
Universal Packet Scheduling

Radhika Mittal† Rachit Agarwal† Sylvia Ratnasamy† Scott Shenker†‡

†UC Berkeley ‡ICSI

Abstract
In this paper we address a seemingly simple question:
Is there a universal packet scheduling algorithm? More
precisely, we analyze (both theoretically and empirically)
whether there is a single packet scheduling algorithm that,
at a network-wide level, can perfectly match the results of
any given scheduling algorithm. We find that in general
the answer is “no”. However, we show theoretically that
the classical Least Slack Time First (LSTF) scheduling al-
gorithm comes closest to being universal and demonstrate
empirically that LSTF can closely replay a wide range of
scheduling algorithms in realistic network settings. We
then evaluate whether LSTF can be used in practice to
meet various network-wide objectives by looking at pop-
ular performance metrics (such as mean FCT, tail packet
delays, and fairness); we find that LSTF performs com-
parable to the state-of-the-art for each of them. We also
discuss how LSTF can be used in conjunction with ac-
tive queue management schemes (such as CoDel) without
changing the core of the network.

1 Introduction
There is a large and active research literature on novel
packet scheduling algorithms, from simple schemes such
as priority scheduling [31], to more complicated mech-
anisms to achieve fairness [16, 29, 32], to schemes that
help reduce tail latency [15] or flow completion time [7],
and this short list barely scratches the surface of past and
current work. In this paper we do not add to this impres-
sive collection of algorithms, but instead ask if there is a
single universal packet scheduling algorithm that could
obviate the need for new ones. In this context, we consider
a packet scheduling algorithm to be both how packets are
served inside the network (based on their time of arrival
and their packet header) and how packet header fields
are initialized at the edge of the network; this definition
includes all the classical scheduling algorithms (FIFO,
LIFO, priority, round-robin) as well as algorithms that
incorporate dynamic packet state [15, 35, 36].

We can define a universal packet scheduling algorithm
(hereafter UPS) in two ways, depending on our viewpoint
on the problem. From a theoretical perspective, we call a
packet scheduling algorithm universal if it can replay any
schedule (the set of times at which packets arrive to and
exit from the network) produced by any other scheduling
algorithm. This is not of practical interest, since such
schedules are not typically known in advance, but it offers
a theoretically rigorous definition of universality that (as
we shall see) helps illuminate its fundamental limits (i.e.,
which scheduling algorithms have the flexibility to serve
as a UPS, and why).

From a more practical perspective, we say a packet
scheduling algorithm is universal if it can achieve dif-
ferent desired performance objectives (such as fairness,
reducing tail latency, minimizing flow completion times).
In particular, we require that the UPS should match the
performance of the best known scheduling algorithm for
a given performance objective. 1

The notion of universality for packet scheduling might
seem esoteric, but we think it helps clarify some basic
questions. If there exists no UPS then we should expect
to design new scheduling algorithms as performance ob-
jectives evolve. Moreover, this would make a strong ar-
gument for switches being equipped with programmable
packet schedulers so that such algorithms could be more
easily deployed (as argued in [33]; in fact, it was the elo-
quent argument in this paper that caused us to initially ask
the question about universality).

However, if there is indeed a UPS, then it changes the
lens through which we view the design and evaluation
of packet scheduling algorithms: e.g., rather than asking
whether a new scheduling algorithm meets a performance
objective, we should ask whether it is easier/cheaper to

1For this definition of universality, we allow the header initialization
to depend on the objective being optimized. That is, while the basic
scheduling operations must remain constant, the header initialization can
depend on whether you are seeking fairness or minimal flow completion
time.

1

implement/configure than the UPS (which could also meet
that performance objective). Taken to the extreme, one
might even argue that the existence of a (practical) UPS
greatly diminishes the need for programmable scheduling
hardware.2 Thus, while the rest of the paper occasionally
descends into scheduling minutae, the question we are
asking has important practical (and intriguing theoretical)
implications.

This paper starts from the theoretical perspective, defin-
ing a formal model of packet scheduling and our notion
of replayability in §2. We first prove that there is no UPS,
but then show that Least Slack Time First (LSTF) [24]
comes as close as any scheduling algorithm to achieving
universality. We also demonstrate empirically (via simu-
ation) that LSTF can closely approximate the schedules
of many packet scheduling algorithms. Thus, while not a
perfect UPS in terms of replayability, LSTF comes very
close to functioning as one.

We then take a more practical perspective in §3, show-
ing (via simulation) that LSTF is comparable to the state
of the art in achieving various objectives relevant to an ap-
plication’s performance. We investigate in detail LSTF’s
ability to minimize mean flow completion time, minimize
tail latencies, and achieve per-flow fairness. We also con-
sider how LSTF can be used in multi-tenant situations to
achieve multiple objectives simultaneously.

LSTF is only a packet scheduling algorithm, and does
not provide any active queue management. Rather than
augmenting the basic LSTF logic with a queue manage-
ment algorithm, we show in §4 that LSTF can, instead,
be used to implement AQM at the edge of the network.
This novel approach to AQM is a contribution in itself, as
it allows the algorithm to be upgraded without changing
internal routers.

We then discuss the feasibility of implementing LSTF
in routers (§5) and provide a brief overview of related
work (§6) before concluding with a discussion of open
questions in §7.

2 Theory: Replaying Schedules
This section delves into the theoretical viewpoint of a
UPS, in terms of its ability to replay a given schedule.

2.1 Definitions and Overview
Network Model: We consider a network of store-and-
forward routers connected by links. The input load to

2Note that the case for programmable hardware as made in recent
work on P4 and the RMT switch [11, 12] remains: these systems target
programmability in header parsing and in how a packet’s processing
pipeline is defined (i.e., how forwarding ‘actions’ are applied to a packet).
The P4 language does not currently offer primitives for scheduling
and, perhaps more importantly, the RMT switch does not implement
a programmable packet scheduler; we hope our results can inform the
discussion on whether and how P4/RMT might be extended to support
programmable scheduling.

the network is a fixed set of packets {p 2 P}, their ar-
rival times i(p) (i.e., when they reach the ingress router),
and the path path(p) each packet takes from its ingress
to its egress router. We assume no packet drops, so all
packets eventually exit. Every router executes a nonpre-
emptive scheduling algorithm which need not be work-
conserving or deterministic and may even involve oracles
that know about future packet arrivals. Different routers
in the network may use different scheduling logic. For
each incoming load {(p, i(p), path(p))}, a collection of
scheduling algorithms {Aa} (router a implements al-
gorithm Aa) will produce a set of packet output times
{o(p)} (the time a packet p exits the network). We call
the set {(path(p), i(p),o(p))} a schedule.
Replaying a Schedule: Applying a different collection
of scheduling algorithms {A0

a} to the same set of packets
{(p, i(p), path(p))} produces a new set of output times
{o0(p)}. We say that {A0

a} replays {Aa} on this input if
and only if 8p 2 P, o0(p) o(p).3

Universal Packet Scheduling Algorithm: We say a
schedule {(path(p), i(p),o(p))} is viable if there is at
least one collection of scheduling algorithms that pro-
duces that schedule. We say that a scheduling algorithm
is universal if it can replay all viable schedules. While we
allowed significant generality in defining the scheduling
algorithms that a UPS seeks to replay (demanding only
that they be nonpreemptive), we insist that the UPS itself
obey several practical constraints (although we allow it to
be preemptive for theoretical analysis, but then quantita-
tively analyze the nonpreemptive version in §2.3).4 The
three practical constraints we impose on a UPS are:
(1) Uniformity and Determinism: A UPS must use the
same deterministic scheduling logic at every router.
(2) Limited state used in scheduling decisions: We restrict
a UPS to using only (i) packet headers, and (ii) static
information about the network topology, link bandwidths,
and propagation delays. It cannot rely on oracles or other
external information. However, it can modify the header
of a packet before forwarding it (resulting in dynamic
packet state [36]).
(3) Limited state used in header initialization: We assume
that the header for a packet p is initialized at its ingress
node. The additional information available to the ingress

3We allow the inequality because, if o0(p)< o(p), one can delay the
packet upon arrival at the egress node to ensure o0(p) = o(p).

4The issue of preemption is somewhat complicated. Allowing the
original scheduling algorithms to be preemptive allows packets to be
fragmented, which then makes replay extremely difficult even in sim-
ple networks (with store-and-forward routers). However, disallowing
preemption in the candidate UPS overly limits the flexibility and would
again make replay impossible even in simple networks. Thus, we take
the seemingly hypocritical but only theoretically tractable approach
and disallow preemption in the original scheduling algorithms but al-
low preemption in the candidate UPS. In practice, when we care only
about approximately replaying of schedules, the distinction is of less
importance, and we simulate LSTF in the nonpreemptive form.

2

for this initialization is limited to: (i) o(p) from the origi-
nal schedule5 and (ii) path(p). Later, we extend the kinds
of information the header initialization process can use,
and find that this is a key determinant in whether one can
find a UPS.

We make three observations about the above model.
First, our model assumes greater capability at the edge
than in the core, in keeping with common assumptions
that the network edge is capable of greater processing
complexity, exploited by many architectural proposals [13,
30, 35]. Second, when initializing a packet p’s header, a
UPS can only use the input time, output time and the path
information for p itself, and must be oblivious [19] to the
corresponding attributes for other packets in the network.
Finally, the key source of impracticality in our model is
the assumption that the output times o(p) are known at
the ingress. However, a different interpretation of o(p)
suggests a more practical application of replayability (and
thus our results): if we assign o(p) as the “desired” output
time for each packet in the network, then the existence of
a UPS tells us that if these goals are viable then the UPS
will be able to meet them.

2.2 Theoretical Results
For brevity, in this section we only summarize our key
theoretical results. Interested readers can find detailed
proofs in Appendix A.
Existence of a UPS under omniscient initialization:
Suppose we give the header-initialization process exten-
sive information in the form of times o(p,a) which rep-
resent when p was scheduled by router a in the original
schedule. We can then insert an n-dimensional vector in
the header of every packet p, where the ith element con-
tains o(p,ai) with ai being the ith hop in path(p). Every
time a packet arrives at a router, the router can pop the
value at the head of this vector and use that as its pri-
ority (earlier values of output times get higher priority).
This can perfectly replay any viable schedule (proof in
Appendix A.2), which is not surprising, as having such de-
tailed knowledge of the internal scheduling of the network
is tantamount to knowing all the scheduling decisions
made by the original algorithm. For reasons discussed
previously, our definition limited the information avail-
able to the output time from the network as a whole, and
not from each individual router; we call this black-box
initialization.
Nonexistence of a UPS under black-box initialization:
We can prove by counter-example (described in Appendix
A.3) that there is no UPS under the conditions stated in
§2.1. Given this impossibility result, we now ask how
close can we get to a UPS?
Natural candidates for a near-UPS: Simple priority

5Note that this ingress router can directly observe i(p) as the time
the packet arrives.

scheduling 6 can reproduce all viable schedules on a sin-
gle router, so it would seem to be a natural candidate for
a near-UPS. However, for multihop networks it may be
important to make the scheduling of a packet dependent
on what has happened to it earlier in its path. For this, we
consider Least Slack Time First (LSTF) [24].

In LSTF, each packet p carries its slack value in the
packet header, which is initialized to slack(p) = (o(p)�
i(p)�tmin(p,src(p),dest(p))) at the ingress, where src(p)
is the ingress of p; dest(p) is the egress of p; tmin(p,a,b)
is the time p takes to go from router a to router b in an
empty network. Therefore, the slack of a packet is merely
its total time in the network (i.e., the time between arrival
and departure in the original schedule) minus the mini-
mum time it requires to traverse the network and indicates
the maximum queueing time (excluding the transmission
time at any router) that the packet could tolerate without
violating the replay condition. Each router, then, sched-
ules the packet which has the least remaining slack at the
time when its last bit is transmitted. Before forwarding
the packet, the router overwrites the slack value in the
packet’s header with its remaining slack (i.e., the previous
slack time minus how much time it waited in the queue
before being transmitted).

Note that there are other ways to implement this algo-
rithm, such as having a static packet header as in Earliest
Deadline First (EDF) and using additional state in the
routers (reflecting the value of tmin) to compute the prior-
ity for a packet at each router, but here we chose to use
an approach with dynamic packet state. We provide more
details about EDF and prove its equivalence to LSTF in
Appendix A.5.
Key Results: Our analysis shows that the difficulty of
replay is determined by the number of congestion points,
where a congestion point is defined as a node where a
packet is forced to “wait” during a given schedule. Our
theorems show the following key results:
1. Priority scheduling can replay all viable schedules
with no more than one congestion point per packet, and
there are viable schedules with no more than two con-
gestion points per packet that it cannot replay. (Proof in
Appendix A.6.)
2. LSTF can replay all viable schedules with no more than
two congestion points per packet, and there are viable
schedules with no more than three congestion points per
packet that it cannot replay. (Proof in Appendix A.7.)
3. There is no scheduling algorithm (obeying the afore-
mentioned constraints on UPSs) that can replay all viable
schedules with no more than three congestion points per
packet, and the same holds for larger numbers of conges-
tion points. (Proof in Appendix A.3.)

6By simple priority scheduling, we mean that the ingress assigns
priority values to the packets and the routers simply schedule packets
based on these static priority values.

3

Topology Link
Utilization

Scheduling
Algorithm

Fraction of
packets overdue
Total > T

I2:1Gbps-10Gbps 70% Random 0.0021 0.0002

I2 1Gbps-10Gbps
10%

Random
0.0007 0.0

30% 0.0281 0.0017
50% 0.0221 0.0002
90% 0.0008 4⇥10�6

I2:1Gbps-1Gbps 70% Random 0.0204 8⇥10�6

I2:10Gbps-10Gbps 0.0631 0.0448
I2 / 10 0.0127 0.00001

RocketFuel 70% Random 0.0246 0.0063
Datacenter 0.0164 0.0154

I2 1Gbps-10Gbps 70%

FIFO 0.0143 0.0006
FQ 0.0271 0.0002
SJF 0.1833 0.0019

LIFO 0.1477 0.0067
FQ/FIFO+ 0.0152 0.0004

FQ: SJF/FIFO 0.0297 0.0003

Table 1: LSTF Replayability Results across various scenarios. T repre-
sents the transmission time of the bottleneck link.

Main Takeaway: LSTF is closer to being a UPS than
simple priority scheduling, and no other candidate UPS
can do better in terms of handling more congestion points.
Intuition: The reason why LSTF is superior to priority
scheduling is clear: by carrying information about pre-
vious delays in the packet header (in the form of the
remaining slack value), LSTF can “make up for lost time”
at later congestion points, whereas for priority scheduling
packets with low priority might repeatedly get delayed
(and thus miss their target output times). The reason LSTF
can always handle up to two congestion points per packet
is that, for this case, each congestion point is either the
first or the last point where the packet waits and we can
prove that any extra delay seen at the first congestion point
during the replay can be naturally compensated for at the
second. With three or more congestion points there is no
way for LSTF (or any other packet scheduler) to know
how to allocate the slack among them; one can create
counterexamples where unless the scheduling algorithm
makes precisely the right choice in the earlier congestion
points, at least one packet will miss its target output time.

2.3 Empirical Results
The previous section clarified the theoretical limits on
a perfect replay. Here we investigate, via ns-2 simula-
tions [5], how well (a nonpreemptable version of) LSTF
can approximately replay schedules in realistic networks.
Experiment Setup: Default scenario. We use a simpli-
fied Internet-2 topology [2], identical to the one used
in [26] (consisting of 10 routers and 16 links in the core).
We connect each core router to 10 edge routers using
1Gbps links and each edge router is attached to an end
host via a 10Gbps link.7 The number of hops per packet

7We use higher than usual access bandwidths for our default sce-
nario to increase the stress on the schedulers in the routers. We also

is in the range of 4 to 7, excluding the end hosts. We
refer to this topology as I2:1Gbps-10Gbps. Each end host
generates UDP flows using a Poisson inter-arrival model,
and our default scenario runs at 70% utilization. The flow
sizes are picked from a heavy-tailed distribution [8, 9].
Since our focus is on packet scheduling, not dropping
policies, we use large buffer sizes that ensure no packet
drops.
Varying parameters. We tested a wide range of exper-
imental scenarios by varying the following parameters
from their default values: access vs core link bandwidths,
network utilization, network topology, network scale and
traffic workloads. We present results for a small subset of
these scenarios here: (1) the default scenario with network
utilization varied from 10-90% (2) the default scenario but
with 1Gbps link between the endhosts and the edge routers
(I2:1Gbps-1Gbps), with 10Gbps links between the edge
routers and the core (I2:10Gbps-10Gbps) and with all link
capacities in the I2:1Gbps-1Gbps topology reduced by a
factor of 10 (I2 / 10) and (3) the default scenario applied
to two different topologies, a bigger Rocketfuel topol-
ogy [34] (with 83 routers and 131 links in the core) and
a full bisection bandwidth datacenter (fat-tree) topology
from [7] (with 10Gbps links). Note that our other results
were generally consistent with those presented here.
Scheduling algorithms. Our default case, which we ex-
pected to be hard to replay, uses completely arbitrary
schedules produced by a random scheduler (which picks
the packet to be scheduled randomly from the set of
queued up packets). We also present results for more
traditional packet scheduling algorithms: FIFO, LIFO,
fair queuing [16], and SJF (shortest job first using pri-
orities). We also looked at two scenarios with a mixture
of scheduling algorithms: one where half of the routers
run FIFO+ [15] and the other half run fair queuing, and
one where fair queueing is used to fair share between two
classes of traffic, with one class being scheduled with SJF
and the other class being scheduled with FIFO.
Evaluation Metrics: We consider two metrics. First, we
measure the fraction of packets that are overdue (i.e.,
which do not meet the original schedule’s target). Sec-
ond, to capture the extent to which packets fail to meet
their targets, we measure the fraction of packets that are
overdue by more than a threshold value T , where T is
one transmission time on the bottleneck link (⇡ 12µs
for 1Gbps). We pick this value of T both because it is
sufficiently small that we can assume being overdue by
this small amount is of negligible practical importance,
and also because this is the order of violation we should
expect given that our implementation of LSTF is non-
preemptive. While we may have many small violations of
replay (because of non-preemption), one would hope that

present results for smaller access bandwidths, which have better replay
performance.

4

Figure 1: Ratio of queuing delay with varying packet scheduling algo-
rithms, on the default Internet-2 topology at 70% utilization.

most such violations are less than T .
Results: Table 1 shows the simulation results for LSTF
replay for various scenarios, which we now discuss.
(1) Replayability. Consider the column showing the frac-
tion of packets overdue. In all but three cases (we examine
these shortly) over 97% of packets meet their target output
times. In addition, the fraction of packets that did not ar-
rive within T of their target output times is much smaller;
even in the worst case of SJF scheduling (where 18.33%
of packets failed to arrive by their target output times),
only 0.19% of packets are overdue by more than T . Most
scenarios perform substantially better: e.g., in our default
scenario with Random scheduling, only 0.21% of packets
miss their targets and only 0.02% are overdue by more
than T . Hence, we conclude that even without preemption
LSTF achieves good (but not perfect) replayability under
a wide range of scenarios.
(2) Effect of varying network utilization. The second
row in Table 1 shows the effect of varying network uti-
lization. We see that at low utilization (10%), LSTF
achieves exceptionally good replayability with a total of
only 0.07% of packets overdue. Replayability deteriorates
as utilization is increased to 30% but then (somewhat sur-
prisingly) improves again as utilization increases. This
improvement occurs because with increasing utilization,
the amount of queuing (and thus the average slack across
packets) in the original schedule also increases. This pro-
vides more room for slack re-adjustments when packets
wait longer at queues seen early in their paths during
the replay. We observed this trend in all our experiments
though the exact location of the “low point” varied across
settings.
(3) Effect of varying link bandwidths. The third row
shows the effect of changing the relative values of ac-
cess/edge vs. core links. We see that while decreasing ac-
cess link bandwidth (I2:1Gbps-1Gbps) resulted in a much
smaller fraction of packets being overdue by more than
T (0.0008%), increasing the edge-to-core link bandwidth
(I2:10Gbps-10Gbps) resulted in a significantly higher
fraction (4.48%). For I2:1Gbps-1Gbps, packets are paced
by the endhost link, resulting in few congestion points
thus improving LSTF’s replayability. In contrast, with
I2:10Gbps-10Gbps, both the access and edge links have
a higher bandwidth than most core links; hence packets
(that are no longer paced at the endhosts or the edges)

arrive at the core routers very close to one another and
hence the effect of one packet being overdue cascades
over to the following packets. Decreasing the absolute
bandwidths in I2/10, while keeping the ratio between ac-
cess and edge links the same as that in I2:1Gbps-1Gbps
did not produce significant variance in the results over
I2:1Gbps-1Gbps, indicating that the relative link capaci-
ties have a greater impact on the replay performance than
the absolute link capacities.
(4) Effect of varying topology. The fourth row in Table 1
shows our results using different topologies. LSTF per-
forms well in both cases: only 2.46% (Rocketfuel) and
1.64% (datacenter) of packets fail replay. These numbers
are still somewhat higher than our default case. The rea-
son for this is similar to that for the I2:10Gbps-10Gbps
topology – all links in the datacenter fat-tree topology are
set to 10Gbps, while in our simulations, we set half of the
core links in the Rocketfuel topology to have bandwidths
smaller than the access links.
(5) Varying Scheduling Algorithms. Row five in Table 1
shows LSTF’s ability to replay different scheduling algo-
rithms. We see that LSTF performs well for FIFO, FQ,
and the combination cases (a mixture of FQ/FIFO+ and
having FQ share between FIFO and SJF); e.g., with FIFO,
fewer than 0.06% of packets are overdue by more than
T . However, there are two problematic cases: SJF and
LIFO fare worse with 18.33% and 14.77% of packets
failing replay (although only 0.19% and 0.67% of packets
are overdue by more than T respectively). The reason
stems from a combination of two factors: (1) for these
algorithms a larger fraction of packets have a very small
slack value (as one might expect from the scheduling logic
which produces a larger skew in the slack distribution),
and (2) for these packets with small slack values, LSTF
without preemption is often unable to “compensate” for
misspent slack that occurred earlier in the path. To verify
this intuition, we extended our simulator to support pre-
emption and repeated our experiments: with preemption,
the fraction of packets that failed replay dropped to 0.24%
(from 18.33%) for SJF and to 0.25% (from 14.77%) for
LIFO.
(6) End-to-end (Queuing) Delay. Our results so far eval-
uate LSTF in terms of measures that we introduced to
test universality. We now evaluate LSTF using the more
traditional metric of packet delay, focusing on the queue-
ing delay a packet experiences. Figure 1 shows the CDF
of the ratios of the queuing delay that a packet sees with
LSTF to the queuing delay that it sees in the original
schedule, for varying packet scheduling algorithms. We
were surprised to see that most of the packets actually
have a smaller queuing delay in the LSTF replay than in
the original schedule. This is because LSTF eliminates
“wasted waiting”, in that it never makes packet A wait
behind packet B if packet B is going to have significantly

5

more waiting later in its path.
(7) Comparison with Priorities. To provide a point of
comparison, we also did a replay using simple priori-
ties for our default scenario, where the priority for a
packet p is set to o(p) (which seemed most intuitive to us).
As expected, the resulting replay performance is much
worse than LSTF: 21% packets are overdue in total, with
20.69% being overdue by more than T . For the same sce-
nario, LSTF has only 0.21% packets overdue in total, with
merely 0.02% packets overdue by more than T.
Summary: We observe that, in almost all cases, less than
1% of the packets are overdue with LSTF by more than T .
The replay performance initially degrades and then starts
improving as the network utilization increases. The distri-
bution of link speeds has a bigger influence on the replay
results than the scale of the topology. Replay performance
is better for scheduling algorithms that produce a smaller
skew in the slack distribution. LSTF replay performance
is significantly better than simple priorities replay perfor-
mance, with the most intuitive priority assignment.

3 Practical: Achieving Various Objectives
While replayability demonstrates the theoretical flexibility
of LSTF, it doesn’t provide evidence that it would be
practically useful. In this section we look at how LSTF
can be used in practice to meet the following network-
wide objectives: minimizing mean flow completion time,
minimizing tail latencies, and achieving per-flow fairness.
We also consider how LSTF can be used in multi-tenant
situations to achieve multiple objectives simultaneously.

Since the knowledge of a previous schedule is unavail-
able in practice, instead of using a given set of output
times (as done in §2.3), we now use heuristics to assign
the slacks in an effort to achieve these objectives. Our
goal here is not to outperform the state-of-the-art for each
objective in all scenarios, but instead we aim to be com-
petitive with the state-of-the-art in most common cases.

In presenting our results for each objective, we first
describe the slack initialization heuristic we use and then
present some ns-2 [5] simulation results on (i) how LSTF
performs relative to the state-of-the-art scheduling algo-
rithm and (ii) how they both compare to FIFO scheduling
(as a baseline to indicate the overall impact of specialized
scheduling for this objective). As our default case, we use
the I2 1Gbps-10Gbps topology using the same workload
as in the previous section (running at 70% average uti-
lization). We also present aggregate results at different
utilization levels and for variations in the default topology
(I2 1Gbps-1Gbps and I2 / 10), for the bigger Rocketfuel
topology, and for the datacenter topology (for selected
objectives). The switches use non-preemptive scheduling
(including for LSTF) and have finite buffers (packets with
the highest slack are dropped when the buffer is full). Un-
less otherwise specified, our experiments use TCP flows

Expt. Setup Mean FCT (s)
FIFO SRPT SJF LSTF

I2 1Gbps-10Gbps at 30% util. 0.189 0.183 0.182 0.182
I2 1Gbps-10Gbps at 50% util. 0.212 0.189 0.185 0.185
I2 1Gbps-10Gbps at 70% util. 0.288 0.208 0.194 0.195
I2 1Gbps-1Gbps at 70% util. 0.252 0.209 0.202 0.202

I2 / 10 at 70% util. 0.898 0.658 0.620 0.621
Rocketfuel at 70% util. 0.304 0.240 0.228 0.228
Datacenter at 70% util. 0.058 0.018 0.016 0.015

Figure 2: The graph shows the mean FCT bucketed by flow size for the
I2 1Gbps-10Gbps topology with 70% utilization obtained with FIFO,
SRPT and SJF (using priorities and LSTF). The legend indicates the
mean FCT across all flows. The table indicates the mean FCTs for
varying settings.

with router buffer sizes of 5MB for the WAN simulations
(equal to the average bandwidth-delay product for our de-
fault topology) and 500KB for the datacenter simulations.

3.1 Mean Flow Completion Time
While there have been several proposals on how to min-
imize flow completion time (FCT) via the transport pro-
tocol [17, 26], here we first focus on scheduling’s impact
on FCT, while using standard TCP at the endhosts. In [7]
it is shown that (i) Shortest Remaining Processing Time
(SRPT) is close to optimal for minimizing the mean FCT
and (ii) Shortest Job First (SJF) produces results similar to
SRPT for realistic heavy-tailed distribution. Thus, these
are the two algorithms we use as benchmarks.
Slack Initialization: The slack for a packet p is initial-
ized as slack(p) = f s(p)⇤D, where f s(p) is the size of
the flow to which p belongs and D is a value much larger
than the queuing delay seen by any packet in the network.
We use a value of D = 1 sec for our simulations.
Evaluation: Figure 2 compares LSTF with three other
scheduling algorithms – FIFO, SJF and SRPT with star-
vation prevention as in [7] 8. SJF has a slightly better
performance than SRPT, both resulting in a significantly
lower mean FCT than FIFO. LSTF’s performance is
nearly the same as SJF.

We now look at how in-network scheduling can be used
along with changes in the endhost TCP stack to achieve
the same objective. We use RC3 [26] as our comparison-
point for this objective (as it has better performance than
RCP [17] and is simple to implement). In RC3 the senders
aggressively send additional packets to quickly use up the
available network capacity, but these packets are sent at
lower priority levels to ensure that the regular traffic is not
penalized. Therefore, it allows near-optimal bandwidth

8The router always schedules the earliest arriving packet of the flow
which contains the highest priority packet.

6

Expt. Setup Mean FCT (s)
TCP-
FIFO

RC3-
priorities

RC3-
LSTF

I2 1Gbps-10Gbps at 30% util. 0.145 0.083 0.082
I2 1Gbps-10Gbps at 50% util. 0.159 0.094 0.089
I2 1Gbps-10Gbps at 70% util. 0.180 0.107 0.102
I2 1Gbps-1Gbps at 30% util. 0.134 0.075 0.073

I2 / 10 at 30% util. 0.32 0.215 0.233
Rocketfuel at 30% util. 0.171 0.102 0.101

Figure 3: The graph shows the mean FCT bucketed by flow size for
the I2 1Gbps-10Gbps topology with 30% utilization for regular TCP
using FIFO and for RC3 using priorities and LSTF. The legend indicates
the mean FCT across all flows. The table indicates the mean FCTs for
varying settings.

utilization, while maintaining the cautiousness of TCP.
Slack Initialization: The slack for a packet p is initial-
ized as slack(p) = priorc3 ⇤D, where priorc3 is the prior-
ity of the packet assigned by RC3 and D is a value much
larger than the queuing delay seen by any packet in the
network. We use a value of D = 1 sec for our simulations.
Evaluation: To evaluate RC3 with LSTF, we reuse the ns-
3 [6] implementation of RC3 (along with the same TCP
parameters used by RC3, such as an initial congestion
window of 4), and implement LSTF in ns-3. Figure 3
shows our results. We see that using LSTF with RC3
performs comparable to (and often slightly better than)
using priorities with RC3, both giving significantly lower
FCTs than regular TCP with FIFO.

3.2 Tail Packet Delays
Clark et. al. [15] proposed the FIFO+ algorithm, where
packets are prioritized at a router based on the amount of
queuing delay they have seen at their previous hops, for
minimizing the tail packet delays in multi-hop networks.
FIFO+ is identical to LSTF scheduling where all packets
are initialized with the same slack value.
Slack Initialization: All incoming packets are initialized
with the same slack value (we use an initial slack value of
1 second in our simulations). With the slack update taking
place at every router, the packets that have waited longer
in the network queues are naturally given preference over
those that have waited for a smaller duration.
Evaluation: We compare LSTF (which, with the above
slack initialization, is identical to FIFO+) with FIFO, the
primary metric being the 99%ile end-to-end one way de-
lay seen by the packets. Figure 4 shows our results. To
better understand the impact of the two scheduling poli-
cies on the packet delays, we present our results using
UDP flows, which ensures that the input load remains the
same in both cases, allowing a fair comparison for the

Expt. Setup Mean Delay (s) 99%ile Delay (s)
FIFO LSTF FIFO LSTF

I2 1Gbps-10Gbps at 30% util. 0.0411 0.0411 0.0911 0.0868
I2 1Gbps-10Gbps at 50% util. 0.0515 0.0517 0.1287 0.1195
I2 1Gbps-10Gbps at 70% util. 0.0780 0.0786 0.2142 0.1958
I2 1Gbps-1Gbps at 70% util. 0.0771 0.0771 0.2163 0.216

I2 / 10 at 70% util. 0.5762 0.5765 1.9393 1.9367
Rocketfuel at 70% util. 0.1891 0.1883 3.8139 3.7199
Datacenter at 70% util. 0.0250 0.0239 0.1352 0.1100

Figure 4: Tail packet delays for LSTF compared to FIFO. The graph
shows the Complementary CDF of packet delays for the I2 1Gbps-
10Gbps topology at 70% utilization with the mean and 99%ile packet
delay values indicated in the legend. The table shows the corresponding
results for varying setting.

in-network packet-level behaviour. With LSTF, packets
that have traversed through more number of hops, and
have therefore spent more slack in the network, get prefer-
ence over shorter-RTT packets that have traversed through
fewer hops. While this might produce a slight increase
in the mean packet delay, it reduces the tail. This in-line
with the observations made in [15].

3.3 Fairness
Fairness is a common scheduling goal, which involves
two different aspects: asymptotic bandwidth allocation
(eventual convergence to the fair-share rate) and instan-
taneous bandwidth allocation (enforcing this fairness on
small time-scales, so every flow experiences the equiv-
alent of a per-flow pipe). The former can be measured
by looking at long-term throughput measures, while the
latter is best measured in terms of the flow completion
times of relatively short flows (which measures bandwidth
allocation on short time scales). We now show how LSTF
can be used to achieve both of these goals, but more ef-
fectively the former than the latter. Our slack assignment
heuristic can also be easily extended to achieve weighted
fair queuing, but we do not present those results here.
Slack Initialization: The slack assignment for fairness
works on the assumption that we have some ballpark
notion of the fair-share rate for each flow and that it does
not fluctuate wildly with time. Our approach to assigning
slacks is inspired from [38]. We assign slack = 0 to the
first packet of the flow and the slack of any subsequent
packet pi is then initialized as:

slack(pi) = max
⇣

0,slack(pi�1)+
1

rest
�

�
i(pi)� i(pi�1)

�⌘

where i(p) is the arrival time of the packet p at the ingress
and rest is an estimate of the fair-share rate r⇤. We show
that the above heuristic leads to asymptotic fairness, for
any value of rest that is less than r⇤, as long as all flows
use the same value. The same heuristic can also be used to

7

Figure 5: Fairness for long-lived flows on Internet2 topology. The legend
indicates the value of rest used for LSTF slack initialization.

Figure 6: CDF of FCTs for the I2 1Gbps-10Gbps topology at 70%
utilization.

provide instantaneous fairness, when we have a complex
mix of short-lived flows, where the rest value that per-
forms the best depends on the link bandwidths and their
utilization levels. A reasonable value of rest can be esti-
mated using knowledge about the network topology and
traffic matrices, though we leave a detailed exploration of
this to future work.
Evaluation: Asymptotic Fairness. We evaluate the
asymptotic fairness property by running our simulation
on the Internet2 topology with 10Gbps edges, such that
all the congestion is happening at the core. However, we
reduce the propagation delay, to make the experiment
more scalable, while the buffer size is kept large (50MB)
so that fairness is dominated by the scheduling policy
and not by how TCP reacts to packet drops. We start 90
long-lived TCP flows with a random jitter in the start
times ranging from 0-5ms. The topology is such that the
fair share rate of each flow on each link in the core net-
work (which is shared by up to 13 flows) is around 1Gbps.
We use different values for rest 1Gbps for computing
the initial slacks and compare our results with fair queu-
ing (FQ). Figure 5 shows the fairness computed using
Jain’s Fairness Index [23], from the throughput each flow
receives per millisecond. Since we use the throughput
received by each of the 90 flows to compute the fair-
ness index, it reaches 1 with FQ only at 5ms, after all
the flows have started. We see that LSTF is able to con-
verge to perfect fairness, even when rest is 100X smaller
than r⇤. It converges slightly sooner when rest is closer

Expt. Setup Avg FCT across
bytes (s)

Best
rest

Reasonable
rest Range

FIFO FQ LSTF (Mbps) (Mbps)
I2 1Gbps-10Gbps at 30% util. 0.563 0.537 0.538 300 10-900
I2 1Gbps-10Gbps at 50% util. 0.626 0.549 0.555 200 10-800
I2 1Gbps-10Gbps at 70% util. 0.811 0.622 0.632 100 50-200
I2 1Gbps-1Gbps at 70% util. 0.766 0.630 0.652 100 50-400

I2 / 10 at 70% util. 4.838 2.295 2.759 10 10-20
Rocketfuel at 70% util. 0.964 0.796 0.824 100 50-300

Table 2: Mean FCT averaged across bytes for FIFO, FQ and LSTF (with
best rest value) across varying settings. The last column indicates the
range of rest values that produce mean FCTs within 10% of the best rest
result.

to r⇤, though the subsequent differences in the time to
convergence decrease with decreasing values of rest . The
detailed explanation of how this works has been provided
in Appendix B for interested readers.
Evaluation: Instantaneous Fairness. As one might ex-
pect, the choice of rest has a bigger impact on instanta-
neous fairness than on asymptotic fairness. A very high
rest value would not provide sufficient isolation across
flows. On the other hand, a very small rest value can starve
the long flows. This is because the assigned slack values
for the later packets of long flows with high sequence
numbers would be much higher than the actual slack they
experience. As a result, they will end up waiting longer
in the queues, while the newer flows that keep coming
in with smaller sequence numbers (and therefore much
smaller slacks) would end up getting a higher precedence.

To verify this intuition, we evaluated our LSTF slack
assignment scheme by running our standard workload
with a mix of TCP flows ranging from sizes 1.5KB -
3MB on our default I2 1Gbps-10Gbps topology at 70%
utilization, with 50MB buffer size. Note that the traffic
pattern is now bursty and the instantaneous utilization of
a link is often lower or higher than the assigned average
utilization level. The CDF of the FCTs thus obtained is
shown in Figure 6. As expected, the distribution of FCTs
looks very different between FQ and FIFO. FQ isolates
the flows from each-other therefore significantly reducing
the FCT seen by short to medium size flows, compared to
FIFO. The long flows are also helped a little by FQ, again
due to the isolation provided from one-another.

LSTF performance varies somewhere in between FIFO
and FQ, as we vary rest values between 500Mbps to
10Mbps. A high value of rest = 500Mbps does not provide
sufficient isolation and the performance is close to FIFO.
As we reduce the value of rest , the “isolation-effect” in-
creases. However, for very small rest values (e.g. 10Mbps),
the tail FCTs for the long flows becomes much higher
than FQ, due to the starvation effect explained before.

We try to capture this trade-off between isolation for
short and medium sized flows and starvation for long
flows, by using average FCT across bytes (in other words,
the average FCT weighted by flow size) as our key metric.
We term the rest value that achieves the sweetest spot in
this trade-off as the “best” rest value. The rest values that

8

Mechanism A: Mean
FCT (s)

B: 99%ile
packet delay (s)

A - SJF, B - FIFO 0.188 0.0850Round-robin across A and B
A - LSTF (§3.1), B - LSTF (§3.2) 0.189 0.0822Round-robin across A and B

(a) Fairness across Class A and B

Mechanism A: Mean
FCT (s)

B: 99%ile
packet delay (s)

A - SJF, B - FIFO 0.181 0.1593A prioritized over B
A - LSTF (§3.1), B - LSTF (§3.2) 0.182 0.1533B’s slacks incremented by K

(b) Class A has higher priority than B
Table 3: Class A wants to minimize mean flow completion time. Class B wants to minimize tail packet delays.

produce average FCT which is within 10% of the value
produced by the best rest are termed as “reasonable” rest
values. Table 2 presents our results across different set-
tings. We find that (1) LSTF produces significantly lower
average FCT than FIFO, performing only slightly worse
than FQ (2) As expected, the best rest value decreases with
increasing utilization and with decreasing bandwidths (as
in the case of I2 / 10 topology), while the range of reason-
able rest values gets narrower with increasing utilization
and with decreasing bandwidths.

Thus, for instantaneous fairness, LSTF would require
knowledge of the network topology (in particular, the link
bandwidths) and on-line measurement of traffic matrices
and link utilization levels. While these are available in
most WANs, they do impose a higher burden on deploying
LSTF than on FQ or other such scheduling algorithms.

3.4 Multi-tenancy
As network virtualization becomes more popular, net-
works are often called upon to support multiple tenants
or traffic classes, with each having their own network-
ing objectives. Network providers can enforce isolation
across such tenants (or classes of traffic) through static
bandwidth provisioning, which can be implemented via
dedicated hard-wired links [1, 4] or through multiqueue
scheduling algorithms such as fair queuing or round
robin [16]. LSTF can work in conjunction with both of
these isolation mechanisms to meet the desired perfor-
mance objective for each tenant (or class of traffic).

Table 3(a) shows our evaluation for this using our
default I2 1Gbps-10Gbps topology, with 50MB router
buffers, running TCP flows at 70% utilization. Half of
the traffic was marked as Class A (targeting small mean
flow completion time) and the remaining half as Class B
(targeting small tail packet delays), with isolation being
enforced across the two classes via round robin. We find
that using LSTF with round-robin for isolation performs
comparable to doing SJF and FIFO for the two classes
with round-robin for isolation.

While LSTF can provide some degree of per-flow fair-
ness (as in the previous subsection), it cannot provide such
isolation or fairness on a per-class or per-tenant basis. This
is because for class-based fairness (which also includes
hierarchical fairness) the appropriate slack assignment
for a packet at a particular ingress depends on the input
from other ingresses (since these packets can belong to
the same class). However, if two or more classes/tenants
are separated by strict prioritization, LSTF can be used

to enforce the appropriate precedence order, along with
meeting the individual performance objective for each
class. We evaluate this using the same setting as in the
previous case, with the results shown in Table 3(b). We
assign the Class A and Class B slack as per the LSTF
heuristic for the respective objectives and increment the
assigned slack of all Class B packets by a large constant
K (bigger than the highest slack assigned across packets
in Class A by a value which is more than the maximum
queuing delay a packet can see in the network). This en-
sures that Class B always gets a lower priority than Class
A and the resulting performance is comparable to doing
SJF and FIFO for the two classes and separating them
using strict priorities.

4 Incorporating Network Feedback
Context: So far we have considered packet scheduling in
isolation, whereas in the Internet today routers send im-
plicit feedback to hosts to via packet drops (or marking, as
in ECN). This is often called Active Queue Management
(AQM), and its goal is to reduce the per-packet delays
while keeping throughput high. We now consider how we
might generalize our LSTF approach to incorporate such
network feedback as embodied in AQM schemes such as
RED [18] and CoDel [27].

LSTF is just a scheduling algorithm and cannot perform
AQM on its own. Thus, at first glance, one might think
that incorporating AQM into LSTF would require imple-
menting the AQM scheme in each router, which would
then require us to find a universal AQM scheme in order
to fulfill our pursuit of universality. On the contrary, LSTF
enables a novel edge-based approach to AQM based on
the following insights: (1) In addition to scheduling pack-
ets LSTF produces a very useful by-product, carried by
the slack values in the packets, which gives us a precise
measure of the one-way queuing delay seen by the packet
and can be used for AQM (2) As long as appropriate pack-
ets are chosen, it does not matter where they are being
dropped (or marked) – whether it is inside the core routers
or at the edge.

We describe and evaluate our edge-based approach to
AQM in the context of CoDel [27], which is considered
to be the state-of-the-art AQM scheme for wide area net-
works. In CoDel, the amount of time a packet has spent
in a queue is recorded as the sojourn time. A packet is
dropped if its sojourn time exceeds a fixed target (set
to 5ms [28]), and if the last packet drop happened be-
yond a certain interval (initialized to 100ms [28]). As

9

Expt. Setup rest Avg FCT across bytes (s) Avg RTT across bytes (s)
(Mbps) FIFO FQ FQ-

CoDel
FQ w/
Edge-
CoDel

LSTF w/
Edge-
CoDel

FIFO FQ FQ-
CoDel

FQ w/
Edge-
CoDel

LSTF w/
Edge-
CoDel

I2 1Gbps-10Gbps at 70% util. 100 0.811 0.622 0.642 0.633 0.641 0.0756 0.0733 0.0642 0.0646 0.0661
I2 1Gbps-1Gbps at 70% util. 100 0.766 0.630 0.642 0.637 0.658 0.0716 0.0702 0.0639 0.0643 0.0666

I2 / 10 at 30% util. 40 0.918 0.836 0.897 0.887 0.907 0.0998 0.1085 0.0792 0.0798 0.0826
I2 / 10 at 50% util. 30 1.706 1.214 1.430 1.369 1.427 0.1384 0.1752 0.0901 0.0918 0.1001
I2 / 10 at 70% util. 10 4.837 2.295 3.687 3.658 3.739 0.2779 0.3752 0.1182 0.1281 0.1388

I2 / 10, half RTTs at 70% util. 10 4.569 2.023 3.196 3.245 3.405 0.2555 0.3607 0.0995 0.1131 0.1165
I2 / 10, double RTTs at 70% util. 10 5.098 2.769 4.243 4.125 4.389 0.325 0.4172 0.1591 0.1640 0.1843

Rocketfuel at 70% util. 100 0.964 0.796 0.840 0.813 0.835 0.0922 0.0991 0.0793 0.0788 0.0836

Figure 7: The figures show the average FCT and RTT values for I2/10 at 70% utilization (LSTF uses fairness slack assignment with rest = 10Mbps).
The error bars indicating the 10th and the 99th percentile values and the y-axis is in log-scale. The table indicates the average FCT and RTTs (across
bytes) for varying settings.

and when more packets are dropped, the interval value
is reduced using a control law, which divides the ini-
tial interval value by the square root of the number of
packets dropped. The interval is refreshed (re-initialized
to 100ms) when the queue becomes empty, or when a
packet sees a sojourn time less than the target.9 An ex-
tension to CoDel is FQ-CoDel [20], where the scheduler
round-robins across flows and the CoDel control loop is
applied to each flow individually. The interval for a flow
is refreshed when there are no more packets belonging
to that flow in the queue. FQ-CoDel is considered to be
better than CoDel in all regards10, even by one of the
co-developers of CoDel [3].
Edge-CoDel: We aim to approximate FQ-CoDel from the
edge by (i) using LSTF to implement per-flow fairness in
routers and (ii) using the values carried by LSTF to guide
the egress router as to whether or not to drop the packet.
For (i), the initial slack values are assigned based on our
fairness scheme described in §3.3. For (ii), an extra field is
added to the packet header at the ingress which stores the
assigned slack value (called the initial slack field), which
remains untouched as the packet traverses the network.
The other field where the ingress stores the assigned slack
value is updated as per the LSTF algorithm; we call this
the current slack field. During dequeue at the egress, the

9CoDel is a little more complicated than this, and while our imple-
mentation follows the CoDel specification [28], our explanation has
been simplified, highlighting only the relevant points for brevity.

10We verified the same using our simulations with varying settings.
For all cases, FQ-CoDel resulted in smaller mean RTT across packets
and also in smaller flow completion times (averaged across bytes) as
compared to CoDel. For example, for our default I2 1Gbps-10Gbps
topology at 70% utilization, FQ-CoDel resulted in 0.0642s of mean RTT
and 0.642s of mean FCT while the corresponding values for CoDel were
0.0748s and 0.815 respectively.

precise amount of queuing delay seen by the packet within
the network can be computed by simply comparing the
initial slack field and the current slack field. At the egress
router for each flow we then run the FQ-CoDel logic
for when to drop packets, keeping the control law and
the parameters (the target value and the initial interval
value) the same as in FQ-CoDel. We call this approach
Edge-CoDel.

There are only two things that change in Edge-CoDel
as compared to FQ-CoDel. First, instead of looking at
the sojourn time of each queue individually, Edge-CoDel
looks at the total queuing time of the packet across the
entire network. The second change is with respect to how
the CoDel interval is refreshed. As mentioned before, in
traditional FQ-CoDel, there are two events that trigger a
refresh in the interval (1) when a packet’s sojourn time
is less than the target and (2) when all the queued-up
packets for a given flow have been transmitted. While
Edge-CoDel can react to the former, it has no explicit
way of knowing the latter. To address this, we refresh
the interval based on the difference in the send time of
two consecutive packets. When the difference in the time
at which two consecutive packets (say p1 and p2) were
sent by the source (found using TCP timestamps that are
enabled by default) is more than a certain threshold, we
conclude that the interval should be refreshed as it is likely
that there is no build-up of packets from that flow in the
network. Clearly, this refresh threshold must be greater
than CoDel’s target queuing delay value. We find that a
refresh threshold of 2-4 times the target value (10-20ms)
works reasonably well. We elaborate more on the effect
of picking different refresh thresholds in our evaluation
below.
Results: In our experiments, we compare four different

10

schemes: (1) FIFO without AQM (to set a baseline), (2)
FQ without AQM (to see the effects of FQ on its own),
(3) FQ-CoDel (to provide the state-of-the-art compari-
son) (4) LSTF scheduling (with slacks assigned to meet
the fairness objective using appropriate rest values) in
conjunction with Edge-CoDel. As we move from (3) to
(4), we make two transitions – first is with respect to the
scheduling done inside the network (perfect isolation with
FQ vs approximate isolation with LSTF) and the second
is the shift of AQM logic from inside the network to the
edge. Therefore, as an incremental step in between the
two transitions, we also provide results for FQ with Edge-
CoDel, where routers do FQ across flows (with the slack
values maintained only for book-keeping) and AQM is
done by Edge-CoDel. This allows us see how well Edge-
CoDel works with perfect per-router isolation. The refresh
threshold we use for Edge-CoDel in both cases is 20ms (4
times the CoDel target value). The buffer size is increased
to 50MB so that AQM kicks in before a natural packet
drop occurs.

Figure 7 shows our results for varying settings and
schemes. The main metrics we use for evaluation are
the FCT and the per-packet RTT, since the goal of an
AQM scheme is to maintain high throughput (or small
FCTs) while keeping the RTTs small. The two graphs
show the average FCT and the average RTT across flows
bucketed by their size for the I2 / 10 topology at 70%
utilization.11 To compute the average RTT, we first com-
pute the average RTT value per flow (by taking the mean
across the measured RTTs of all data packets belonging
to the flow) and then taking the average of this value
across flows in the same bucket. As expected, we find
that while FQ helps in reducing the FCT values as com-
pared to FIFO, it results in significantly higher RTTs
than FIFO for long flows. FQ-CoDel reduces the RTT
seen by long flows compared to FQ (with the short flows
having RTT smaller than FIFO and comparable to FQ).
What is new is that, shifting the CoDel logic to the edge
through Edge-CoDel while doing FQ in the router makes
very little difference as compared to FQ-CoDel. As we
experiment with varying settings, we find that in some
cases, FQ with Edge-CoDel results in slightly smaller
FCTs at the cost of slightly higher RTTs than FQ-CoDel.
We believe that this is due to the difference in how the
CoDel interval is refreshed with Edge-CoDel and with
in-router FQ-CoDel. Replacing the scheduling algorithm
with LSTF again produces minor differences in the results
compared to FQ-CoDel. Both the FCT and the RTT are
slightly higher than FQ-CoDel for almost all cases, and
we attribute the differences to LSTF’s approximation of

11AQM produces a bigger impact on this topology due to smaller
link capacity and more queuing than for our default topology. Hence
we show the graphs for this case, with aggregate metrics presented for
others in the table.

Refresh Threshold
(ms)

Avg FCT across
bytes (s)

Avg RTT across
bytes (s)

10 3.578 0.143
20 3.739 0.139
30 3.954 0.135
40 4.079 0.132

Table 4: Effect of varying refresh threshold on I2/10 topology at 70%
utilization running LSTF (rest = 10Mbps) with Edge-CoDel.

round-robin service across flows. Nonetheless, the aver-
age FCTs obtained are significantly lower than FIFO and
the average RTTs are significantly lower than both FIFO
and FQ for all cases.

To see whether our results were highly dependent on
the refresh threshold value, consider Table 4 which shows
the average FCT and RTT values for varying refresh
thresholds. We find that there are very minor differences
in the results as we vary this threshold, because the domi-
nating cause for refreshing the interval is when a packet
sees a queuing delay less than the CoDel target. However,
the general trend is that increasing the refresh threshold
increases the FCT and decreases the RTT. This is because
with increasing refresh threshold, the interval is reset to
the larger 100ms value less frequently. This results in
more packet drops for the long flows, causing an increase
in FCTs, but a decrease in the RTT values.
Summary: The used slack information available as a by-
product from LSTF can be effectively used to emulate
an AQM scheme from the edge of the network. While
we evaluate this insight in the context of packet drops
in CoDel, showing that LSTF with EdgeCoDel performs
comparable to FQ-CoDel, our edge-based approach can
also be adapted for other AQM schemes such as ECN.

5 LSTF Implementation
We now ask whether LSTF can be implemented in the
routers? LSTF execution at a particular router is no more
complex than the execution of fine-grained priorities. To
see this, suppose a packet p arrives a router a at time
i(p,a), with slack slack(p,a). As mentioned in §2, LSTF
prioritizes packets based on their remaining slack value
at the time when their last bit is transmitted. This term
is given by (slack(p,a)� (t � i(p,a))+T (p,a)) at any
time t while p is waiting at a . T (p,a) is the transmission
time of p at a , which is added to account for the remain-
ing slack of p, relative to other packets, when its last bit
is transmitted. Since t is same for all packets at any given
point of time when the packets are being compared at
a , the deciding term is (slack(p,a)+ i(p,a)+T (p,a)).
This term can be computed when the packet arrives at
a and can be attached to the packet as its priority value
(programmable header processing mechanisms [11, 12]
can be used to easily execute this step).

Fine-grained prioritization can be carried out in almost
constant time using specialized data-structures such as
pipelined heap (p-heap) [10,22]. The p-heap datastructure
implemented in hardware by Bhagwan et. al [10] using

11

a 0.35 micron CMOS technology can support a line rate
of 10Gbps with over 4 billion priority levels, which are
more than enough to support LSTF with slack values as-
signed at a granularity of microseconds. While we use
nanosecond granularity for the slack assignment in all our
simulations with LSTF, we verified that using a coarser
granularity of microseconds has negligible impact on the
replay results (for our default scenario described in §2.3,
nanosecond granularity resulted in a total of 0.214% over-
due packets, while microsecond granularity resulted in
0.215% overdue packets).

Right before a packet p is transmitted by the router, its
slack can be overwritten by the remaining slack value,
computed by simply subtracting the stored priority value
(slack(p,a)+ i(p,a)+T (p,a)) with the sum of the cur-
rent time and the packet’s transmission time (T (p,a)).

Thus, while the hardware implementation of these al-
gorithms would require some effort, it does not appear a
significant challenge to implement LSTF at linespeed.

6 Related Work
The literature of packet scheduling is vast, and ever-
increasing. Here we only touch on a few topics most
relevant to our work.

The real-time scheduling literature has studied opti-
mality of scheduling algorithms (in particular EDF and
LSTF) for single and multiple processors [24, 25], where
a scheduling algorithm is said to be optimal if it can (fea-
sibly) schedule a set of tasks that can be scheduled by any
other algorithm. Liu and Layland [25] proved the optimal-
ity of EDF for a single processor in hard real-time systems.
LSTF was then shown to be optimal for single-processor
scheduling as well, while being more effective than EDF
(though not optimal) for multi-processor scheduling [24].
In the context of networking, [14] provides theoretical
results on emulating the schedules produced by a sin-
gle output-queued switch using a combined input-output
queued switch with a smaller speed-up of at most two. To
the best of our knowledge, the optimality or universality
of a scheduling algorithm for a network of inter-connected
resources (in our case, switches) has never been studied
before.

LSTF and EDF have been used before in networking
to achieve different goals. Deadline aware congestion
control algorithms, inspired from the optimality of EDF,
have been proposed for meeting flow deadlines in data-
centers [7, 21, 37]. The FIFO+ algorithm [15] uses LSTF
to reduce tail packet delays in multi-hop networks.

A recent paper [33] proposed programmable hardware
in the dataplane for packet scheduling and queue man-
agement, in order to achieve various network objectives
without the need for physically replacing the hardware.
It uses simulation of three schemes (FQ, CoDel+FQ,
CoDel+FIFO) competing on three different metrics to

show that there is no “silver bullet” solution. As men-
tioned earlier, our work is inspired by the questions the
authors raise; we adopt a broader view of scheduling in
which packets can carry dynamic state leading to the re-
sults presented here.

In our early position paper, to appear in HotNets 2015,
we describe our vision of a UPS and some early results on
LSTF as a UPS. Here, we add detailed theoretical results,
a more comprehensive evaluation along with additional
performance objectives and address AQM.

7 Conclusion

This paper started with a theoretical perspective by an-
alyzing whether there exists a single universal packet
scheduling algorithm that can perfectly replay all viable
schedules. We proved that while such an algorithm can-
not exist, LSTF comes closest to being one (in terms of
the number of congestion points it can deal with). We
then empirically demonstrated the ability of LSTF to ap-
proximately replay a wide range of scheduling algorithms
under varying network settings. Replaying a given sched-
ule, while of theoretical interest, requires the knowledge
of viable output times, which is not available in practice.

Hence, we next considered if LSTF can be used in
practice to achieve various performance objectives. We
showed via simulation how LSTF, combined with heuris-
tics to set the slack values at the ingress, can do a rea-
sonable job of minimizing mean flow completion time,
minimizing tail latencies, and achieving per-flow fairness.

Noting that scheduling is often used along with AQM
to prevent queue build up, we then showed how LSTF can
be used to implement a version of AQM at the network
edge, with performance roughly comparable to the state-
of-the art (FQ-CoDel).

While an initial step towards understanding the notion
of a Universal Packet Scheduler, our work leaves sev-
eral theoretical questions unanswered, three of which we
mention here. First, we showed existence of a UPS with
omniscient header initialization, and nonexistence with
limited-information initialization. What is the least infor-
mation we can use in header initialization in order to
achieve universality? Second, we showed that, in practice,
the fraction of overdue packets is small, and most are only
overdue by a small amount. Are there tractable bounds on
both the number of overdue packets and/or their degree
of lateness? Third, while we have a formal characteri-
zation for the scope of LSTF with respect to replaying
a given schedule, and we have simulation evidence of
LSTF’s ability to meet several performance objectives,
we do not yet have any formal model for the scope of
LSTF in meeting these objectives. Can one describe the
class of performance objectives that LSTF can meet?

12

References
[1] Global Consortium to Construct New Cable

System Linking US and Japan to Meet In-
creasing Bandwidth Demands. http://
googlepress.blogspot.com/2008/02/
global-consortium-to-construct-new_
26.html.

[2] Internet2. http://www.internet2.edu/.

[3] Kathie Nichol’s CoDel presented by Van Jacobson.
http://www.ietf.org/proceedings/
84/slides/slides-84-tsvarea-4.pdf.

[4] Microsoft Invests in Subsea Cables to Connect Dat-
acenters Globally. http://goo.gl/GoXfxH.

[5] The network simulator ns-2. http://www.isi.
edu/nsnam/ns/.

[6] Ns-3. http://www.nsnam.org/.

[7] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKe-
own, B. Prabhakar, and S. Shenker. pfabric: Minimal
near-optimal datacenter transport. 2013.

[8] M. Allman. Comments on bufferbloat. ACM SIG-
COMM Computer Communication Review, 2013.

[9] T. Benson, A. Akella, and D. Maltz. Network
Traffic Characteristics of Data Centers in the Wild.
In Proc. ACM Internet Measurement Conference
(IMC), 2012.

[10] R. Bhagwan and B. Lin. Fast and scalable priority
queue architecture for high-speed network switches.
In Proc. IEEE Infocom 2000, 2000.

[11] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vah-
dat, G. Varghese, and D. Walker. P4: Program-
ming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev., 2014.

[12] P. Bosshart, G. Gibb, H.-S. Kim, G. Vargh-
ese, N. McKeown, M. Izzard, F. Mujica, and
M. Horowitz. Forwarding metamorphosis: Fast pro-
grammable match-action processing in hardware for
sdn. In Proc. ACM SIGCOMM, 2013.

[13] M. Casado, T. Koponen, S. Shenker, and
A. Tootoonchian. Fabric: A retrospective on evolv-
ing sdn. In Proc. ACM HotSDN, 2012.

[14] S.-T. Chuang, A. Goel, N. McKeown, and B. Prab-
hakar. Matching output queueing with a combined
input/output-queued switch. Selected Areas in Com-
munications, IEEE Journal on, 1999.

[15] D. D. Clark, S. Shenker, and L. Zhang. Support-
ing real-time applications in an integrated services
packet network: Architecture and mechanism. SIG-
COMM Comput. Commun. Rev., 1992.

[16] A. Demers, S. Keshav, and S. Shenker. Analysis and
simulation of a fair queueing algorithm. SIGCOMM
Comput. Commun. Rev., 1989.

[17] N. Dukkipati and N. McKeown. Why Flow-
Completion Time is the Right Metric for Congestion
Control. ACM SIGCOMM Computer Communica-
tion Review, 2006.

[18] S. Floyd and V. Jacobson. Random early detec-
tion gateways for congestion avoidance. IEEE/ACM
Trans. Netw., 1993.

[19] A. Gupta, M. T. Hajiaghayi, and H. Räcke. Obliv-
ious network design. In Proceedings of the Seven-
teenth Annual ACM-SIAM Symposium on Discrete
Algorithm, SODA ’06. Society for Industrial and
Applied Mathematics, 2006.

[20] T. Hoeiland-Joergensen, P. McKenney, D. Taht,
J. Gettys, and E. Dumazet. Flowqueue-codel. IETF
Informational, 2013.

[21] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing
flows quickly with preemptive scheduling. In Proc.
ACM SIGCOMM, 2012.

[22] A. Ioannou and M. G. H. Katevenis. Pipelined
heap (priority queue) management for advanced
scheduling in high-speed networks. IEEE/ACM
Trans. Netw., 2007.

[23] R. Jain, D.-M. Chiu, and W. Hawe. A quantitative
measure of fairness and discrimination for resource
allocation in shared computer systems. CoRR, 1998.

[24] J. Y.-T. Leung. A new algorithm for scheduling
periodic, real-time tasks. Algorithmica, 1989.

[25] C. L. Liu and J. W. Layland. Scheduling algorithms
for multiprogramming in a hard-real-time environ-
ment. Journal of the ACM (JACM), 1973.

[26] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker.
Recursively cautious congestion control. In Proc.
USENIX NSDI, 2014.

[27] K. Nichols and V. Jacobson. Controlling queue
delay. Queue, 2012.

[28] K. Nichols and V. Jacobson. Controlled delay active
queue management: draft-nichols-tsvwg-codel-02.
Internet Requests for Comments-Work in Progress,
http://tools. ietf. org/id/draft-nichols-tsvwg-codel-
01. txt, Tech. Rep, 2014.

13

http://googlepress.blogspot.com/2008/02/global-consortium-to-construct-new_26.html
http://googlepress.blogspot.com/2008/02/global-consortium-to-construct-new_26.html
http://googlepress.blogspot.com/2008/02/global-consortium-to-construct-new_26.html
http://googlepress.blogspot.com/2008/02/global-consortium-to-construct-new_26.html
http://www.internet2.edu/
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
http://www.ietf.org/proceedings/84/slides/slides-84-tsvarea-4.pdf
http://goo.gl/GoXfxH
http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/
http://www.nsnam.org/

[29] A. K. Parekh and R. G. Gallager. A generalized
processor sharing approach to flow control in in-
tegrated services networks: The single-node case.
IEEE/ACM Trans. Netw., 1993.

[30] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy,
A. Ghodsi, and S. Shenker. Software-defined in-
ternet architecture: Decoupling architecture from
infrastructure. In Proc. ACM HotNets, 2012.

[31] S. Blake and D. Black and M. Carlson and E. Davies
and Z. Wang and W. Weiss. An Architecture for
Differentiated Services. RFC 2475.

[32] M. Shreedhar and G. Varghese. Efficient fair queue-
ing using deficit round robin. ACM SIGCOMM
Comput. Commun. Rev., 1995.

[33] A. Sivaraman, K. Winstein, S. Subramanian, and
H. Balakrishnan. No silver bullet: Extending sdn to
the data plane. In Proc. ACM HotNets, 2013.

[34] N. Spring, R. Mahajan, and D. Wetherall. Measuring
ISP Topologies with Rocketfuel. In Proc. ACM
SIGCOMM, 2002.

[35] I. Stoica, S. Shenker, and H. Zhang. Core-stateless
fair queueing: A scalable architecture to approxi-
mate fair bandwidth allocations in high-speed net-
works. IEEE/ACM Trans. Netw., 2003.

[36] I. Stoica and H. Zhang. Providing guaranteed ser-
vices without per flow management. In Proc. ACM
SIGCOMM, 1999.

[37] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better never than late: Meeting dead-
lines in datacenter networks. In Proc. ACM SIG-
COMM, 2011.

[38] L. Zhang. Virtual clock: A new traffic control algo-
rithm for packet switching networks. SIGCOMM
Comput. Commun. Rev., 1990.

Appendix
A Proofs: Analytical Replayability Results
This section contains theoretical proofs for the analyti-
cal replayability results presented in §2. We begin with
defining some notations used throughout in the proofs.

A.1 Notations
We use the following notations for our proofs, some of
which have been already defined in the main text:
Relevant nodes:
• src(p): Ingress of a packet p.
• dest(p): Egress of a packet p.
Relevant time notations:
• T (p,a): Transmission time of a packet p at node a .
• o(p,a): Time when the first bit of p is scheduled by

node a in the original schedule.
• o(p) = o(p,dest(p))+T (p,dest(p)): Time when the

last bit of p exits the network in the original schedule
(which is non-preemptive).

• o0(p): Time when the last bit of p exits the network in
the replay (which may be preemptive in our theoretical
arguments).

• i(p,a) and i0(p,a): Time when p arrives at node a in
the original schedule and in the replay respectively.

• i(p) = i(p,src(p)) = i0(p): Arrival time of p at its
ingress. This remains the same for both the original
schedule and the replay.

• tmin(p,a,b): Minimum time p takes to start from node
a and exit from node b in an uncongested network.
It therefore includes the propagation delays and the
store-and-forward delays of all links in the path from a
to b and the transmission delays at a and b . Handling
the edge case: tmin(p,a,a) = T (p,a)

• slack(p)= o(p)� i(p)�tmin(p,src(p),dest(p)): Total
slack of p that gets assigned at its ingress. It denotes
the amount of time p can wait in the network without
any of its bits getting serviced.

• slack(p,a, t) = o(p) � t � tmin(p,a,dest(p)) +
T (p,a): Remaining slack of the last bit of p at time
t when it is at node a . We derive this expression in
Appendix A.4.

Other miscellaneous notations
• path(p,a,b): The ordered set of nodes and links in

the path taken by p to go from a to b . The set also
includes a and b as the first and the last nodes.

• path(p) = path(p,src(p),dest(p))
• pass(a): Set of packets that pass through node a .

A.2 Existence of a UPS under Omniscient
Header Initialization

Algorithm: At the ingress, insert an n-dimensional vec-
tor in the packet header, where the ith element contains
o(p,ai), ai being the ith hop in path(p). Every time a

14

packet p arrives at the router, the router pops the value at
the head of the vector in p’s header and uses that as the
priority for p (earlier values of output times get higher
priority). This can perfectly replay any schedule.

Proof: We can prove that the above algorithm will result
in no overdue packets (which do not meet their original
schedule’s target) using the following two theorems:
Theorem 1: If for any node a , 9p0 2 pass(a), such that
using the above algorithm, the last bit of p0 exits a at
time (t 0 > (o(p0,a)+ T (p0,a))), then (9p 2 pass(a) |
i0(p,a) t 0 and i0(p,a)> o(p,a)).
Proof by contradiction: Consider the first such p⇤ 2

pass(a) that gets late at a (i.e. its last bit exits a at
time t⇤ > (o(p⇤,a) + T (p⇤,a))). Suppose the above
condition is not true i.e. (8p 2 pass(a) | i0(p,a)

o(p,a) or i0(p,a) > t⇤). In other words, if p arrives
at or before time t⇤, it also arrives at or before time
o(p,a). Given that all bits of p⇤ arrive at or before
time t⇤, they also arrive at or before time o(p⇤,a). The
only reason why the last bit of p⇤ would wait until time
(t⇤ > o(p⇤,a)+T (p⇤,a)) in our work-conserving replay
is if some other bits (belonging to higher priority pack-
ets) were being scheduled after time o(p⇤,a), resulting
in p⇤ not being able to complete its transmission by time
(o(p⇤,a) + T (p⇤,a)). However, as per our algorithm,
any packet phigh having a higher priority than p⇤ at a
must have been scheduled before p⇤ in the original sched-
ule, implying that (o(phigh,a)+T (phigh,a)) o(p⇤,a).
12 Therefore, some bits of phigh being scheduled after
time o(p⇤,a), implies them being scheduled after time
(o(phigh,a) + T (phigh,a)). This means that phigh is al-
ready late and contradicts our assumption that p⇤ is the
first packet to get late. Hence proved that if for any node a ,
9p0 2 pass(a), such that using the above algorithm, the
last bit of p0 exits a at time (t 0 > (o(p0,a)+T (p0,a))),
then (9p 2 pass(a) | i0(p,a) t 0 and i0(p,a)> o(p,a))
Theorem 2: 8a,(8p 2 pass(a) | i0(p,a) i(p,a)).
Proof by contradiction: Consider the first time when some
packet p⇤ arrives late at some node a⇤ (i.e. i0(p⇤,a⇤)>
i(p⇤,a⇤)). In other words, a⇤ is the first node in the
network to see a late packet arrival, and p⇤ is the first
late arriving packet. Let aprev be the node visited by
p⇤ just before arriving at a⇤. p⇤ can arrive at a time
later than i(p⇤,a⇤) at a⇤ only if the last bit of p⇤ exits
aprev at time tprev > o(p⇤,aprev)+ T (p⇤,aprev). As per
Theorem 1 above, this is possible only if some packet
p0 (which may or may not be same as p⇤) arrives at
aprev at time i0(p0,aprev)> o(p0,aprev)� i(p0,aprev) and
i0(p0,aprev) tprev < i0(p⇤,a⇤). This contradicts our as-
sumption that a⇤ is the first node to see a late arriv-
ing packet. Therefore, 8a,(8p 2 pass(a) | i0(p,a)

12Given that the original schedule is non-preemptible, the next packet
gets scheduled only after the previous one has completed its transmis-
sion.

SX!

SA! DA!

DX!

SB!

DB!

SC!

DC!
SY!

SZ! DY!

DZ!

α0! α1! α2!

α3!

α4!

Node Packet(arrival time, scheduling time)
Case 1

a0 a(000,0); x(000,1)
a1 a(1,1), b1(2,2), b2(3,3),b3(4,4)
a2 c1(2,2), c2(3,3); a(2,444)
a3 x(2,2), y1(2,3), y2(3,4)
a4 z(2,2), x(3,333)

Case 2
a0 x(000,0); a(000,1)
a1 a(2,2), b1(2,3), b2(3,4),b3(4,5)
a2 c1(2,2), c2(3,3), a(3,444)
a3 x(1,1), y1(2,2), y2(3,3)
a4 z(2,2), x(2,333)

Figure 8: Example showing non-existence of a UPS with Blackbox
Initialization. A packet represented by p belongs to flow P, with ingress
SP and egress DP, where P 2 {A,B,C,X ,Y,Z}. For simplicity assume
all packets are of the same size and all links have a propagation delay
of zero. All uncongested routers (white), ingresses and egresses have
a transmission time of zero. The congestion points (shaded grey) have
transmission times of T = 1 unit.

i(p,a)).
Combining the two theorems above: Since 8a(8p 2

pass(a) | i0(p,a) i(p,a)), with the above algorithm,
8a(8p 2 pass(a)), all bits of p exit a before (o(p,a)+
T (p,a)). Therefore, the algorithm can perfectly replay
any viable schedule.

A.3 Nonexistence of a UPS under black-
box initialization

Proof by counter-example: Consider the example
shown in Figure 8. For simplicity, assume all the prop-
agation delays are zero, the transmission time for each
congestion point (shaded in grey) is 1 unit and the uncon-
gested (white) routers have zero transmission time. 13 All
packets are of the same size.

The table illustrates two cases. For each case, a packet’s
arrival and scheduling time (the time when the packet
is scheduled by the router) at each node through which
it passes are listed. A packet represented by p belongs

13These assignments are made for simplicity of understanding. The
example will hold for any reasonable value of propagation and transmis-
sion delays.

15

to flow P, with ingress SP and egress DP, where P 2

{A,B,C,X ,Y,Z}. The packets have the same path in both
cases. For example, a belongs to Flow A, starts at ingress
SA, exits at egress DA and passes through three congestion
points in its path a0, a1 and a2; x belongs to Flow X,
starts at ingress SX , exits at egress DX and passes through
three congestion points in its path a0, a3 and a4; and so
on.

The two critical packets we care about in this example
are a and x, which interact with each-other at their first
congestion point a0, being scheduled by a0 at different
times in the two cases (a before x in Case 1 and x before
a in Case 2). But, notice that for both cases,
• a enters the network from its ingress SA at congestion

point a0 at time 0, and passes through two other con-
gestion points a1 and a2 before exiting the network
at time (4+1) 14.

• x enters the network from its ingress SX at congestion
point a0 at time 0, and passes through two other con-
gestion points a3 and a4 before exiting the network
at time (3+1).

a interacts with packets from Flow C at its third conges-
tion point a2, while x interacts with a packet from Flow
Z at its third congestion point a4. For both cases,
• Two packets of Flow C (c1,c2) enter the network at

times 2 and 3 at a2 before they exit the network at
time (2+1) and (3+1) respectively.

• z enters the network at time 2 at a4 before exiting at
time 2+1.

The difference between the two cases comes from how
a interacts with packets from Flow B at its second con-
gestion point a1 and how x interacts with packets from
Flow Y at its second congestion points a3. Note that a1
and a3 are the last congestion points for Flow B and Flow
Y packets respectively and their exit times from these
congestion points directly determine their exit times from
the network.
• Three packets of Flow B (b1,b2,b3) enter the net-

work at times 2, 3 and 4 respectively at a1. In Case
1, they leave a1 at times (2+1),(3+1),(4+1) re-
spectively, providing no lee-way 15 for a at a0, which
leaves a1 at time (1+1). In Case 2, (b1,b2,b3) leave
at times (3+1),(4+1),(5+1) respectively, provid-
ing lee-way for a at a0, which leaves a1 at time
(2+1).

• Two packets of Flow Y (y1,y2) enter the network
at times 2 and 3 respectively at a3. In Case 1, they
leave at times (3+1),(4+1) respectively, providing

14+1 is added to indicate transmission time at the last congestion
point. As mentioned before, we assume the propagation delay to the
egress and the transmission time at the egress are both 0.

15It is required that a1 must schedule a by at most time 3 in order for
it to exit the network at its target output time.

a lee-way for x at a0, which leaves a3 at time (2+
1). In Case 2, (y1,y2) exit at times (2+ 1),(3+ 1),
providing no lee-way for x at a0, which leaves a3 at
time (1+1).

Note that the interaction of a and x with Flow C and
Flow Z at their third congestion points respectively, is
what ensures that their eventual exit time remains the
same across the two cases inspite of the differences in
how a and x are scheduled in their previous two hops.

Thus, we can see that i(a), o(a), i(x), o(x) are the same
in both cases (also indicated in bold blue). Yet, Case 1
requires a to be scheduled before x at a0, else packets will
get delayed at a1, since it is required that a1 schedules
a at a time no more than 3 units if it is to meet its target
output time. Case 2 requires x to be scheduled before
a at a0, else packets will be delayed at a3, where it is
required to schedule x at a time no more than 2 units if
it is to meet its target output time. Since the attributes
(i(·),o(·), path(·)) for both a and x are exactly the same
in both cases, any deterministic UPS with Blackbox Ini-
tialization will produce the same order for the two packets
at a0, which contradicts the situation where we want a
before x in one case and x before a in another.

A.4 Deriving the Slack Equation
We now prove that for any packet p waiting at any node a
at time tnow, the remaining slack of the last bit of p is given
by slack(p,a, tnow) = o(p)� tnow � tmin(p,a,dest(p))+
T (p,a).

Let twait(p,a, tnow) denote the total time spent by p
on waiting behind other packets at the nodes in its path
from src(p) to a (including these two nodes) until time
tnow. We define twait(p,a, tnow), such that it excludes the
transmission times at previous nodes which gets captured
in tmin, but includes the local service time received by the
packet so far at a itself.

slack(p,a, tnow) =slack(p)� twait(p,a, tnow)+T (p,a) (1a)
=o(p)� i(p)� tmin(p,src(p),dest(p))
� twait(p,a, tnow)+T (p,a) (1b)

=o(p)� i(p)� (tmin(p,src(p),a)

+ tmin(p,a,dest(p))�T (p,a))

� twait(p,a, tnow)+T (p,a) (1c)
=o(p)� tmin(p,a,dest(p))+T (p,a)

� (i(p)+ tmin(p,src(p),a)

�T (p,a)+ twait(p,a, tnow)) (1d)
=o(p)� tmin(p,a,dest(p))+T (p,a)� tnow

(1e)

(1a) is straightforward from our definition of LSTF
and how the slack gets updated at every time slice.
T (p,a) is added since a needs to locally consider

16

the slack of the last bit of the packet in a store-and-
forward network. (1c) then uses the fact that for any a in
path(p), (tmin(p,src(p),dest(p)) = tmin(p,src(p),a) +
tmin(p,a,dest(p))�T (p,a)). T (p,a) is subtracted here
as it is accounted for twice when we break up the
equation for tmin(p,src(p),dest(p)). (1e) then follows
from the fact that the difference between tnow and
i(p) is equal to the total amount of time the packet
has spent in the network until time tnow i.e. (tnow �

i(p) = (tmin(p,src(p),a)� T (p,a)) + twait(p,a, tnow)).
We need to subtract T (p,a), since by our definition,
tmin(p,src(p),a) includes transmission time of the packet
at a .

A.5 LSTF and EDF Equivalence
In our network-wide extension of EDF scheduling, ev-
ery router computes a local deadline of a packet p based
on the static header value o(p) and additional state in-
formation about the minimum time the packet would
take to reach its destination from the router. More pre-
cisely, each router (say a), uses priority(p) = (o(p)�
tmin(p,a,dest(p))+T (p,a)) to do priority scheduling,
with o(p) being the value carried by the packet header, ini-
tialized at the ingress and remaining unchanged through-
out. EDF is equivalent to LSTF, in that for a given viable
schedule, the two produce exactly the same replay sched-
ule.
Proof: Consider any node a with non-empty queue at
any given time tnow. Let P(a, tnow) be the set of packets
waiting at a at time tnow. A packet will then be scheduled
by a as follows:
With EDF: Schedule packet ped f (a, tnow), where

ped f (a, tnow) = argmin
p2P(a,tnow)

(priority(p,a))

priority(p,a) =o(p)� tmin(p,a,dest(p))+T (p,a)

With LSTF: Schedule packet plst f (a, tnow), where

plst f (a, tnow) = argmin
p2P(a,tnow)

(slack(p,a, tnow))

slack(p,a, tnow) =o(p)� tmin(p,a,dest(p))+T (p,a)� tnow

The above expression for slack(p,a, tnow) has been de-
rived in §A.4. Thus, slack(p,a, tnow) = priority(p,a)�
tnow. Since tnow is the same for all packets, we can con-
clude that:

argmin
p2P(a,tnow)

(slack(p,a, tnow)) = argmin
p2P(a,tnow)

(priority(p,a))

=) plst f (a, tnow) = ped f (a, tnow)

Therefore, at any given point of time, all nodes with
non-empty queues will schedule the same packet with

SA! DA!

SC!

SB!

α1 (T = 1) !

DB!

DC!

α3 (T = 0.2) !

α2 (T = 0.5) !

L!

Node Packet(arrival time, scheduling time)
a1 a(0,0),b(0,1)
a2 b(2,2),c(2,2.5)
a3 c(3,3),a(3,3.2)

Figure 9: Example showing replay failure with simple priorities for a
schedule with two congestion points per packet. A packet represented by
p belongs to flow P, with ingress SP and egress DP, where P 2 {A,B,C}.
All packets are of the same size. For simplicity assume all links (except
L) have a propagation delay of zero. L has a propagation delay of 2.
All uncongested routers (white circles), ingresses and egresses have
a transmission time of zero. The three congestion points – a1,a2,a3
have transmission times of T = 1 unit, T = 0.5 units and T = 0.2 units
respectively.

both EDF and LSTF. 16 Hence, EDF and LSTF are equiv-
alent.

A.6 Simple Priorities Replay Failure for
Two Congestion Points Per Packet

In Figure 9, we present an example which shows that
simple priorities can fail in replay when there are two
congestion points per packet, no matter what informa-
tion is used to assign priorities. At a1, we need to
have priority(a) < priority(b), at a2 we need to have
priority(b) < priority(c) and at a3 we need to have
priority(c) < priority(a). This creates a priority cycle
where we need priority(a)< priority(b)< priority(c)<
priority(a), which can never be possible to achieve with
simple priorities.

We would also like to point out here that priority as-
signment for perfect replay in networks with smaller com-
plexity (with single congestion point per packet) requires
detailed knowledge about the topology and input load.
More precisely, if a packet p passes through conges-
tion point ap, then its priority needs to be assigned as
priority(p) = o(p)� tmin(p,ap,dest(p)) + T (p,ap).17

Hence, we need to know where the congestion point oc-
curs in a packet’s path, along with the final output times,

16Assuming ties are broken in the same way for both per-router EDF
and LSTF, such as by using FCFS.

17The proof that this would work for at most one congestion point
per packet follows from the fact that the only scheduling decision made
in a packet p’s path is at the single congestion point ap. This decision is
same as what will be made with per-router EDF (just for at most one
congestion point per packet), which we proved is equivalent to LSTF in
§A.5, which in turn always gives a perfect replay for one (or to be more
precise, at most two) congestion points per packet (as we shall prove in
§A.7).

17

to assign the priorities. In the absence of this knowledge,
priorities cannot replay even a single congestion point.

A.7 LSTF: Perfect Replay for at most Two
Congestion Points per Packet

A.7.1 Main Proof

We first prove that LSTF can replay any schedule with at
most two congestion points per packet. Note that we work
with bits in our proof, since we assume a pre-emptive
version of LSTF. Due to store-and-forward routers, the
remaining slack of a packet at a particular router is repre-
sented by the slack of the last bit of the packet (with all
other bits of the packet having the same slack as the last
bit).

In order for a replay failure to occur, there must be
at least one overdue packet, where a packet p is said
to be overdue if o0(p) > o(p). This implies that p must
have spent all of its slack while waiting behind other
packets at a queue in some node a at say time t, such that
slack(p,a, t) < 0. Obviously, a must be a congestion
point.
Necessary Condition for Replay Failure with LSTF:
If a packet p⇤ sees negative slack at a congestion point
a when its last bit exits a at time t⇤ in the replay (i.e.
slack(p⇤,a, t⇤) < 0), then (9p 2 pass(a) | i0(p,a)
t⇤ and i0(p,a)> o(p,a)). We prove this in §A.7.2.
Key Observation: When there are at most two conges-
tion points per packet, then no packet p can arrive at
any congestion point a in the replay, after its correspond-
ing scheduling time at a in the original schedule (.i.e.
i0(p,a)> o(p,a) is not possible). Therefore, by the nec-
essary condition above, no packet can see a negative slack
at any congestion point.
Proof by contradiction: Suppose that there exists a⇤,
which is the first congestion point (in time) that sees a
packet which arrives after its corresponding scheduling
time in the original schedule. Let p⇤ be this first packet
that arrives after the corresponding scheduling time in the
original schedule at a⇤ (i0(p⇤,a⇤) > o(p⇤,a⇤)). Since
there are at most two congestion points per packet, either
a⇤ is the first congestion point seen by p⇤ or the last (or
both).
(1) If a⇤ is the first congestion point seen by p⇤, then
clearly, i0(p⇤,a⇤) = i(p⇤,a⇤) o(p⇤,a⇤). This contra-
dicts our assumption that i0(p⇤,a⇤)> o(p⇤,a⇤).
(2) If a⇤ is not the first congestion point seen by p⇤, then
it is the last congestion point seen by p⇤. If i0(p⇤,a⇤)>
o(p⇤,a⇤), then it would imply that p⇤ saw a negative slack
before arriving at a⇤. Suppose p⇤ saw a negative slack at a
congestion point aprev, before arriving at a⇤ when its last
bit exited aprev at time tprev. Clearly, tprev < i0(p⇤,a⇤).
As per our necessary condition, this would imply that
there must be another packet p0, such that i0(p0,aprev)>

o(p0,aprev) and i0(p0,aprev) tprev < i0(p⇤,a⇤). This con-
tradicts our assumption that a⇤ is the first congestion
point (in time) that sees a packet which arrives after its
corresponding scheduling time in the original schedule.

Hence, no congestion point can see a packet that arrives
after its corresponding scheduling time in the original
schedule (and therefore no packet can get overdue) when
there are at most two congestion points per packet.

We finally present, in §A.7.3, an example where LSTF
replay failure occurs with no more than three congestion
points per packet, thus completing our proof that LSTF
can replay any schedule with at most two congestion
points per flow and can fail beyond that.

A.7.2 Proof for Necessary Condition for Replay
Failure with LSTF

We start with the following observation that we use in our
proof.
Observation 1: If all bits of a packet p exit a router a
by time o(p,a)+T (p,a), then p cannot see a negative
slack at a .
Proof for Observation 1: As shown previously in §A.4,

slack(p,a, t) = o(p)� tmin(p,a,dest(p))+T (p,a)� t

Therefore,

slack(p,a,o(p,a)+T (p,a))

= o(p)� tmin(p,a,dest(p))+T (p,a)� (o(p,a)+T (p,a))

But, o(p) = o(p,a)+ tmin(p,a,dest(p))+wait(p,a,dest(p))
=) slack(p,a,o(p,a)+T (p,a)) = wait(p,a,dest(p))
=) slack(p,a,o(p,a)+T (p,a))� 0

where wait(p,a,dest(p)) is the time spent by p in
waiting behind other packets in the original schedule,
after it left a , which is clearly non-negative.

We now move to the main proof for the necessary
condition.

Necessary Condition for Replay Failure: If a packet
p⇤ sees negative slack at a congestion point a when its last
bit exits a at time t⇤ in the replay (i.e. slack(p⇤,a, t⇤)<
0), then (9p 2 pass(a) | i0(p,a) t⇤ and i0(p,a) >
o(p,a)).

Proof by Contradiction: Suppose this is not the case
.i.e. there exists p⇤ whose last bit exits a at time t⇤, such
that slack(p⇤,a, t⇤) < 0 and (8p 2 pass(a) | i0(p,a) >
t⇤ or i0(p,a) o(p,a)). In other words, if i0(p,a) t⇤,
then i0(p,a) o(p,a). We can show that if this holds,
then p⇤ cannot see a negative slack at a , thus violating
our assumption.

We take the set of all bits which exit a at or before
time t⇤ in the LSTF replay schedule. We denote this set as
Sbits(a, t⇤). Since all of these bits (and the corresponding

18

packets) must arrive at or before time t⇤, as per our as-
sumption, (8b2 Sbits(a, t⇤) | i0(pb,a) o(pb,a)), where
pb is denoted as the packet to which bit b belongs. Note
that Sbits(a, t⇤) also includes all bits of p⇤ as per our defi-
nition of Sbits(a, t⇤).

We now prove that no bit in Sbits(a, t⇤) can see a neg-
ative slack (and therefore p⇤ cannot see a negative slack
at a), leading to a contradiction. The proof comprises of
two steps:
Step 1: Using the same input arrival times of each packet
at a as in the replay schedule, we first construct a feasi-
ble schedule at a up until time t⇤, denoted by FS(a, t⇤),
where by feasibility we mean that no bit in Sbits(a, t⇤)
sees a negative slack.
Step 2: We then do an iterative transformation of
FS(a, t⇤) such that the bits in Sbits(a, t⇤) are scheduled
in the order of their least remaining slack times. This re-
produces the LSTF replay schedule from which FS(a, t⇤)
was constructed in the first place. However, while doing
the transformation we show how the schedule remains
feasible at every iteration, proving that the LSTF schedule
finally obtained is also feasible up until time t⇤. In other
words, no packet sees a negative slack at a in the resulting
LSTF replay schedule up until time t⇤, contradicting our
assumption that p⇤ sees a negative slack when it exits a
at time t⇤ in the replay.
We now discuss these two steps in details.
Step 1: Construct a feasible schedule at a up until time
t⇤ (denoted as FS(a, t⇤)) for which no bit in Sbits(a, t⇤)
sees a negative slack.
(i) Algorithm for constructing FS(a, t⇤): Use priorities to
schedule each bit in Sbits(a, t⇤), where 8b 2 Sbits(a, t⇤) |
priority(b) = o(pb,a). (Note that since both FS(a, t⇤)
and LSTF are work-conserving, FS(a, t⇤) is just a shuffle
of the LSTF schedule up until t⇤. The set of time slices
at which a bit is scheduled in FS(a, t⇤) and in the LSTF
schedule up until t⇤ remains the same, but which bit gets
scheduled at a given time slice is different.)
(ii) In FS(a, t⇤), all bits b in Sbits(a, t⇤) exit a by time
o(pb,a)+T (pb,a).
Proof by contradiction: Suppose the statement is not
true and consider the first bit b⇤ that exits after time
(o(pb⇤ ,a) + T (pb⇤ ,a)). We term this as b⇤ got late at
a due to FS(a, t⇤). Remember that, as per our assump-
tion, (8b2 Sbits(a, t⇤) | i0(pb,a) o(pb,a)). Thus, given
that all bits of pb⇤ arrive at or before time o(pb⇤ ,a),
the only reason why the delay can happen in our work-
conserving FS(a, t⇤) is if some other higher priority bits
were being scheduled after time o(pb⇤ ,a), resulting in
pb⇤ not being able to complete its transmission by time
(o(pb⇤ ,a)+T (pb⇤ ,a)). However, as per our priority as-
signment algorithm, any bit b0 having a higher priority
than b⇤ at a must have been scheduled before the first bit
of pb⇤ in the non-preemptible original schedule, imply-

ing that (o(pb0 ,a)+ T (pb0 ,a)) o(pb⇤ ,a). Therefore,
a bit b0 being scheduled after time o(pb⇤ ,a), implies it
being scheduled after time (o(pb0 ,a)+T (pb0 ,a)). This
contradicts our assumption that b⇤ is the first bit to get late
at a due to FS(a, t⇤). Therefore, all bits b in Sbits(a, t⇤)
exit a by time o(pb,a)+T (pb,a) as per the schedule
FS(a, t⇤),.
(iii) Since all bits in Sbits(a, t⇤) exit by time o(pb,a)+
T (pb,a) due to FS(a, t⇤), no bit in Sbits(a, t⇤) sees a
negative slack at a (from Observation 1).
Step 2: Transform FS(a, t⇤) into a feasible LSTF sched-
ule for the single switch a up until time t⇤.

(Note: The following proof is inspired from the stan-
dard LSTF optimality proof that shows that for a single
switch, any feasible schedule can be transformed to an
LSTF schedule).

Let f s(b,a, t⇤) be the scheduling time slice for bit b in
FS(a, t⇤). The transformation to LSTF is carried out by
the following pseudocode:

1: while true do
2: Find two bits, b1 and b2, such that:

(f s(b1,a, t⇤)< f s(b2,a, t⇤)) and
(slack(b2,a, f s(b1,a, t⇤))
< slack(b1,a, f s(b1,a, t⇤))) and
(i0(b2,a, t⇤) f s(b1,a, t⇤))

3: if no such b1 and b2 exist then
4: FS(a, t⇤) is an LSTF schedule
5: break
6: else
7: swap(f s(b1,a, t⇤), f s(b2,a, t⇤)) . swap the

scheduling times of the two bits. 18

8: end if
9: end while

10: Shuffle the scheduling time of the bits belonging to
the same packet, to ensure that they are in order.

11: Shuffle the scheduling time of the same-slack bits
such that they are in FIFO order

Line 7 above will not cause b1 to have a nega-
tive slack, when it gets scheduled at f s(b2,a, t⇤) in-
stead of f s(b1,a, t⇤). This is because the difference in
slack(b2,a, t) and slack(b1,a, t) is independent of t and
so:

slack(b2,a, f s(b1,a, t⇤))< slack(b1,a, f s(b1,a, t⇤))
=) slack(b2,a, f s(b2,a, t⇤))< slack(b1,a, f s(b2,a, t⇤))

Since FS(a, t⇤) is feasible before the swap,
slack(b2,a, f s(b2,a, t⇤)) � 0. Therefore,
slack(b1,a, f s(b2,a, t⇤))> 0 and the resulting FS(a, t⇤)
after the swap remains feasible.

Lines 10 and 11 will also not result in any bit getting a
negative slack, because all bits participating in the shuffle

18Note that we are working with bits here for easy expressibility. In
practice, such a swap is possible under the preemptive LSTF model.

19

SB!

SA! DA!

DB!

SC!

DC!

SD!

DD!

α0! α1! α2!

Original Schedule
Node Packet(arrival time, scheduling time)

a0 a(0,0),b(0,1)
a1 a(1,1),c1(2,2),c2(3,3)
a2 d1(2,2),d2(3,3),a(2,4)

LSTF Replay
Node Packet(arrival time, scheduling time)

a0 b(0,0),a(0,1)
a1 c1(2,2),a(2,3), c2(3,4)
a2 d1(2,2),d2(3,3),a(4,4)

Figure 10: Example showing replay failure with LSTF when there is a
flow with three congestion points. A packet represented by p belongs
to flow P, with ingress SP and egress DP, where P 2 {A,B,C,D}. For
simplicity assume all links have a propagation delay of zero. All uncon-
gested routers (white), ingresses and egresses have a transmission time
of zero. The three congestion points (shaded grey) have transmission
times of T = 1 unit

have the same slack at any fixed point of time in a .

Therefore, no bit in Sbits(a, t⇤) has a negative slack at
a after any iteration.

Since no bit in Sbits(a, t⇤) has a negative slack at a in
the swapped LSTF schedule, it contradicts our statement
that p⇤ sees a negative slack when its last bit exits a at
time t⇤. Hence proved that if a packet p⇤ sees a negative
slack at congestion point a when its last bit exits a at
time t⇤ in the replay, then there must be at least one packet
that arrives at a in the replay at or before time t⇤ and later
than the time at which it is scheduled by a in the original
schedule.

A.7.3 Replay Failure Example with LSTF

In Figure 10, we present an example where a flow passes
through three congestion points and a replay failure occurs
with LSTF. When packet a arrives at a0, it has a slack of
2 (since it waits behind d1 and d2 at a2), while at the same
time, packet b has a slack of 1 (since it waits behind a at
a0). As a result, b gets scheduled before a in the LSTF
replay. a therefore arrives at a1 with slack 1 at time 2.
c1 with a zero slack is prioritized over a. This reduces
a’s slack to zero at time 3, when c2 is also present at a1
with zero slack. Scheduling a before c2, will result in c2
being overdue (as shown). Likewise, scheduling c2 before
a would have resulted in a getting overdue. Note that in
this failure case, a arrives at a1 at time 2, which is greater
than o(a,a1) = 1.

Figure 11: 20 flows share a single bottleneck link of 1Gbps and a 21st
flow is added after 5ms. The graph shows the rate allocations for an old
flow and the new flow with Fair Queuing and for LSTF with varying
rest .

B Understanding how LSTF provides long-
term fairness

The reason behind why any slack assignment with rest <
r⇤ leads to convergence to fairness is quite straight-
forward and is explained by the control experiment shown
in Figure 11. 20 long-lived TCP flows share a single bot-
tleneck link of 1Gbps (giving a fair share rate of 50Mbps)
and a 21st flow is added after 5ms. Since the first 20 flows
have started early, the queue at the bottleneck link already
contains packets belonging to these flows.

When rest = 50Mbps, the actual queuing delay expe-
rienced by a packet is almost equal to the slack value
assigned to it. Therefore, at any given point of time, the
first packet of each flow present in the queue will have
a slack value which is approximately equal to zero. The
next packet of each flow will have a higher slack value
(around 1500bytes/50Mbps = 0.24ms). By the time the
corresponding first packets of every flow in the queue
have been transmitted, the slack values of the next packet
would also have been reduced to zero and so on. It there-
fore produces a round-robin pattern for scheduling pack-
ets across flows, as is done by FQ. Therefore, when the
21st flow starts at 5ms, with the first packet coming in
with zero slack, the next one with 0.24ms slack and so on,
it immediately starts following the round-robin pattern as
well.

However, when rest is smaller than 50Mbps, then the
packets of the old flows already present in the queue have
a higher slack value than what they actually experience in
the network. The first packet of every flow in the queue
therefore has a slack which is more than 0 when the 21st
flow comes in at 5ms. The earlier packets of the new flow
therefore get precendence over any of the existing packets
of the old flows, resulting in the spike in the rate allocated
to the new flow as shown in Figure 11. Nonetheless, with
the slack of every newly arriving packet of the 21st flow
being higher than the previous one and with the slack of
the already queued up packet decreasing with time, the

20

slack value of the first packet in the queue for new flow
and the old flows soon catch up with each other and the
schedule starts following a round robin pattern again. The
closer rest is to the fair-share rate, the sooner the slack
values of the old flows and the new flow catch up with
each other. The time that a packet ends up waiting in the
queue is upper-bounded by the time it would have waited,
had all the flows arrived at the same time and were being

serviced at their fair share rate.
One can see how the above logic can be extended for

achieving weighted fairness. Moreover, when a packet
sees multiple bottlenecks, the slack update (subtraction of
the duration for which the packet waits) at the first bottle-
neck ensures that the next bottleneck takes into account
the rate-limiting happening at the first one and the packets
are given precedence accordingly.

21

	Introduction
	Theory: Replaying Schedules
	Definitions and Overview
	Theoretical Results
	Empirical Results

	Practical: Achieving Various Objectives
	Mean Flow Completion Time
	Tail Packet Delays
	Fairness
	Multi-tenancy

	Incorporating Network Feedback
	LSTF Implementation
	Related Work
	Conclusion
	Proofs: Analytical Replayability Results
	Notations
	Existence of a UPS under Omniscient Header Initialization
	Nonexistence of a UPS under black-box initialization
	Deriving the Slack Equation
	LSTF and EDF Equivalence
	Simple Priorities Replay Failure for Two Congestion Points Per Packet
	LSTF: Perfect Replay for at most Two Congestion Points per Packet
	Main Proof
	Proof for Necessary Condition for Replay Failure with LSTF
	Replay Failure Example with LSTF

	Understanding how LSTF provides long-term fairness

