difficulty of finding good
choices of clauses to resolve; natural choices typically yield huge storage require-
ments. Various restrictions on the structure of resolution proofs lead to less powerful
but easier to implement refinements that have been studied extensively in proof com-
plexity. Those of special interest to us are tree-like resolution, where every derived
clause is used at most once in the refutation, and regular resolution, where every
variable is resolved upon at most one in any “path” from the initial clauses to the
empty clause. While these and other refinements are sound and complete as proof
systems, they differ vastly in efficiency. For instance, in a series of results, Bonet
et al. [34], Bonet and Galesi [35], and Buresh-Oppenheim and Pitassi [41] have shown
that regular, ordered, linear, positive, negative, and semantic resolution are all expo-
nentially stronger than tree-like resolution. On the other hand, Bonet et al. [34] and
Alekhnovich et al. [7] have proved that tree-like, regular, and ordered resolution are
exponentially weaker than RES.

Most of today’s complete SAT solvers implement a subset of the resolution proof
system. However, till recently, it wasn’t clear where exactly do they fit in the proof
system hierarchy and how do they compare to refinements of resolution such as reg-
ular resolution. Clause learning and random restarts can be considered to be two
of the most important ideas that have lifted the scope of modern SAT solvers from
experimental toy problems to large instances taken from real world challenges. De-
spite overwhelming empirical evidence, for many years not much was known of the
ultimate strengths and weaknesses of the two.

Beame, Kautz, and Sabharwal [22, 199] answered several of these questions in a
formal proof complexity framework. They gave the first precise characterization of
clause learning as a proof system called CL and began the task of understanding its
power by relating it to resolution. In particular, they showed that with a new learning
scheme called FirstNewCut, clause learning can provide exponentially shorter proofs
than any proper refinement of general resolution satisfying a natural self-reduction
property. These include regular and ordered resolution, which are already known to
be much stronger than the ordinary DPLL procedure which captures most of the SAT
solvers that do not incorporate clause learning. They also showed that a slight variant
of clause learning with unlimited restarts is as powerful as general resolution itself.

From the basic proof complexity point of view, only families of unsatisfiable for-
mulas are of interest because only proofs of unsatisfiability can be large; minimum
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proofs of satisfiability are linear in the number of variables of the formula. In prac-
tice, however, many interesting formulas are satisfiable. To justify the approach of
using a proof system CL, we refer to the work of Achlioptas, Beame, and Molloy [2]
who have shown how negative proof complexity results for unsatisfiable formulas can
be used to derive run time lower bounds for specific inference algorithms, especially
DPLL, running on satisfiable formulas as well. The key observation in their work
is that before hitting a satisfying assignment, an algorithm is very likely to explore
a large unsatisfiable part of the search space that results from the first bad variable
assignment.

Proof complexity does not capture everything we intuitively mean by the power
of a reasoning system because it says nothing about how difficult it is to find short-
est proofs. However, it is a good notion with which to begin our analysis because
the size of proofs provides a lower bound on the running time of any implementation
of the system. In the systems we consider, a branching function, which determines
which variable to split upon or which pair of clauses to resolve, guides the search. A
negative proof complexity result for a system (“proofs must be large in this system”)
tells us that a family of formulas is intractable even with a perfect branching func-
tion; likewise, a positive result (“small proofs exist”) gives us hope of finding a good
branching function, i.e., a branching function that helps us uncover a small proof.

We begin with an easy to prove relationship between DPLL (without clause learn-
ing) and tree-like resolution (for a formal proof, see e.g. [199]).

Proposition 1. For a CNF formula F, the size of the smallest DPLL refutation of F is
equal to the size of the smallest tree-like resolution refutation of F.

The interesting part is to understand what happens when clause learning is brought
into the picture. It has been previously observed by Lynce and Marques-Silva [157]
that clause learning can be viewed as adding resolvents to a tree-like resolution proof.
The following results show further that clause learning, viewed as a propositional
proof system CL, is exponentially stronger than tree-like resolution. This explains,
formally, the performance gains observed empirically when clause learning is added
to DPLL based solvers.

Clause Learning Proofs
The notion of clause learning proofs connects clause learning with resolution and
provides the basis for the complexity bounds to follow. If a given formula F is unsat-
isfiable, the clause learning based DPLL process terminates with a conflict at decision
level zero. Since all clauses used in this final conflict themselves follow directly or
indirectly from F , this failure of clause learning in finding a satisfying assignment
constitutes a logical proof of unsatisfiability of F . In an informal sense, we denote by
CL the proof system consisting of all such proofs; this can be made precise using the
notion of a branching sequence [22]. The results below compare the sizes of proofs in
CL with the sizes of (possibly restricted) resolution proofs. Note that clause learning
algorithms can use one of many learning schemes, resulting in different proofs.

We next define what it means for a refinement of a proof system to be natural and
proper. Let CS(F) denote the length of a shortest refutation of a formula F under a
proof system S.
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Definition 3 ([22, 199]). For proof systems S and T , and a function f : N→ [1,∞),

• S is natural if for any formula F and restriction ρ on its variables, CS(F |ρ) ≤
CS(F).

• S is a refinement of T if proofs in S are also (restricted) proofs in T .

• S is f (n)-proper as a refinement of T if there exists a witnessing family {Fn}
of formulas such that CS(Fn)≥ f (n) ·CT (Fn). The refinement is exponentially-
proper if f (n) = 2nΩ(1) and super-polynomially-proper if f (n) = nω(1).

Under this definition, tree-like, regular, linear, positive, negative, semantic, and
ordered resolution are natural refinements of RES, and further, tree-like, regular, and
ordered resolution are exponentially-proper [7, 34].

Now we are ready to state the somewhat technical theorem relating the clause
learning process to resolution, whose corollaries are nonetheless easy to understand.
The proof of this theorem is based on an explicit construction of so-called “proof-trace
extension” formulas, which interestingly allow one to translate any known separation
result between RES and a natural proper refinement S of RES into a separation be-
tween CL and S.

Theorem 1 ([22, 199]). For any f (n)-proper natural refinement S of RES and for CL
using the FirstNewCut scheme and no restarts, there exist formulas {Fn} such that
CS(Fn)≥ f (n) ·CCL(Fn).

Corollary 1. CL can provide exponentially shorter proofs than tree-like, regular, and
ordered resolution.

Corollary 2. Either CL is not a natural proof system or it is equivalent in strength to
RES.

We remark that this leaves open the possibility that CL may not be able to simulate
all regular resolution proofs. In this context, MacKenzie [158] has used arguments
similar to those of Beame et al. [20] to prove that a natural variant of clause learning
can indeed simulate all of regular resolution.

Finally, let CL-- denote the variant of CL where one is allowed to branch on a literal
whose value is already set explicitly or because of unit propagation. Of course, such
a relaxation is useless in ordinary DPLL; there is no benefit in branching on a variable
that doesn’t even appear in the residual formula. However, with clause learning, such
a branch can lead to an immediate conflict and allow one to learn a key conflict clause
that would otherwise have not been learned. This property can be used to prove that
RES can be efficiently simulated by CL-- with enough restarts. In this context, a clause
learning scheme will be called non-redundant if on a conflict, it always learns a clause
not already known. Most of the practical clause learning schemes are non-redundant.

Theorem 2 ([22, 199]). CL-- with any non-redundant scheme and unlimited restarts
is polynomially equivalent to RES.

We note that by choosing the restart points in a smart way, CL together with
restarts can be converted into a complete algorithm for satisfiability testing, i.e., for
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all unsatisfiable formulas given as input, it will halt and provide a proof of unsatis-
fiability [16, 102]. The theorem above makes a much stronger claim about a slight
variant of CL, namely, with enough restarts, this variant can always find proofs of
unsatisfiability that are as short as those of RES.

2.2.5 Symmetry Breaking
One aspect of many theoretical as well as real-world problems that merits attention is
the presence of symmetry or equivalence amongst the underlying objects. Symmetry
can be defined informally as a mapping of a constraint satisfaction problem (CSP)
onto itself that preserves its structure as well as its solutions. The concept of sym-
metry in the context of SAT solvers and in terms of higher level problem objects is
best explained through some examples of the many application areas where it nat-
urally occurs. For instance, in FPGA (field programmable gate array) routing used
in electronics design, all available wires or channels used for connecting two switch
boxes are equivalent; in our design, it does not matter whether we use wire #1 be-
tween connector X and connector Y, or wire #2, or wire #3, or any other available
wire. Similarly, in circuit modeling, all gates of the same “type” are interchangeable,
and so are the inputs to a multiple fan-in AND or OR gate (i.e., a gate with several in-
puts); in planning, all identical boxes that need to be moved from city A to city B are
equivalent; in multi-processor scheduling, all available processors are equivalent; in
cache coherency protocols in distributed computing, all available identical caches are
equivalent. A key property of such objects is that when selecting k of them, we can
choose, without loss of generality, any k. This without-loss-of-generality reasoning is
what we would like to incorporate in an automatic fashion.

The question of symmetry exploitation that we are interested in addressing arises
when instances from domains such as the ones mentioned above are translated into
CNF formulas to be fed to a SAT solver. A CNF formula consists of constraints over
different kinds of variables that typically represent tuples of these high level objects
(e.g. wires, boxes, etc.) and their interaction with each other. For example, during
the problem modeling phase, we could have a Boolean variable zw,c that is TRUE iff
the first end of wire w is attached to connector c. When this formula is converted
into DIMACS format for a SAT solver, the semantic meaning of the variables, that,
say, variable 1324 is associated with wire #23 and connector #5, is discarded. Con-
sequently, in this translation, the global notion of the obvious interchangeability of
the set of wire objects is lost, and instead manifests itself indirectly as a symmetry
between the (numbered) variables of the formula and therefore also as a symmetry
within the set of satisfying (or un-satisfying) variable assignments. These sets of
symmetric satisfying and un-satisfying assignments artificially explode both the sat-
isfiable and the unsatisfiable parts of the search space, the latter of which can be a
challenging obstacle for a SAT solver searching for a satisfying assignment.

One of the most successful techniques for handling symmetry in both SAT and
general CSPs originates from the work of Puget [187], who showed that symme-
tries can be broken by adding one lexicographic ordering constraint per symmetry.
Crawford et al. [55] showed how this can be done by adding a set of simple “lex-
constraints” or symmetry breaking predicates (SBPs) to the input specification to
weed out all but the lexically-first solutions. The idea is to identify the group of



C.P. Gomes et al. 105

permutations of variables that keep the CNF formula unchanged. For each such per-
mutation π , clauses are added so that for every satisfying assignment σ for the original
problem, whose permutation π(σ) is also a satisfying assignment, only the lexically-
first of σ and π(σ) satisfies the added clauses. In the context of CSPs, there has been
a lot of work in the area of SBPs. Petrie and Smith [182] extended the idea to value
symmetries, Puget [189] applied it to products of variable and value symmetries, and
Walsh [231] generalized the concept to symmetries acting simultaneously on vari-
ables and values, on set variables, etc. Puget [188] has recently proposed a technique
for creating dynamic lex-constraints, with the goal of minimizing adverse interaction
with the variable ordering used in the search tree.

In the context of SAT, value symmetries for the high-level variables naturally man-
ifest themselves as low-level variable symmetries, and work on SBPs has taken a
different path. Tools such as Shatter by Aloul et al. [8] improve upon the basic
SBP technique by using lex-constraints whose size is only linear in the number of
variables rather than quadratic. Further, they use graph isomorphism detectors like
Saucy by Darga et al. [56] to generate symmetry breaking predicates only for the
generators of the algebraic groups of symmetry. This latter problem of computing
graph isomorphism, however, is not known to have any polynomial time algorithms,
and is conjectured to be strictly between the complexity classes P and NP [cf. 136].
Hence, one must resort to heuristic or approximate solutions. Further, while there are
formulas for which few SBPs suffice, the number of SBPs one needs to add in order
to break all symmetries can be exponential. This is typically handled in practice by
discarding “large” symmetries, i.e., those involving too many variables with respect to
a fixed threshold. This may, however, sometimes result in much slower SAT solutions
in domains such as clique coloring and logistics planning.

A very different and indirect approach for addressing symmetry is embodied in
SAT solvers such as PBS by Aloul et al. [9], pbChaff by Dixon et al. [68], and
Galena by Chai and Kuehlmann [44], which utilize non-CNF formulations known
as pseudo-Boolean inequalities. Their logic reasoning is based on what is called the
Cutting Planes proof system which, as shown by Cook et al. [53], is strictly stronger
than resolution on which DPLL type CNF solvers are based. Since this more powerful
proof system is difficult to implement in its full generality, pseudo-Boolean solvers
often implement only a subset of it, typically learning only CNF clauses or restricted
pseudo-Boolean constraints upon a conflict. Pseudo-Boolean solvers may lead to
purely syntactic representational efficiency in cases where a single constraint such as
y1 + y2 + . . .+ yk ≤ 1 is equivalent to

(k
2
)

binary clauses. More importantly, they are
relevant to symmetry because they sometimes allow implicit encoding. For instance,
the single constraint x1 +x2 + . . .+xn ≤m over n variables captures the essence of the
pigeonhole formula PHPn

m over nm variables which is provably exponentially hard to
solve using resolution-based methods without symmetry considerations [108]. This
implicit representation, however, is not suitable in certain applications such as clique
coloring and planning that we discuss. In fact, for unsatisfiable clique coloring in-
stances, even pseudo-Boolean solvers provably require exponential time.

One could conceivably keep the CNF input unchanged but modify the solver to
detect and handle symmetries during the search phase as they occur. Although this
approach is quite natural, we are unaware of its implementation in a general purpose
SAT solver besides sEqSatz by Li et al. [151], which has been shown to be effective
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on matrix multiplication and polynomial multiplication problems. Symmetry han-
dling during search has been explored with mixed results in the CSP domain using
frameworks like SBDD and SBDS [e.g. 72, 73, 84, 87]. Related work in SAT has
been done in the specific areas of automatic test pattern generation by Marques-Silva
and Sakallah [162] and SAT-based model checking by Shtrichman [214]. In both
cases, the solver utilizes global information obtained at a stage to make subsequent
stages faster. In other domain-specific work on symmetries in problems relevant to
SAT, Fox and Long [74] propose a framework for handling symmetry in planning
problems solved using the planning graph framework. They detect equivalence be-
tween various objects in the planning instance and use this information to reduce the
search space explored by their planner. Unlike typical SAT-based planners, this ap-
proach does not guarantee plans of optimal length when multiple (non-conflicting)
actions are allowed to be performed at each time step in parallel. Fortunately, this
issue does not arise in the SymChaff approach for SAT to be mentioned shortly.

Dixon et al. [67] give a generic method of representing and dynamically maintain-
ing symmetry in SAT solvers using algebraic techniques that guarantee polynomial
size unsatisfiability proofs of many difficult formulas. The strength of their work lies
in a strong group theoretic foundation and comprehensiveness in handling all possible
symmetries. The computations involving group operations that underlie their current
implementation are, however, often quite expensive.

When viewing complete SAT solvers as implementations of proof systems, the
challenge with respect to symmetry exploitation is to push the underlying proof sys-
tem up in the weak-to-strong proof complexity hierarchy without incurring the signifi-
cant cost that typically comes from large search spaces associated with complex proof
systems. While most of the current SAT solvers implement subsets of the resolution
proof system, a different kind of solver called SymChaff [199, 200] brings it up closer
to symmetric resolution, a proof system known to be exponentially stronger than res-
olution [139, 226]. More critically, it achieves this in a time- and space-efficient
manner. Interestingly, while SymChaff involves adding structure to the problem de-
scription, it still stays within the realm of SAT solvers (as opposed to using a constraint
programming (CP) approach), thereby exploiting the many benefits of the CNF form
and the advances in state-of-the-art SAT solvers.

As a structure-aware solver, SymChaff incorporates several new ideas, including
simple but effective symmetry representation, multiway branching based on variable
classes and symmetry sets, and symmetric learning as an extension of clause learning
to multiway branches. Two key places where it differs from earlier approaches are
in using high level problem description to obtain symmetry information (instead of
trying to recover it from the CNF formula) and in maintaining this information dy-
namically but without using a complex group theoretic machinery. This allows it to
overcome many drawbacks of previously proposed solutions. It is shown, in particu-
lar, that straightforward annotation in the usual PDDL specification of planning prob-
lems is enough to automatically and quickly generate relevant symmetry information,
which in turn makes the search for an optimal plan several orders of magnitude faster.
Similar performance gains are seen in other domains as well.



C.P. Gomes et al. 107

2.3 SAT Solver Technology—Incomplete Methods

An incomplete method for solving the SAT problem is one that does not provide
the guarantee that it will eventually either report a satisfying assignment or prove
the given formula unsatisfiable. Such a method is typically run with a pre-set limit,
after which it may or may not produce a solution. Unlike the systematic solvers
based on an exhaustive branching and backtracking search, incomplete methods are
generally based on stochastic local search. On problems from a variety of domains,
such incomplete methods for SAT can significantly outperform DPLL-based methods.
Since the early 1990’s, there has been a tremendous amount of research on designing,
understanding, and improving local search methods for SAT [e.g. 43, 77, 88, 89,
104, 105, 109, 113, 114, 116, 132, 137, 152, 164, 180, 183, 191, 206, 219] as well
as on hybrid approaches that attempt to combine DPLL and local search methods
[e.g. 10, 106, 163, 185, 195].5 We begin this section by discussing two methods
that played a key role in the success of local search in SAT, namely GSAT [213] and
Walksat [211]. We will then explore the phase transition phenomenon in random
SAT and a relatively new incomplete technique called Survey Propagation. We note
that there are also other exciting related solution techniques such as those based on
Lagrangian methods [207, 229, 235] and translation to integer programming [112,
124].

The original impetus for trying a local search method on satisfiability problems
was the successful application of such methods for finding solutions to large N-queens
problems, first using a connectionist system by Adorf and Johnston [6], and then us-
ing greedy local search by Minton et al. [167]. It was originally assumed that this
success simply indicated that N-queens was an easy problem, and researchers felt that
such techniques would fail in practice for SAT. In particular, it was believed that local
search methods would easily get stuck in local minima, with a few clauses remaining
unsatisfied. The GSAT experiments showed, however, that certain local search strate-
gies often do reach global minima, in many cases much faster than systematic search
strategies.

GSAT is based on a randomized local search technique [153, 177]. The basic GSAT
procedure, introduced by Selman et al. [213] and described here as Algorithm 2.3,
starts with a randomly generated truth assignment. It then greedily changes (‘flips’)
the assignment of the variable that leads to the greatest decrease in the total number
of unsatisfied clauses. Such flips are repeated until either a satisfying assignment is
found or a pre-set maximum number of flips (MAX-FLIPS) is reached. This process is
repeated as needed, up to a maximum of MAX-TRIES times.

Selman et al. showed that GSAT substantially outperformed even the best back-
tracking search procedures of the time on various classes of formulas, including ran-
domly generated formulas and SAT encodings of graph coloring problems [123]. The
search of GSAT typically begins with a rapid greedy descent towards a better assign-
ment, followed by long sequences of “sideways” moves, i.e., moves that do not in-
crease or decrease the total number of unsatisfied clauses. In the search space, each
collection of truth assignments that are connected together by a sequence of possible

5 As in our discussion of the complete SAT solvers, we cannot do justice to all recent research in local
search solvers for SAT. We will again try to provide a brief overview and touch upon some interesting
details.
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Algorithm 2.3: GSAT (F)

Input : A CNF formula F
Parameters : Integers MAX-FLIPS, MAX-TRIES
Output : A satisfying assignment for F , or FAIL
begin

for i← 1 to MAX-TRIES do
σ ← a randomly generated truth assignment for F
for j← 1 to MAX-FLIPS do

if σ satisfies F then return σ // success
v← a variable flipping which results in the greatest decrease

(possibly negative) in the number of unsatisfied clauses
Flip v in σ

return FAIL // no satisfying assignment found
end

sideways moves is referred to as a plateau. Experiments indicate that on many for-
mulas, GSAT spends most of its time moving from plateau to plateau. Interestingly,
Frank et al. [77] observed that in practice, almost all plateaus do have so-called “exits”
that lead to another plateau with a lower number of unsatisfied clauses. Intuitively,
in a very high dimensional search space such as the space of a 10,000 variable for-
mula, it is very rare to encounter local minima, which are plateaus from where there
is no local move that decreases the number of unsatisfied clauses. In practice, this
means that GSAT most often does not get stuck in local minima, although it may take
a substantial amount of time on each plateau before moving on to the next one. This
motivates studying various modifications in order to speed up this process [209, 210].
One of the most successful strategies is to introduce noise into the search in the form
of uphill moves, which forms the basis of the now well-known local search method
for SAT called Walksat [211].

Walksat interleaves the greedy moves of GSAT with random walk moves of a
standard Metropolis search. It further focuses the search by always selecting the vari-
able to flip from an unsatisfied clause C (chosen at random). If there is a variable in C
flipping which does not turn any currently satisfied clauses to unsatisfied, it flips this
variable (a “freebie” move). Otherwise, with a certain probability, it flips a random
literal of C (a “random walk” move), and with the remaining probability, it flips a
variable in C that minimizes the break-count, i.e., the number of currently satisfied
clauses that become unsatisfied (a “greedy” move). Walksat is presented in detail
as Algorithm 2.4. One of its parameters, in addition to the maximum number of tries
and flips, is the noise p ∈ [0,1], which controls how often are non-greedy moves con-
sidered during the stochastic search. It has been found empirically that for various
problems from a single domain, a single value of p is optimal.

The focusing strategy of Walksat based on selecting variables solely from un-
satisfied clauses was inspired by the O(n2) randomized algorithm for 2-SAT by Pa-
padimitriou [178]. It can be shown that for any satisfiable formula and starting from
any truth assignment, there exists a sequence of flips using only variables from unsat-
isfied clauses such that one obtains a satisfying assignment.
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Algorithm 2.4: Walksat (F)

Input : A CNF formula F
Parameters : Integers MAX-FLIPS, MAX-TRIES; noise parameter p ∈ [0,1]
Output : A satisfying assignment for F , or FAIL
begin

for i← 1 to MAX-TRIES do
σ ← a randomly generated truth assignment for F
for j← 1 to MAX-FLIPS do

if σ satisfies F then return σ // success
C← an unsatisfied clause of F chosen at random
if ∃ variable x ∈C with break-count = 0 then

v← x // freebie move

else
With probability p: // random walk move

v← a variable in C chosen at random
With probability 1− p: // greedy move

v← a variable in C with the smallest break-count
Flip v in σ

return FAIL // no satisfying assignment found
end

When one compares the biased random walk strategy of Walksat on hard random
3-CNF formulas against basic GSAT, the simulated annealing process of Kirkpatrick
et al. [131], and a pure random walk strategy, the biased random walk process signif-
icantly outperforms the other methods [210]. In the years following the development
of Walksat, many similar methods have been shown to be highly effective on not
only random formulas but on many classes of structured instances, such as encodings
of circuit design problems, Steiner tree problems, problems in finite algebra, and AI
planning [cf. 116]. Various extensions of the basic process have also been explored,
such as dynamic search policies like adapt-novelty [114], incorporating unit
clause elimination as in the solver UnitWalk [109], and exploiting problem struc-
ture for increased efficiency [183]. Recently, it was shown that the performance of
stochastic solvers on many structured problems can be further enhanced by using new
SAT encodings that are designed to be effective for local search [186].

2.3.1 The Phase Transition Phenomenon in Random k-SAT
One of the key motivations in the early 1990’s for studying incomplete, stochas-
tic methods for solving SAT problems was the finding that DPLL-based systematic
solvers perform quite poorly on certain randomly generated formulas. Consider a ran-
dom k-CNF formula F on n variables generated by independently creating m clauses
as follows: for each clause, select k distinct variables uniformly at random out of the
n variables and negate each variable with probability 0.5. When F is chosen from this
distribution, Mitchell, Selman, and Levesque [168] observed that the median hard-
ness of the problems is very nicely characterized by a key parameter: the clause-to-
variable ratio, m/n, typically denoted by α . They observed that problem hardness
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peaks in a critically constrained region determined by α alone. The left pane of Fig-
ure 2.3 depicts the now well-known “easy-hard-easy” pattern of SAT and other combi-
natorial problems, as the key parameter (in this case α) is varied. For random 3-SAT,
this region has been experimentally shown to be around α ≈ 4.26 (see [54, 132] for
early results), and has provided challenging benchmarks as a test-bed for SAT solvers.
Cheeseman et al. [45] observed a similar easy-hard-easy pattern in random graph col-
oring problems. For random formulas, interestingly, a slight natural variant of the
above “fixed-clause-length” model, called the variable-clause-length model, does not
have a clear set of parameters that leads to a hard set of instances [76, 92, 190]. This
apparent difficulty in generating computationally hard instances for SAT solvers pro-
vided the impetus for much of the early work on local search methods for SAT. We
refer the reader to [50] for a nice survey.
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Figure 2.3: The phase transition phenomenon in random 3-SAT. Left: Computational
hardness peaks at α ≈ 4.26. Right: Problems change from being mostly satisfiable to
mostly unsatisfiable. The transitions sharpen as the number of variables grows.

This critically constrained region marks a stark transition not only in the compu-
tational hardness of random SAT instances but also in their satisfiability itself. The
right pane of Figure 2.3 shows the fraction of random formulas that are unsatisfiable,
as a function of α . We see that nearly all problems with α below the critical region
(the under-constrained problems) are satisfiable. As α approaches and passes the crit-
ical region, there is a sudden change and nearly all problems in this over-constrained
region are unsatisfiable. Further, as n grows, this phase transition phenomenon be-
comes sharper and sharper, and coincides with the region in which the computational
hardness peaks. The relative hardness of the instances in the unsatisfiable region to
the right of the phase transition is consistent with the formal result of Chvátal and
Szemerédi [48] who, building upon the work of Haken [108], proved that large un-
satisfiable random k-CNF formulas almost surely require exponential size resolution
refutations, and thus exponential length runs of any DPLL-based algorithm proving
unsatisfiability. This formal result was subsequently refined and strengthened by oth-
ers [cf. 21, 24, 49].

Relating the phase transition phenomenon for 3-SAT to statistical physics, Kirk-
patrick and Selman [132] showed that the threshold has characteristics typical of
phase transitions in the statistical mechanics of disordered materials (see also [169]).
Physicists have studied phase transition phenomena in great detail because of the
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many interesting changes in a system’s macroscopic behavior that occur at phase
boundaries. One useful tool for the analysis of phase transition phenomena is called
finite-size scaling analysis. This approach is based on rescaling the horizontal axis
by a factor that is a function of n. The function is such that the horizontal axis is
stretched out for larger n. In effect, rescaling “slows down” the phase-transition for
higher values of n, and thus gives us a better look inside the transition. From the re-
sulting universal curve, applying the scaling function backwards, the actual transition
curve for each value of n can be obtained. In principle, this approach also localizes
the 50%-satisfiable-point for any value of n, which allows one to generate the hardest
possible random 3-SAT instances.

Interestingly, it is still not formally known whether there even exists a critical con-
stant αc such that as n grows, almost all 3-SAT formulas with α < αc are satisfiable
and almost all 3-SAT formulas with α > αc are unsatisfiable. In this respect, Friedgut
[78] provided the first positive result, showing that there exists a function αc(n) de-
pending on n such that the above threshold property holds. (It is quite likely that the
threshold in fact does not depend on n, and is a fixed constant.) In a series of papers,
researchers have narrowed down the gap between upper bounds on the threshold for
3-SAT [e.g. 40, 69, 76, 120, 133], the best so far being 4.596, and lower bounds [e.g.
1, 5, 40, 75, 79, 107, 125], the best so far being 3.52. On the other hand, for random
2-SAT, we do have a full rigorous understanding of the phase transition, which occurs
at clause-to-variable ratio of 1 [33, 47]. Also, for general k, the threshold for random
k-SAT is known to be in the range 2k ln2−O(k) [3, 101].

2.3.2 A New Technique for Random k-SAT: Survey Propagation
We end this section with a brief discussion of Survey Propagation (SP), an exciting
new algorithm for solving hard combinatorial problems. It was discovered in 2002 by
Mézard, Parisi, and Zecchina [165], and is so far the only known method successful at
solving random 3-SAT instances with one million variables and beyond in near-linear
time in the most critically constrained region.6

The SP method is quite radical in that it tries to approximate, using an iterative
process of local “message” updates, certain marginal probabilities related to the set
of satisfying assignments. It then assigns values to variables with the most extreme
probabilities, simplifies the formula, and repeats the process. This strategy is referred
to as SP-inspired decimation. In effect, the algorithm behaves like the usual DPLL-
based methods, which also assign variable values incrementally in an attempt to find a
satisfying assignment. However, quite surprisingly, SP almost never has to backtrack.
In other words, the “heuristic guidance” from SP is almost always correct. Note that,
interestingly, computing marginals on satisfying assignments is strongly believed to
be much harder than finding a single satisfying assignment (#P-complete vs. NP-
complete). Nonetheless, SP is able to efficiently approximate certain marginals on
random SAT instances and uses this information to successfully find a satisfying as-
signment.

SP was derived from rather complex statistical physics methods, specifically, the
so-called cavity method developed for the study of spin glasses. The method is still far

6 It has been recently shown that by finely tuning the noise parameter, Walksat can also be made to
scale well on hard random 3-SAT instances, well above the clause-to-variable ratio of 4.2 [208].
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from well-understood, but in recent years, we are starting to see results that provide
important insights into its workings [e.g. 4, 12, 39, 140, 159, 166]. Close connections
to belief propagation (BP) methods [181] more familiar to computer scientists have
been subsequently discovered. In particular, it was shown by Braunstein and Zecchina
[39] (later extended by Maneva, Mossel, and Wainwright [159]) that SP equations are
equivalent to BP equations for obtaining marginals over a special class of combinato-
rial objects, called covers. In this respect, SP is the first successful example of the use
of a probabilistic reasoning technique to solve a purely combinatorial search problem.
The recent work of Kroc et al. [140] empirically established that SP, despite the very
loopy nature of random formulas which violate the standard tree-structure assump-
tions underlying the BP algorithm, is remarkably good at computing marginals over
these covers objects on large random 3-SAT instances.

Unfortunately, the success of SP is currently limited to random SAT instances. It
is an exciting research challenge to further understand SP and apply it successfully to
more structured, real-world problem instances.

2.4 Runtime Variance and Problem Structure

The performance of backtrack-style search methods can vary dramatically depending
on the way one selects the next variable to branch on (the “variable selection heuris-
tic”) and in what order the possible values are assigned to the variable (the “value
selection heuristic”). The inherent exponential nature of the search process appears
to magnify the unpredictability of search procedures. In fact, it is not uncommon to
observe a backtrack search procedure “hang” on a given instance, whereas a different
heuristic, or even just another randomized run, solves the instance quickly. A related
phenomenon is observed in random problem distributions that exhibit an “easy-hard-
easy” pattern in computational complexity, concerning so-called “exceptionally hard”
instances: such instances seem to defy the “easy-hard-easy” pattern. They occur in
the under-constrained area, but they seem to be considerably harder than other similar
instances and even harder than instances from the critically constrained area. This
phenomenon was first identified by Hogg and Willimans in graph coloring [111] and
by Gent and Walsh in satisfiability problems [83]. An instance is considered to be ex-
ceptionally hard, for a particular search algorithm, when it occurs in the region where
almost all problem instances are satisfiable (i.e., the under constrained area), but is
considerably harder to solve than other similar instances, and even harder than most
of the instances in the critically constrained area [83, 111, 217]. However, subse-
quent research showed that such instances are not inherently difficult; for example,
by simply renaming the variables or by considering a different search heuristic such
instances can be easily solved [212, 218]. Therefore, the “hardness” of exceptionally
hard instances does not reside in the instances per se, but rather in the combina-
tion of the instance with the details of the search method. This is the reason why
researchers studying the hardness of computational problems use the median to char-
acterize search difficulty, instead of the mean, since the behavior of the mean tends to
be quite erratic [95].
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2.4.1 Fat and Heavy Tailed behavior
The study of the full runtime distributions of search methods—instead of just the mo-
ments and median—has been shown to provide a better characterization of search
methods and much useful information in the design of algorithms. In particular,
researchers have shown that the runtime distributions of complete backtrack search
methods reveal intriguing characteristics of such search methods: quite often com-
plete backtrack search methods exhibit fat and heavy-tailed behavior [80, 95, 111].
Such runtime distributions can be observed when running a deterministic backtrack-
ing procedure on a distribution of random instances, and perhaps more importantly
by repeated runs of a randomized backtracking procedure on a single instance.

The notion of fat-tailedness is based on the concept of kurtosis. The kurtosis
is defined as µ4/µ2

2 (µ4 is the fourth central moment about the mean and µ2 is the
second central moment about the mean, i.e., the variance). If a distribution has a high
central peak and long tails, than the kurtosis is in general large. The kurtosis of the
standard normal distribution is 3. A distribution with a kurtosis larger than 3 is fat-
tailed or leptokurtic. Examples of distributions that are characterized by fat-tails are
the exponential distribution, the lognormal distribution, and the Weibull distribution.

Heavy-tailed distributions have “heavier” tails than fat-tailed distributions; in fact
they have some infinite moments, e.g., they can have infinite mean, infinite variance,
etc. More rigorously, a random variable X with probability distribution function F(·)
is heavy-tailed if it has the so-called Pareto like decay of the tails, i.e.:

1−F(x) = Pr[X > x]∼Cx−α , x > 0,

where α > 0 and C > 0 are constants. When 1 < α < 2, X has infinite variance,
and infinite mean and variance when 0 < α <= 1. The log-log plot of 1−F(x) of a
Pareto-like distribution (i.e., the survival function) shows linear behavior with slope
determined by α . Like heavy-tailed distributions, fat-tailed distributions have long
tails, with a considerable mass of probability concentrated in the tails. Nevertheless,
the tails of fat-tailed distributions are lighter than heavy-tailed distributions.

DPLL style complete backtrack search methods have been shown to exhibit heavy-
tailed behavior, both in random instances and real-world instances. Example domains
are QCP [95], scheduling [97], planning[102], model checking, and graph coloring
[122, 230]. Several formal models generating heavy-tailed behavior in search have
been proposed [46, 94, 122, 233, 234]. If the runtime distribution of a backtrack
search method is heavy-tailed, it will produce runs spanning over several orders of
magnitude, some extremely long but also some extremely short. Methods like ran-
domization and restarts try to exploit this phenomenon [102].

2.4.2 Backdoors
Insight into heavy-tailed behavior comes from considering backdoor variables. These
are variables which, when set, give us a polynomial subproblem. Intuitively, a small
backdoor set explains how a backtrack search method can get “lucky” on certain runs,
where backdoor variables are identified early on in the search and set the right way.
Formally, the definition of a backdoor depends on a particular algorithm, referred to
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as sub-solver, that solves a tractable sub-case of the general constraint satisfaction
problem [233].

Definition 4. A sub-solver A given as input a CSP, C, satisfies the following:

i. Trichotomy: A either rejects the input C, or “determines” C correctly (as unsatis-
fiable or satisfiable, returning a solution if satisfiable),

ii. Efficiency: A runs in polynomial time,

iii. Trivial solvability: A can determine if C is trivially true (has no constraints) or
trivially false (has a contradictory constraint),

iv. Self-reducibility: if A determines C, then for any variable x and value v, A deter-
mines C[v/x].7

For instance, A could be an algorithm that enforces arc consistency. Using the
definition of sub-solver we can now formally define the concept of backdoor set. Let
A be a sub-solver and C be a CSP. A nonempty subset S of the variables with domain
D is a (weak) backdoor in C for A if for some aS : S→ D, A returns a satisfying
assignment of C[aS]. Intuitively, the backdoor corresponds to a set of variables, such
that when set correctly, the sub-solver can solve the remaining problem. A stronger
notion of backdoors considers both satisfiable and unsatisfiable (inconsistent) problem
instances. A nonempty subset S of the variables is a strong backdoor in C for A if for
all aS : S→D, A returns a satisfying assignment or concludes unsatisfiability of C[aS].

Szeider [223] considered the parameterized complexity of the problem of deter-
mining whether a SAT instance has a weak or strong backdoor set of size k or less for
DPLL style sub-solvers, i.e., subsolvers based on unit propagation and/or pure literal
elimination. He showed that detection of weak and strong backdoor sets is unlikely to
be fixed-parameter tractable. Nishimura et al. [172] provided more positive results for
detecting backdoor sets where the sub-solver solves Horn or 2-CNF formulas, both
of which are linear time problems. They proved that the detection of such a strong
backdoor set is fixed-parameter tractable, while the detection of a weak backdoor set
is not. The explanation that they offered for such a discrepancy is quite interesting:
for strong backdoor sets one only has to guarantee that the chosen set of variables
gives a subproblem within the chosen syntactic class; for weak backdoor sets, one
also has to guarantee satisfiability of the simplified formula, a property that cannot be
described syntactically.

Dilkina et al. [66] studied the tradeoff between the complexity of backdoor de-
tection and the backdoor size. They proved that adding certain obvious inconsistency
checks to the underlying class can make the complexity of backdoor detection jump
from being within NP to being both NP-hard and coNP-hard. On the positive side,
they showed that this change can dramatically reduce the size of the resulting back-
doors. They also explored the differences between so-called deletion backdoors and
strong backdoors, in particular with respect to the class of renamable Horn formulas.

Concerning the size of backdoors, random formulas do not appear to have small
backdoor sets. For example, for random 3-SAT problems near the phase transition,
the backdoor size appears to be a constant fraction (roughly 30%) of the total number

7We use C[v/x] to denote the simplified CSP obtained by setting the value of variable x to v in C.
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of variables [119]. This may explain why the current DPLL based solvers have not
made significant progress on hard randomly generated instances. Empirical results
based on real-world instances suggest a more positive picture. Structured problem
instances can have surprisingly small sets of backdoor variables, which may explain
why current state-of-the-art solvers are able to solve very large real-world instances.
For example the logistics-d planning problem instance (log.d) has a backdoor set of
just 12 variables, compared to a total of nearly 7,000 variables in the formula, using
the polynomial time propagation techniques of the SAT solver Satz [148]. Hoffmann
et al. [110] proved the existence of strong backdoor sets of size just O(logn) for
certain families of logistics planning problems and blocks world problems.

Figure 2.4: Constraint graph of a real-world instance from the logistics planning do-
main. The instance in the plot has 843 vars and 7,301 clauses. One backdoor set for
this instance w.r.t. unit propagation has size 16 (not necessarily the minimum back-
door set). Left: Constraint graph of the original instance. Center: Constraint graph
after setting 5 variables and performing unit propagation. Right: Constraint graph
after setting 14 variables and performing unit propagation.

Even though computing minimum backdoor sets is worst-case intractable [223], if
we bound the size of the backdoor, heuristics and techniques like randomization and
restarts can often uncover a small backdoor in practice [130]. In fact, state-of-the-
art SAT solvers are surprisingly effective in finding small backdoors in many struc-
tured problem instances. Figure 2.4 shows a visualization of the constraint graph of
a logistics planning problem and how this graph is drastically simplified after only
a few variables occurring in a small backdoor (found by SAT solvers) are set. In
related work, Slaney and Walsh [216] studied the structural notion of “backbones”
and Dequen and Dubois introduced a heuristic for DPLL based solvers that exploits
the notion of backbone and outperforms other heuristics on random 3-SAT problems
[65, 70].

2.4.3 Restarts
One way to exploit heavy-tailed behavior is to add restarts to a backtracking proce-
dure. A sequence of short runs instead of a single long run may be a more effective use
of computational resources (see Figure 2.5). Gomes et al. proposed randomized rapid
restarts (RRR) to take advantage of heavy-tailed behavior and boost the efficiency of



116 2. Satisfiability Solvers

complete backtrack search procedures [102]. In practice, one gradually increases the
cutoff to maintain completeness [16, 102]. Gomes et al. showed that a restart strategy
with a fixed cutoff eliminates heavy-tail behavior and has finite moments [96].

Prior to the discovery of heavy-tailed behavior and backdoor sets, randomized
restart policies have been studied in the context of general randomized Las Vegas
procedures. Luby et al. [155] showed that when the underlying runtime distribution
of the randomized procedure is fully known, the optimal restart policy is a fixed cut-
off. When there is no a priori knowledge about the distribution, they also provided
a universal strategy which minimizes the expected cost. This consists of runs whose
lengths are powers of two, and each time a pair of runs of a given length has been
completed, a run of twice that length is immediately executed. The universal strategy
is of the form: 1,1,2,1,1,2,4,1,1,2,4,8, · · ·. Although the universal strategy of Luby
et al. is provably within a log factor of the optimal fixed cutoff, the schedule often
converges too slowly in practice. Walsh [230] introduced a restart strategy, inspired
by Luby et al.’s analysis, in which the cutoff value increases geometrically. The ad-
vantage of such a strategy is that it is less sensitive to the details of the underlying
distribution. Following the findings of Gomes et al. [102] and starting with zChaff,
state-of-the-art SAT solvers now routinely use restarts. In practice, the solvers use a
default cutoff value, which is increased, linearly, every given number of restarts, guar-
anteeing the completeness of the solver in the limit [170]. Another important feature
is that they retain learned clauses across restarts.

0.0001

0.001

0.01

0.1

1

1 10 100 1000

fr
a
c
ti
o
n
 u

n
s
o
lv

e
d

total number of backtracks

effect of restarts (cutoff 4)

no restarts

with restarts

23

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000
log( cutoff )

lo
g

 (
 b

a
c
k
tr

a
c
k
s
 )

(a) (b)

Figure 2.5: Restarts: (a) Tail (1−F(x)) as a function of the total number of backtracks
for a QCP instance, log-log scale; the lower curve is for a cutoff value of 4 and the
upper curve is without restarts. (b) The effect of different cutoff values on solution
cost for the logistics.d planning problem. Graph adapted from [95, 96].

In reality, we will be somewhere between full and no knowledge of the runtime
distribution. Horvitz et al. [117] introduced a Bayesian framework for learning pre-
dictive models of randomized backtrack solvers based on this situation. Extending
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that work, Kautz et al. [126] considered restart policies that can factor in information
based on real-time observations about a solver’s behavior. In particular, they intro-
duced an optimal policy for dynamic restarts that considers observations about solver
behavior. They also considered the dependency between runs. They gave a dynamic
programming approach to generate the optimal restart strategy, and combined the re-
sulting policy with real-time observations to boost performance of backtrack search
methods.

Variants of restart strategies include randomized backtracking [156], and the ran-
dom jump strategy [237] which has been used to solve a dozen previously open prob-
lems in finite algebra. Finally, one can also take advantage of the high variance of
combinatorial search methods by combining several algorithms into a “portfolio,” and
running them in parallel or interleaving them on a single processor [100, 173].

2.5 Beyond SAT: Quantified Boolean Formulas and Model
Counting

We end this chapter with a brief overview of two important problems that extend
beyond propositional satisfiability testing and will lie at the heart of the next genera-
tion automated reasoning systems: Quantified Boolean Formula (QBF) reasoning and
counting the number of models (solutions) of a problem. These problems present fas-
cinating challenges and pose new research questions. Efficient algorithms for these
will have a significant impact on many application areas that are inherently beyond
SAT, such as adversarial and contingency planning, unbounded model checking, and
probabilistic reasoning.

These problems can be solved, in principle and to some extent in practice, by ex-
tending the two most successful frameworks for SAT algorithms, namely, DPLL and
local search. However, there are some interesting issues and choices that arise when
extending SAT-based techniques to these harder problems. In general, these problems
require the solver to, in a sense, be cognizant of all solutions in the search space,
thereby reducing the effectiveness and relevance of commonly used SAT heuristics
designed for quickly zooming in on a single solution. The resulting scalability chal-
lenge has drawn many satisfiability researchers to these problems.

2.5.1 QBF Reasoning
A Quantified Boolean Formula (QBF) is a Boolean formula in which variables are
quantified as existential (∃) or universal (∀) [cf. 135]. We will use the term QBF for
totally quantified (also known as closed) Boolean formulas in prenex form beginning
(for simplicity) with ∃:

F = ∃x1
1 . . .∃xt(1)

1 ∀x1
2 . . .∀xt(2)

2 . . . Qx1
k . . .Qxt(k)

k M

where M is a Boolean formula referred to as the matrix of F , x j
i above are distinct and

include all variables appearing in M, and Q is ∃ if k is odd and ∀ if k is even. Defining
Vi =

{

x1
i , . . .x

t(i)
i

}

and using associativity within each level of quantification, we can
simplify the notation to F = ∃V1∀V2∃V3 . . . QVk M. A QBF solver is an algorithm
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that determines the truth value of such formulas F , i.e., whether there exist values of
variables in V1 such that for every assignment of values to variables in V2 there exist
values of variables in V3, and so on, such that M is satisfied (i.e., evaluates to TRUE).

QBF reasoning extends the scope of SAT to domains requiring adversarial anal-
ysis, like conditional planning [192], unbounded model checking [26, 194], and dis-
crete games [86]. As a simple applied example, consider a two-player game where
each player has a discrete set of actions. Here a winning strategy for a player is a
partial game tree that, for every possible game play of the opponent, indicates how to
proceed so as to guarantee a win. This kind of reasoning is more complex than the
single-agent reasoning that SAT solvers offer, and requires modeling and analyzing
adversarial actions of another agent with competing interests. Fortunately, such prob-
lems are easily and naturally modeled using QBF. The QBF approach thus supports a
much richer setting than SAT. However, it also poses new and sometimes unforeseen
challenges.

In terms of the worst-case complexity, deciding the truth of a QBF is PSPACE-
complete [222] whereas SAT is “only” NP-complete.8 Even with very few quantifica-
tion levels, the explosion in the search space is tremendous in practice. Further, as the
winning strategy example indicates, even a solution to a QBF may require exponential
space to describe, causing practical difficulties [25].

Nonetheless, several tools for deciding the truth of a given QBF (QBF
solvers) have been developed. These include DPLL-style search based solvers like
Quaffle [241], QuBE [90], Semprop [144], Evaluate [42], Decide [193], and
QRSat [175]; local search methods like WalkQSAT [85]; skolemization based solvers
like sKizzo [26]; q-resolution [134] based solvers like Quantor [28]; and symbolic,
BDD based tools like QMRES and QBDD [176]. Most of these solvers extend the con-
cepts underlying SAT solvers. In particular, they inherit conjunctive normal form
(CNF) as the input representation, which has been the standard for SAT solvers for
over a decade. Internally, some solvers also employ disjunctive normal form (DNF)
to cache partial solutions for efficiency [242].

We focus here on DPLL-based QBF solvers. The working of these solvers is not
very different from that of DPLL-based SAT solvers. The essential difference is that
when the DPLL process branches on an universal variable x by setting it to TRUE and
finds that branch to be satisfiable, it must also verify that the branch x = FALSE is
also satisfiable. The need to be able to do this “universal reasoning” and explore both
branches of universal variables has, as expected, a substantial impact on the efficiency
of the solver.

In a series of papers, Zhang and Malik [241], Letz [144], and Giunchiglia et al.
[91] described how the clause learning techniques from SAT can be extended to so-
lution learning for QBF. The idea is to not only cache small certificates of unsatisfi-
ability of sub-formulas (as learned CNF clauses), but also to cache small certificates
of satisfiability of sub-formulas (as learned DNF “terms”, also referred to as cubes).
This can, in principle, be very useful because not only does a QBF solver need to
detect unsatisfiability efficiently, it needs to also detect satisfiability efficiently and
repeatedly.

8 PSPACE-complete problems are generally believed to be significantly harder than NP-complete prob-
lems; cf. [179].
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Another interesting change, which is now part of most QBF solvers, is related
to unit propagation. This stems from the observation that if the variables with the
deepest quantification level in a clause are universal, they cannot help satisfy that
clause. The clause can effectively ignore these universal variables. This also plays a
role in determining which clauses are learned upon reaching a conflict, and also has a
dual counterpart about existential variables in a DNF term.

While the performance of QBF solvers has been promising, translating a QBF
into a (much larger) SAT specification and using a good SAT solver is often faster in
practice—a fact well-recognized and occasionally exploited [26, 28, 202]. This mo-
tivates the need for further investigation into the design of QBF solvers and possible
fundamental weaknesses in the modeling methods used.

It has been recently demonstrated by Samulowitz et al. that the efficiency of QBF
solvers can be improved significantly—much more so than SAT solvers—by employ-
ing certain pre-processing techniques on the formula at the very beginning [204] or
using inference techniques, such as those based on binary clauses, on the fly [203].
These methods typically involve adding a certain type of easy-to-compute resolvents
as redundant constraints to the problem, with the hope of achieving faster propagation.
Results show that this works very well in practice.

Any QBF reasoning task has a natural game playing interpretation at a high level.
Using this fact, Ansotegui et al. [11] described a general framework for modeling
adversarial tasks as QBF instances. They view a problem P as a two-player game G
with a bounded number of turns. This is different from the standard interpretation
of a QBF as a game [179]; in their approach, one must formulate the higher level
problem P as a game G before modeling it as a QBF. The sets of “rules” to which
the existential and universal players of G are bound may differ from one player to
the other. Ansotegui et al. [11] observed that typical CNF-based encodings for QBF
suffer from the “illegal search space issue” where the solver finds it artificially hard
to detect certain illegal moves made by the universal player. An example of an illegal
move in, say, chess is to move a piece completely off the board or to move two pieces
at a time. Recognizing such illegal moves of the universal player corresponds to
deducing that the resulting formula can be easily satisfied by the existential player
no matter what the universal player does next. Unlike a “local” violation of a clause,
such detection involves all clauses of the formula and is non-trivial. In the standard
QBF encodings, the solver is often be forced to explore an exponential number of
such moves on multiple levels in the search tree. Ansotegui et al. proposed the use
of special indicator variables that flag the occurrence of such illegal moves, which is
then exploited by their solver to prune the search space.

Another recent proposal by Sabharwal et al. [201], implemented in the QBF solver
Duaffle which extends Quaffle, is a new generic QBF modeling technique that
uses a dual CNF-DNF representation. The dual representation considers the above
game-theoretic view of the problem. The key idea is to exploit a dichotomy between
the players: rules for the existential player are modeled as CNF clauses, (the negations
of) rules for the universal player modeled as DNF terms, and game state information
is split equally into clauses and terms. This symmetric dual format places “equal re-
sponsibility” on the two players, in stark contrast with other QBF encodings which
tend to leave most work for the existential player. This representation has several ad-
vantages over pure-CNF encodings for QBF. In particular, it allows unit propagation
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across quantifiers and avoids the illegal search space issue altogether.
An independent dual CNF-DNF approach of Zhang [239] converts a full CNF

encoding into a logically equivalent full DNF encoding and provides both to the
solver. In contrast, Duaffle exploits the representational power of DNF to sim-
plify the model and make it more compact, while addressing some issues associated
with pure CNF representations. Both of these dual CNF-DNF approaches are dif-
ferent from fully non-clausal encodings, which also have promise but are unable to
directly exploit rapid advances in CNF-based SAT solvers. Recently, Benedetti et al.
[27] have proposed “restricted quantification” for pure-CNF encodings for QCSPs.
This general technique addresses the illegal search space issue and is applicable also
to QBF solvers other than those that are search based.

2.5.2 Model Counting
Propositional model counting or #SAT is the problem of computing the number of
models for a given propositional formula, i.e., the number of distinct variable assign-
ments for which the formula evaluates to TRUE. This problem generalizes SAT and is
known to be a #P-complete problem, which means that it is no easier than solving a
QBF with a fixed but unbounded number of “there exist” and “forall” quantification
levels in its variables [224]. For comparison, notice that SAT can be thought of as a
QBF with exactly one level of “there exist” quantification.

Effective model counting procedures would open up a range of new applications.
For example, various probabilistic inference problems, such as Bayesian net reason-
ing, can be effectively translated into model counting problems [cf. 14, 58, 154, 196].
Another application is in the study of hard combinatorial problems, such as com-
binatorial designs, where the number of solutions provides further insights into the
problem. Even finding a single solution can be a challenge for such problems: count-
ing the number of solutions is much harder. Not surprisingly, the largest formulas
we can solve for the model counting problem with state-of-the-art model counters are
significantly smaller than the formulas we can solve with the best SAT solvers.

The earliest practical approach for counting models is based on an extension of
systematic DPLL-based SAT solvers. The idea is to directly explore the complete
search tree for an n-variable formula, associating 2t solutions with a search tree branch
if that branch leads to a solution at decision level n− t. By using appropriate multipli-
cation factors and continuing the search after a single solution is found, Relsat [18]
is able to provide incremental lower bounds on the model count as it proceeds, and
finally computes the exact model count. Newer tools such as Cachet [205] often
improve upon this by using techniques such as component caching [20].

Another approach for model counting is to convert the formula into a form from
which the count can be deduced easily. The tool c2d [57] uses this knowledge com-
pilation technique to convert the given CNF formula into decomposable negation nor-
mal form (DDNF) [59] and compute the model count.

Most exact counting methods, especially those based on DPLL search, essentially
attack a #P-complete problem “head on”—by searching the raw combinatorial search
space. Consequently, these algorithms often have difficulty scaling up to larger prob-
lem sizes. We should point out that problems with a higher solution count are not
necessarily harder to determine the model count of. In fact, Relsat can compute the
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true model count of highly under-constrained problems with many “don’t care” vari-
ables and a lot of models by exploiting big clusters in the solution space. The model
counting problem is instead much harder for more intricate combinatorial problems
where the solutions are spread much more finely throughout the combinatorial space.

Wei and Selman [232] use Markov Chain Monte Carlo (MCMC) sampling to com-
pute an approximation of the true model count. Their model counter, ApproxCount,
is able to solve several instances quite accurately, while scaling much better than both
Relsat and Cachet as problem size increases. The drawback of ApproxCount is
that one is not able to provide any hard guarantees on the model count it computes. To
output a number close to the true count, this counting strategy requires near-uniform
sampling from the set of solutions, which is generally difficult to achieve. Near-
uniform sampling from the solution space is much harder than just generating a single
solution. MCMC methods can provide theoretical convergence guarantees but only
in the limit, which in the worst case may require an exponential number of Markov
chain steps.

Interestingly, the inherent strength of most state-of-the-art SAT solvers comes ac-
tually from the ability to quickly narrow down to a certain portion of the search space
the solver is designed to handle best. Such solvers therefore sample solutions in a
highly non-uniform manner, making them seemingly ill-suited for model counting,
unless one forces the solver to explore the full combinatorial space. An intriguing
question is whether there is a way around this apparent limitation of the use of state-
of-the-art SAT solvers for model counting.

MBound [98] is a new method for model counting, which interestingly uses any
complete SAT solver “as is.” It follows immediately that the more efficient the SAT
solver used, the more powerful its counting strategy becomes. MBound is inspired by
recent work on so-called “streamlining constraints” [99], in which additional, non-
redundant constraints are added to the original problem to increase constraint propa-
gation and to focus the search on a small part of the subspace, (hopefully) still contain-
ing solutions. This strategy was earlier shown to be successful in solving very hard
combinatorial design problems, with carefully created, domain-specific streamlining
constraints. In contrast, MBound uses a domain-independent streamlining technique.

The central idea of the approach is to use a special type of randomly chosen con-
strains as streamliners, namely XOR or parity constraints on the problem variables.
Such constraints require that an odd number of the involved variables be set to TRUE.
(This requirement can be translated into the usual CNF form by using additional vari-
ables [225].) MBound works by repeatedly adding a number s of such constraints to
the formula and feeding the result to a state-of-the-art complete SAT solver. At a very
high level, each random XOR constraint will cut the search space approximately in
half. So, intuitively, if after the addition of s XOR’s the formula is still satisfiable, the
original formula must have at least of the order of 2s models. More rigorously, it can
be shown that if we perform t experiments of adding s random XOR constraints and
our formula remains satisfiable in each case, then with probability at least 1− 2−αt ,
our original formula will have at least 2s−α satisfying assignments for any α > 0.
As a result, by repeated experiments or by weakening the claimed bound, one can
arbitrarily boost the confidence in the lower bound count. Similar results can also be
derived for the upper bound. A surprising feature of this approach is that it does not
depend at all on how the solutions are distributed throughout the search space. It relies
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on the very special properties of random parity constraints, which in effect provide a
good hash function, randomly dividing the solutions into two near-equal sets. Such
constraints were first used by Valiant and Vazirani [227] in a randomized reduction
from SAT to the related problem Unique SAT.
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