
Sincronia: Near-Optimal Network Design for Coflows
Saksham Agarwal

∗

Cornell University

Shijin Rajakrishnan
∗

Cornell University

Akshay Narayan

MIT

Rachit Agarwal

Cornell University

David Shmoys

Cornell University

Amin Vahdat

Google

ABSTRACT
We present Sincronia, a near-optimal network design for

coflows that can be implemented on top on any transport

layer (for flows) that supports priority scheduling. Sincronia

achieves this using a key technical result — we show that

given a “right” ordering of coflows, any per-flow rate alloca-

tion mechanism achieves average coflow completion time

within 4× of the optimal as long as (co)flows are prioritized

with respect to the ordering.

Sincronia uses a simple greedy mechanism to periodically

order all unfinished coflows; each host sets priorities for its

flows using corresponding coflow order and offloads the flow

scheduling and rate allocation to the underlying priority-

enabled transport layer. We evaluate Sincronia over a real

testbed comprising 16-servers and commodity switches, and

using simulations across a variety of workloads. Evaluation

results suggest that Sincronia not only admits a practical,

near-optimal design but also improves upon state-of-the-art

network designs for coflows (sometimes by as much as 8×).

CCS CONCEPTS
• Networks → Network protocol design; • Theory of
computation → Scheduling algorithms;

KEYWORDS
Coflow, Datacenter Networks, Approximation Algorithms

∗
The first two authors contributed equally to the paper.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary
© 2018 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-5567-4/18/08. . . $15.00

https://doi.org/10.1145/3230543.3230569

ACM Reference Format:
Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit

Agarwal, David Shmoys, and Amin Vahdat. 2018. Sincronia: Near-

Optimal Network Design for Coflows. In SIGCOMM ’18: ACM SIG-
COMM 2018 Conference, August 20–25, 2018, Budapest, Hungary.
ACM, NewYork, NY, USA, 14 pages. https://doi.org/10.1145/
3230543.3230569

1 INTRODUCTION
Traditionally, networks have used the abstraction of a “flow”,

that captures a sequence of packets between a single source

and a single destination. This abstraction has been a main-

stay for decades and for a good reason — network designs

were optimized for latency and/or throughput for a point-

to-point connection, precisely the performance metrics im-

portant to traditional applications (e.g., file transfers, web ac-
cess, etc.). However, distributed applications running across

datacenter networks use programming models (e.g., bulk
synchronous programming and partition-aggregate model)

that require optimizing performance for a collection of flows

rather than individual flows. The network still optimizes the

performance of individual flows, leading to a fundamental

mismatch between performance objectives of applications

and the optimization objectives of network designs.

The coflow abstraction [7] mitigates this mismatch, allow-

ing distributed applications to more precisely express their

performance objectives to the network fabric. For instance,

many distributed services with stringent performance con-

straints must essentially block until receiving all or almost

all responses from hundreds or even thousands of remote

servers (§2). Such services can specify a collection of flows

as a coflow. The network fabric now optimizes for average

Coflow Completion Time (CCT) [7, 10, 12], where the CCT

of a coflow is defined as the time when some percentage,

perhaps 100%, of flows in the coflow finish. Several recent

evaluations show that optimizing for average CCT can sig-

nificantly improve application-level performance [7, 10, 12].

There has been tremendous recent effort on network de-

signs for coflows, both in networking [7–10, 12] and in the-

ory community [3, 19, 22]. However, prior designs require

a centralized coordinator to perform complex per-flow rate

allocations, with rate allocated to a flow being dependent

on the rate allocated to other flows in the network. Such

https://doi.org/10.1145/3230543.3230569
https://doi.org/10.1145/3230543.3230569
https://doi.org/10.1145/3230543.3230569

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary S. Agarwal et al.

centralized inter-dependent per-flow rate allocation make it

hard to realize these designs in practice for several reasons.

First, per-flow rate allocation naturally requires knowledge

about location of congestion in the network and paths taken

by each (co)flow, making it hard to use these designs when

congestion is in the fabric core and/or changes dynamically.

Second, since rates allocated to flows are correlated, arrival

or departure of even one coflow may result in reallocation of

rate for each and every flow in the network. Such realloca-

tion is impractical in datacenters where thousands of coflows

may arrive each second. As a result, a practical near-optimal

network design for coflows still remains elusive.

This paper presents Sincronia, a new datacenter network

design for coflows that achieves near-optimal average CCT

without any explicit per-flow rate allocation mechanism. The

high-level design of Sincronia can be summarized as:

• Time is divided into epochs;

• In each epoch, a subset of unfinished coflows are selected

and “ordered” using a simple greedy algorithm;

• Each host independently sets a priority for its flows (based

on the corresponding coflow’s ordering), and offloads the

flow to underlying priority-enabled transport mechanism;

• Coflows that arrive between epoch boundaries are greedily

scheduled for work conservation.

Sincronia’s minimalistic design is based on a key technical

result — with a “right” ordering of coflows, it is possible to

achieve average CCT within 4× of the optimal
1
as long as

(co)flow scheduling is “order-preserving” — if coflow C is

ordered higher than coflow C ′, flows/packets in C must be

prioritized over those inC ′. From a practical perspective, this

result is interesting because it shows that as long as (co)flow

scheduling is order-preserving, any per-flow rate allocation

mechanism results in average CCT within 4× of the optimal.

Using this result, Sincronia admits a practical, near-optimal

network design for coflows (§3) — a simple greedy algorithm

periodically orders the set of unfinished coflows; each host,

without any explicit coordination with other hosts, sets prior-

ities for its flows based on corresponding coflow’s ordering,

and offloads scheduling of and rate allocation to individual

flows to the underlying priority-enabled transport layer.

Sincronia thus overcomes the aforementioned practical

challenges in existing network designs for coflows by avoid-

ing per-flow rate allocation and by being agnostic to the

underlying transport layer. First, by avoiding per-flow rate

1
Under the standard assumption that the fabric core can sustain 100%

throughput. That is, only the ingress and the egress access links are po-

tential bottlenecks. This is the same assumption made in the big switch

model for traditional abstraction of flows [4, 13, 15]. For the case when the

fabric core cannot sustain 100% throughput, no approximation algorithm

is known even for the traditional abstraction of flows. While we use this

assumption for our theoretical bounds, our implementation makes no such

assumption and adapts well to in-network congestion.

allocation, Sincronia design is independent of underlying

network topology, location of congestion in the fabric, and

paths taken by each (co)flow. This also allows Sincronia to

transparently respond to network failures. Second, coflow ar-

rivals and departures do not require explicit rate reallocation

for existing flows, leading to a much more scalable design.

Third, Sincronia design using simple priority mechanisms

enables coexistence of flows and coflows (§4), supporting

backward compatibility. Finally, by being transport-agnostic,

Sincronia admits efficient implementation on top of any ex-

isting transport mechanism that supports priority scheduling

including TCP (using DiffServ [6] for priority scheduling),

pHost [13] and pFabric [4]. We discuss implementation of

Sincronia on top of several transport mechanisms in §4.3.

We have implemented Sincronia on top of TCP, with Diff-

Serv [6] for priority scheduling. Our implementation is work

conserving, efficiently handles online arrival of coflows, and

allows coexistence of flows and coflows. We evaluate Sincro-

nia implementation on a 16-server testbed interconnected

with a FatTree topology comprising 20 commodity switches.

We have also incorporated Sincronia into existing coflow

simulators; we use these to perform sensitivity analysis of

Sincronia performance against variety of workloads, number

of coflows, network load, transport mechanisms, etc. Our

implementation and simulation results show that Sincronia

not only provides near-optimal average CCT but also out-

performs state-of-the-art network designs for coflows across

all evaluated workloads (sometimes by as much as 8×).

2 SINCRONIA OVERVIEW
In this section, we briefly recall the coflow abstraction (§2.1)

and formally define our optimization objective for network

design for coflows (§2.2). We also review some of the known

results in coflow scheduling in §2.2.

2.1 The Coflow Abstraction
Existing distributed programming frameworks [7, 9, 11, 17,

20, 21, 26, 27] often have a communication stage that is struc-

tured and takes place between successive computation stages.

In these frameworks, execution of a task (or even an entire

computation stage) cannot begin until all flows in the pre-

ceding communication stage have finished. A coflow [7, 10]

is a collection of such flows, with a shared performance goal

(e.g., minimizing the completion time of the last flow in a

coflow). Figure 1 shows an example.

We assume that coflows are defined such that flows within

a coflow are independent; that is, the input of a flow does

not depend on the output of another flow within that coflow.

Similar to most existing designs [10, 12, 14, 19], we focus

on a clairvoyant design that assumes information about a

coflow (set of flows, and corresponding sources, destinations

and sizes) is known at coflow’s arrival time but no earlier.

Sincronia: Near-Optimal Network Design for Coflows SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

DC Fabric
4 8

2 + ε 1
1

3 7
2 + ε

1

1

2 62 + ε
1

1

1 5
2 + ε

1
1

Ingress Ports Egress Ports

Figure 1: An instance of a coflow scheduling problem, used
as a running example in the paper. The datacenter has 4 ingress
and egress ports, with each ingress port having a “virtual output

queue” for each egress port (see §2.2 for detailed model descrip-

tion). The example has 5 coflows. Coflow C1 has eight flows, with
each ingress port sending unit amount of data to two egress ports;

coflows C2, C3, C4 and C5 have one flow each sending 2+ ε amount

of data to one of the egress ports (the ε amount is only for breaking

ties consistently). Coflow C2, C3, C4 and C5 being single flow coflow

is only for simplicity; the ε amount of flow could be sent to any

egress port without changing the results in §3.

2.2 Problem Statement and Prior Results
We now describe the network model used for our theoretical

bounds, and the network performance objective.

Conceptual Model (for theoretical bounds). Similar to

near-optimal network designs for traditional abstraction of

network flows [4, 13, 15] and coflows [3, 10, 12, 14, 19, 22],

we will abstract out the datacenter network fabric as one big

switch that interconnects the servers. In such a big switch

model, the ingress queues correspond to the NICs and the

egress queues to the last-hop TOR switches. The model as-

sumes that the fabric core can sustain 100% throughput and

only the ingress and egress queues are potential congestion

points. Under this model, each ingress port has flows from

one or more coflows to various egress ports (see Figure 1).

For ease of exposition, we organize the flows in virtual out-

put queues at the ingress ports. We use this abstraction to

simplify our theoretical analysis and algorithmic description,

but we do not enforce it in our design and experiments.

Performance Objective. Formally, we assume that the net-

work is a big switch comprisingm ingress ports {1, 2, . . . ,m}
andm egress ports {m+1,m+2, . . . , 2m}. Unless mentioned

otherwise, all ports have the same bandwidth. We are given

a collection of n coflows C = {1, 2, . . . ,n}, indexed using c .
Each coflow c may be assigned a weightwc (default weight

is 1), has an arrival time ac and comprises a set of flows Fc .

Table 1: Notation used in the paper.

wc weight of coflow c (default = 1)

di jc data sent by coflow c

between ingress port i & egress port j

d
p
c Total data sent by coflow c at port p

=

{ ∑
i d

pi
c∑

j d
jp
c

if p is an ingress port

if p is an egress port

The source, the destination and the size for each flow in the

coflow is known at time ac . The total amount of data sent by

coflow c between ingress port i and egress port j is denoted

by di jc (see Table 1 for notation).

The completion time of a coflow (CCTc) is the difference

between the time when the last of its flows finishes and its

arrival time ac . The average CCT for C is the average of

individual completion times of all coflows

∑
c CCTc/n. The

weighted average CCT is defined as (
∑
c wc×CCTc)/n. Given

this formulation, prior work has established that (detailed

discussion of related work in §6):

NP-Hardness [10]. Even when all coflows arrive at time 0

and their sizes are known in advance, the problem ofminimiz-

ing average CCT is NP-hard (via reduction from concurrent

open-shop scheduling problem [23]). Thus, the best we can

hope for is an approximation algorithm.

Lower Bounds [5, 24]. Even under the big switch model,

the only known lower bound is a natural generalization of

the lower bound for flows — under a complexity-theoretic

assumption somewhat stronger than P,NP, it is impossible

to minimize (weighted) average CCT within a factor of 2 − ε .

Necessity for Coordination [8]. There exists an instance

of coflow scheduling problem, where a scheduling algorithm

that does not use any coordination will achieve average CCT

Ω(
√
n) of the optimal. Thus, at least some coordination is

necessary to achieve any meaningful approximation.

3 SINCRONIA DESIGN
In this section, we present the core of Sincronia design — an

offline algorithm for scheduling coflows for the case when all

coflows arrive at time 0; next section describes how Sincro-

nia incorporates this algorithm into an end-to-end network

design that achieves near-optimal performance while sched-

uling coflows in an online and work conserving manner.

Our offline algorithm has two components. The first com-

ponent is a combinatorial primal-dual greedy algorithm,

Bottleneck-Select-Scale-Iterate, for ordering coflows (§3.1);

the second component shows that any per-flow rate alloca-

tion mechanism that is work conserving, preemptive and

schedules flows in order of corresponding coflow ordering

achieves average CCT within 4× of the optimal (§3.2).

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary S. Agarwal et al.

t = 1 t = 2 t = 3 t = 4

average CCT = (2 + 4 × 4)/5 = 3.6

(a) Varys

t = 1 t = 2 t = 3 t = 4

average CCT = (3 × 2 + 3 + 4)/5 = 2.6

(b) Sincronia

t = 1 t = 2 t = 3 t = 4

average CCT = (4 × 2 + 4))/5 = 2.4

(c) Optimal

Figure 2: Comparison of Sincronia against Varys and Optimal for the example of Figure 1; corresponding average CCTs are
shown for ε = 0. Each figure shows a “matching” between ports at each time slot; a link indicates data being sent between ports in that time

slot, with multiple links at a port indicating port bandwidth being equally allocated to each of the links in that time slot. For instance, (a)

shows that Varys sends data from first ingress port to the first two egress ports in first two time steps (with each outgoing link getting equal

rate allocation), and from first ingress port to first egress port in third and fourth time steps (with the outgoing link getting full rate). The

orderings produced by Varys and Sincronia are {C1, C2, C3, C4, C5} and {C2, C3, C4, C1, C5}, respectively; the optimal schedule

requires ordering {C2, C3, C4, C5, C1} (modulo permutations within coflows C2, C3, C4 and C5).

Algorithm 1 Bottleneck-Select-Scale-Iterate Algorithm

C = [n] ▷ Initial set of unscheduled coflows

procedure Order-coflows(J)

for k = n to 1 do ▷ Note ordering is from last to first

▷ Find the most bottlenecked port
b ← argmaxp

∑
c ∈C d

p
c

▷ Select weighted largest job to schedule last
σ (k) ← argminc ∈C(wc/d

b
c)

▷ Scale the weights

wc ← wc −wσ (k) ×
dbc

dbσ (k)
∀c ∈ C \ {σ (k)}

▷ Iterate on updated set of unscheduled jobs
C← C\{σ (k)}

return σ ▷ Output the coflow ordering

3.1 Coflow Ordering
Sincronia uses a primal-dual based greedy algorithm —

Bottleneck-Select-Scale-Iterate (BSSI) — for ordering coflows

(Algorithm 1). BSSI generalizes a near-optimal flow schedul-

ing mechanism, “Shortest Remaining Processing Time” first

(SRPT-first) [4], to the case of coflows. The main challenge in

achieving such a generalization is to capture how scheduling

a coflow impacts the completion time of other coflows in

the network. BSSI achieves this using a novel weight scaling

step that is derived based on the primal-dual framework.

BSSI operates in four steps — bottleneck, select, scale, iter-

ate. In its first two steps, BSSI generalizes SRPT-first policy

for flows to the case of coflows. Intuitively, it does so using

an alternative view of SRPT — Largest Remaining Processing

Time last (LRPT-last). In particular, the first step finds the

most bottlenecked ingress or egress port, sayb, defined as the
port that sends or receives the most amount of data across all

Table 2: Execution of Algorithm 1 on Figure 1 example. In
this example, we break ties in favor of ingress port with the

largest index. The final ordering produced by the algorithm is

{C2,C3,C4,C1,C5}.

k b σ (k) {w1,w2,w3,w4,w5} C

− − − {1, 1, 1, 1, 1} {1, 2, 3, 4, 5}

5 4 C5 {ε/(2 + ε), 1, 1, 1, 0} {1, 2, 3, 4}

4 3 C1 {0, 1, 1, 1 − ε/2, 0} {2, 3, 4}

3 3 C4 {0, 1, 1, 0, 0} {2, 3}

2 2 C3 {0, 1, 0, 0, 0} {2}

1 1 C2 {0, 0, 0, 0, 0} ∅

unordered coflows; the second step then implements LRPT-

last: it chooses the coflow with largest remaining weighted

processing time at port b and places this coflow the last

among all unordered coflows. The third step in BSSI scales

the weights of all unordered coflows to capture how ordering

the coflow chosen in the second step impacts the completion

time of all remaining coflows. The final step is to simply

iterate on the set of unordered flows until all coflows are

ordered.

An Example. Table 2 shows execution of Algorithm 1 on

example of Figure 1. In first iteration (k = 5), the algorithm

chooses bottleneck portb=4 and LRPT coflow σ (5) = C5. The
algorithm then scales the weights — in this example, it ends

up reducing the weight of coflow C1 while keeping other

weights unchanged. This reduction in weight allows C1 to be
selected as the LRPT coflow in next iteration (k = 4). Figure 2

compares the performance of Sincronia against Varys [10]

and optimal for this example. It is not very hard to show that

that the average CCT of Varys can be made arbitrarily worse

compared to Sincronia (and optimal) by adding more ports

and corresponding coflows in the above example [2].

Sincronia: Near-Optimal Network Design for Coflows SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

t = 1, 2 t = 3, 4

average CCT = 3.6

(a) Varys + MADD

t = 1 t = 2 t = 3, 4

average CCT = 3.6

(b) Varys + Greedy

t = 1, 2 t = 3, 4

average CCT = 2.4

(c) Optimal + MADD

t = 1, 2 t = 3 t = 4

average CCT = 2.4

(d) Optimal + Greedy

Figure 3: Intuition behind our results in §3.2 using the example of Figure 1.We use two per-flow rate allocation mechanisms in this

example. The first one is weighted fair sharing proposed in Varys [10] (in this example, it simply allocates equal rates to all flows at any

ingress or egress port). The second one is a greedy rate allocation mechanism that simply chooses one flow from the currently highest

ordered coflow at each port, and assigns it the full rate (see Algorithm 2 in §4). The example shows that irrespective of the per-flow rate

allocation mechanism used, both Varys and optimal achieve the same average CCT. We do not show Sincronia in this example because

MADD ends up allocating non-equal rates to flows in the first coflow and it is hard to depict it pictorially.

3.2 Per-Flow Rate Allocation is Irrelevant
As discussed earlier, prior network designs for coflows re-

quire a centralized coordinator to perform complex per-flow

rate allocation, where rate allocated to a flow is dependent

on rates allocated to other flows in the network; for instance,

Varys [10] allocates rates to flows in proportion to their

sizes. Such centralized inter-dependent per-flow rate alloca-

tions make it hard to realize these designs in practice since

changes in location of congestion in the network, transient

failures, and arrival or departure of even one coflow may

result in reallocation of rate for each and every flow in the

network. Such reallocations are impractical in large datacen-

ters where thousands of coflows may arrive each second. We

discuss how Sincronia completely offloads the rate alloca-

tion to and scheduling of individual flows to the underlying

priority-enabled transport layer. We start with an intuitive

discussion, followed by a more formal statement of the result.

High-level idea. Given a coflow ordering produced by our

BSSI algorithm, we show that it is sufficient for Sincronia to

schedule flows in an order-preserving manner; that is, at any

time, a flow from coflow C is blocked if and only if either its

ingress port or its egress port is busy serving a flow from a

different coflow C’ that is ordered before C. The reason this

is sufficient is that once a strict ordering between coflows

has been established, the proof simply requires finishing

each coflow as soon as possible while following the ordering.

The main insight is that if there are multiple flows within a

coflow starting at an ingress port or ending at an egress port,

sharing the link bandwidth does not improve the completion

time of this coflow. For instance, in example of Figure 2(a),

if we would have given full rate to one flow at each ingress

port in the first time step and to the other flow in the other

time step, the completion time of coflow C1 would not have

changed (and so, the same is true for the overall average

CCT). Figure 3 demonstrates the irrelevance of per-flow rate

allocation for both Varys and the optimal.

Formal statement of results. We now formally state the

result regarding the irrelevance of per-flow rate allocation.

The detailed proofs for these results are in the technical

report [2]; we give a high-level idea of the proofs in §7.

Definition 1. Let σ : [n] 7→ [n] be an ordering of coflows.
A flow scheduling mechanism M is said to be σ -order-
preserving ifM blocks a flow f from coflow σ (k) if and only
if either its ingress port or its egress port is busy serving a flow
from a coflow σ (i), i < k (preemption is allowed).

Theorem 1. Consider a set of coflows C, all of which arrive
at time 0. Let O be the ordering of coflows produced by the
Bottleneck-Select-Scale-Iterate algorithm for C and consider
any work-conserving, pre-emptive and O-order-preserving
flow rate allocation scheme used to schedule C in Sincronia.
Then, under the big switch model, Sincronia achieves aver-
age coflow completion time within 4× of the optimal average
coflow completion time for C.

It turns out that if work conservation is desired, preemption

is necessary to achieve bounded average CCT:

Claim 1. There exists a set of coflows C for which the aver-
age coflow completion time using any work-conserving, non-
preemptive flow rate allocation scheme can be arbitrarily worse
than the optimal average coflow completion time for C.

Definition 2. Let σ be an ordering of coflows. For any coflow
σ (k), let the ordered load for coflow σ (k) on port p with re-
spect to σ be:

∑
i≤k d

p
σ (i). Furthermore, let p̂(k) be the port with

highest ordered load for σ (k). That is

p̂(k) ← argmax

p

k∑
i=1

d
p
σ (i)

Definition 3. Let σ be an ordering of coflows. LetA(σ) be the
class of flow scheduling algorithms for which the completion
time of each coflow σ (k) is no earlier than its ordered load at
port p̂(k) divided by the bandwidth of port p̂(k).

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary S. Agarwal et al.

Set Priorities

Unordered
Coflows

Ordered
Coflows

Unordered

Set Priorities
Coflows

Ordered
Coflows

Transport Layer Transport Layer

Central Coordinator
Running BSSI

Unordered Ordered
Coflows Coflows

Sincronia Daemon Sincronia Daemon

App App

Figure 4: Sincronia end-to-end architecture. See §4.1 for de-
scription of various components.

A(σ) is indeed a large class of flow scheduling mechanisms

— the only condition is that the last bit of coflow σ (k) is sent
no earlier than the ordered load at port p̂(k). Let OPT(A(σ))
be the optimal average coflow completion time for the set of

coflows across all flow scheduling mechanisms in A(σ).

Theorem 2. Suppose all coflows arrive at time 0 and let
σ be an ordering of coflows. Then any flow rate allocation
scheme that is work-conserving, is pre-emptive and is σ -order-
preserving achieves average coflow completion time within 2×

of OPT(A(σ)). This bound is tight.

4 SINCRONIA IMPLEMENTATION
We now provide details on the Sincronia implementation.

We start with a description of the end-to-end system (§4.1).

The remainder of the section focuses on three important

aspects of the implementation. First, the BSSI algorithm from

§3.1 assumes that all coflows arrive at time 0. In §4.2, we

discuss how Sincronia implementation incorporates the BSSI

algorithm to efficiently handle coflows arriving at arbitrary

times. Second, we showed in §3.2 that Sincronia decouples

coflow ordering from rate allocation to and scheduling of

individual flows. In §4.3, we discuss how this result enables

Sincronia to be efficiently integrated with existing datacenter

transport mechanisms, including TCP, pHost and pFabric.

Finally, we discuss how Sincronia implementation achieves

work conservation (§4.4), enables co-existence of flows and

coflows, and resolves various other practical issues (§4.5).

4.1 End-to-end system design
We have implemented Sincronia in C++ using just 3000 lines

of code. This includes a central coordinator and at each server,

a shim layer that sits between the application and the trans-

port layers (see Figure 4).

Applications, upon arrival of a coflow, inform Sincronia

daemon about the coflow (coflow ID, flows, and correspond-

ing sources, destinations, sizes, etc.); the daemon adds this

coflow to the list of “unordered coflows” (to be used for

work conservation) and then uses the above information to

register the coflow to the coordinator. The daemons also

maintain a list of “ordered coflows”, ones that have been

assigned an ordering by the coordinator (as discussed below).

When the ongoing flow finishes, the daemon picks one flow

from the currently highest ordered coflow (if one exists) or

from list of unordered coflows (if no ordered coflow exists),

assigns the flow an appropriate priority, and sends it to the

underlying transport layer. The daemon also unregisters
the finished (co)flow from the coordinator. The priorities

assigned to both ordered and unordered coflows depend on

the underlying transport mechanism and are discussed in

more depth in §4.3.

The coordinator performs the following tasks. It divides

the time into epochs. The coordinator maintains a list of

“unordered coflows”, those that have been registered but not

yet ordered (ordering is done only at the start of each epoch).

At the start of each epoch, the coordinator selects a subset

of coflows from the unordered coflow list and uses the of-

fline algorithm to order these coflows. We discuss several

strategies for deciding the epoch size and for selecting the

subset of coflows at the starting of epoch in §4.2. Once com-

puted, the coordinator removes the ordered coflows from

the unordered coflow list, and sends the “ordered coflow”

list to all the servers that have unfinished coflows; we use

several optimizations here such that the coordinator only

informs the servers of the “delta”, changes in ordered list,

rather than resending the entire ordered list. Note that each

server is oblivious to epochs maintained at the coordinator;

hence, servers are not require to be time synchronized with

the coordinator.

As discussed in §2, there is a lower bound of Ω(
√
n) on

achievable approximation for average CCT for mechanisms

that do not use coordination [8]; thus, some coordination is

necessary. However, Sincronia admits much simpler coordi-

nator that existing network designs for coflows — in contrast

to existing designs that require the central coordinator to

perform per-flow rate allocation, Sincronia requires it to just

order the coflows using its BSSI algorithm.

4.2 From Offline to Online
We now discuss how Sincronia implementation incorporates

the BSSI algorithm into a system that can efficiently handle

the online case, where coflows may arrive at arbitrary times.

An obvious way to incorporate BSSI algorithm into an online

design is to use the approach taken by prior works (e.g.,
Varys [10]) — run the offline algorithm upon each coflow

arrival. However, in datacenter networks where thousands

of coflows may arrive within each second, this may lead to

high complexity (although we do use this algorithm as a

baseline in our simulations).

Sincronia: Near-Optimal Network Design for Coflows SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

Sincronia avoids this high complexity approach using a

recently proposed framework [19] along with its own BSSI

algorithm from the previous section. We provide a high-level

description of the framework to keep the paper relatively

self-contained. The framework works in three steps. First,

time horizon is divided into exponentially increasing sized

epochs. At the start of each epoch, the framework runs an

approximation algorithm to select a subset of unfinished

coflows. This approximation algorithm, introduced by Garg

et. al. [14], works as follows: formulate an integer program

with a decision variable for each coflow to indicate whether

(or not) it should be assigned to complete within that epoch;

we add constraints to enforce that the total work required

for the selected subset does not exceed the amount of data

that can be transferred within the epoch, and we aim to

maximize the total weight of the coflows assigned to this

epoch. We solve the linear programming relaxation of this

integer program, and select each coflow that is at least “half-

assigned” by this optimal solution. It is easy to understand

why this process loses a factor of 8 in the approximation

guarantee. Once the subset of coflows is selected, any α-
approximate offline algorithm can be used to order coflows

arriving over time while providing (8+α)-competitive ratio
2
.

Sincronia implementation of this framework uses the BSSI

algorithm (in the last step) to order coflows arriving in an

online manner; we set smallest epoch size to be 100ms, with

every subsequent epoch being 2× larger. However, Sincro-

nia makes two modifications in its implementation of the

framework. The first modification is to incorporate a work

conservation step; we describe this in more detail in §4.4. The

second modification Sincronia implementation makes in us-

ing this framework is to avoid performance degradation due

to large epoch sizes. Indeed, if epoch sizes grow arbitrarily

large, increasingly larger number of coflows arrive within an

epoch and have to wait until the starting of the next epoch

to be scheduled (despite work conservation, as discussed in

§4.4); small coflows, in particular, observe poor performance.

Sincronia thus bounds the maximum number of epochs and

once this number is reached, it “resets the time horizon”.

Since BSSI algorithm provides 4-approximation guarantees,

using the above formula, Sincronia system achieves a com-

petitive ratio of 12 for the online case.

We emphasize that exponentially-increasing sized epochs

are needed only for polynomial-time complexity of the online

algorithm and for theoretical guarantees [19]. If these were

not the goals, Sincronia could simply use suitably chosen

fixed-sizes epochs. We evaluate this in §5 and show that

Sincronia performance with exponentially-increasing sized

epochs is very similar to that with fixed-sized epochs.

2
As with all online algorithms, Sincronia guarantees for the online version

are in terms of competitive ratio.

4.3 Sincronia + Existing Transport Layers
We now discuss Sincronia implementation on top of several

existing transport layer mechanisms for flows. We already

described Sincronia coordinator and daemon functionalities

in §4.1; these remain unchanged across Sincronia implemen-

tation on top of various transport mechanisms. We focus on

the only difference across implementations — assignment

of priorities to individual flows before Sincronia daemon

offloads the flows to the underlying transport mechanism.

Sincronia + TCP. If the underlying network fabric supports
infinite priorities, implementing Sincronia on top of TCP is

straightforward — each server daemon, for any given flow,

simply assigns it a priority equal to the order of the corre-

sponding coflow, sets the priority using the priority bits in

DiffServ [6], and sends the data over TCP. However, in prac-

tice, the underlying fabric may only support a fixed number

of priorities due to hardware limitations, or due to use of

some priority levels for other purposes (e.g., fault tolerance).
With finite number p of priorities, Sincronia implementa-

tion on top of TCP (with DiffServ) approximates the ideal

Sincronia performance using a simple modification: the dae-

mon sets the priority of a given flow to be the order of the

corresponding coflow if the current order of the coflow is

less than p−1, else it assigns priority p to the flow. As the list

of active coflows is updated, the priority used for a flow is

also updated accordingly. When using unordered coflows for

work conservation, the daemon also sets priority p. While

not ideal, our experimental results over real testbeds that

support 8 priority levels (§5) show that Sincronia achieves

significant improvements in average CCT even with small

number of priority levels.

Sincronia + pHost.We now discuss Sincronia implementa-

tion on top of pHost, a receiver-driven transport layer mech-

anism. This is particularly interesting because pHost handles

incast and outcast traffic patterns efficiently, precisely a use

case for coflows. We extend the pHost implementation to

support special prioritized scheduling required for Sincro-

nia implementation (at the receiver as well as at the source

and at intermediate network elements). We assume famil-

iarity with pHost design. In our implementation, the pHost

receiver sends a token for packets in flows in order of cor-

responding coflow ordering. The server daemons, among all

the received tokens, use the one for a flow in the currently

highest ordered coflow. In-network priorities are not neces-

sary (congestion is at the edge due to per-packet scheduling

and packet spraying) but can be supported using TCP style

priority assignment. Interestingly, pHost implementation

of Sincronia converges to the greedy algorithm shown in

Algorithm 2 that, in a converged state, assigns a single flow

the full outgoing access link rate at any given point of time.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary S. Agarwal et al.

Algorithm 2 Greedy Rate Allocation Algorithm

All access links have uniform bandwidth

C = σ is the input coflow ordering

procedure GreedyFlowScheduling(σ)

while C is not empty do
for i = 1 to |C| do

for j = 1 to |Ci .flows| do
if Ingress port of Ci .flows(j) free then

if Egress port of Ci .flows(j) free then
Allocate entire BW to Ci .flows(j)

Update flow sizes and available link bandwidth

GreedyFlowScheduling(C)

return

Sincronia + pFabric. Sincronia implementation on top of

pFabric admits an even simpler design. Since pFabric already

supports infinite priority levels, we only need aminor change

in pFabric priority assignment mechanism: each flow is now

assigned a priority equal to the ordering of its coflow, rather

than the size of the flow as in original pFabric paper [4]. A

special “minimum priority level” is assigned to unordered

coflows for work conservation purposes. Since Sincronia gen-

erates a total ordering across coflows, this implementation

results in ideal Sincronia performance.

4.4 Prioritized Work Conservation
Sincronia coordinator runs the BSSI algorithm for coflow or-

dering at the starting of each epoch. Thus, coflows that arrive

in the middle of an epoch (referred to as “orphan coflows”)

may not be assigned an ordering until the starting of the

next epoch. While our flow scheduling mechanisms from

the previous section are naturally work-conserving (because

underlying transport layer mechanisms are work conserv-

ing), our preliminary implementation highlighted a potential

performance issue. Orphan coflows, since unordered, end up

fair sharing the bandwidth. For “short” orphan coflows, such

fair sharing could lead to a long tail.

Sincronia uses a simple optimization for work conser-

vation that alleviates this problem. Each orphan coflow is

assigned an ordering among all the orphan coflows based

on its “oracle completion time (OCT)”, which is defined as

the time the coflow would take to finish if it were the only

coflow in the network. Note that the OCT of a coflow c is
simply maxp (d

p
c /bp), where bp is the bandwidth at port p.

Specifically, the orphan coflows are chosen to be scheduled

for work conservation in increasing order (smaller first) of

the following metric:

OCT

current_time + max_epoch_size - arrival_time

The reason this metric is interesting for work conservation is

that it finds the right balance between coflows that are “small”

(that is, have small OCTs) and coflows that are large but have

been waiting for a long while (that is, coflows that are being

starved) while selecting coflows to use for work conservation.

For instance, consider a time instant when there are three

coflows in the system; two of these coflows arrived at time 20

and have OCTs equal to 1 and 10, respectively, and the third

coflow arrived at time 0 and has OCT equal to 25. Suppose

the max_epoch_length is 4. Then, when choosing a coflow

for work conservation at time 21, the Sincronia daemon will

choose the coflow with OCT equal to 1 first (the metric value

being 1/5), then choose the coflow with OCT equal to 25

that has been waiting for too long (the metric value being

1) and then finally send the coflow with OCT equal to 10.

Thus, Sincronia is able to find the right balance between

small coflows and starving coflows to choose from for work

conservation purposes.

4.5 Other Practical Considerations
Finally, we discuss a few other techniques incorporated

within Sincronia implementation to handle practical issues

that may arise in real-world scenarios.

Co-existence of flows and coflows. In most datacenter

networks, multiple applications co-exist, some of which may

require the network fabric to optimize for coflow-based met-

rics while others may care about the performance of each

individual flow. Prior results on network design for coflows

enable coexistence of such applications by treating each in-

dividual flow as a coflow. This may be restrictive since flow

based applications may have different performance goals

compared to coflow based applications. Sincronia partially

handles such scenarios using coflow weights.

Specifically, while our discussion so far has focused on

Sincronia design and implementation for achieving near-

optimal performance in terms of average CCT, Sincronia

achieves something much more general — it optimizes for

“weighted” average CCT, as defined in §2. That is, it allows

network operators to set a weight for each individual coflow.

Network operators can use different weights for different

applications (e.g., those that require optimizing for flows

and those that require optimizing for coflows), and the BSSI

algorithm computes ordering of coflows that optimize for

the weighted average CCT. Finding the right mechanism to

set weights depends on the applications and is beyond the

scope of this paper.

Achieving other performance objectives. Sincronia also
allows achieving several other performance objectives using

the coflow weights. For instance, there has been quite a bit

of work in the community on deadline-aware scheduling

Sincronia: Near-Optimal Network Design for Coflows SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

for the traditional abstraction of network flows [4, 16, 25].

One way to handle deadlines in Sincronia is to assign coflow

weights inversely proportional to their deadlines. Sincronia

also supports admission control by assigning zero weights to

coflows which would definitely miss their deadlines, hence

scheduling them after other coflows. Designing coflow sched-

uling algorithms that provide provable guarantees for the

case of deadlines is an interesting open problem (§6).

Starvation Freedom.Minimizing average completion time

necessitates starvation [4, 10]. However, as discussed in §4.4,

the prioritized work conservation mechanism used in Sin-

cronia alleviates starvation to some extent. Intuitively, since

the choice of an unordered coflow for work conservation

depends inversely on the “waiting time” of the coflow (dif-

ference between current time and the arrival time), as the

waiting time of the coflow increases, its chances of being

selected for work conservation purposes also improve.

5 EVALUATION
We now present evaluation results for Sincronia

3
. We start

by describing the workloads and performance metrics used

in our evaluation (§5.1). We then evaluate Sincronia using

simulations (§5.2); the main goal here is to understand the

performance of Sincronia against the state-of-the-art [10],

to understand the envelope of workloads for which Sincro-

nia performs well, and to perform sensitivity analysis of

Sincronia performance over a variety of parameters includ-

ing workloads, number of coflows, network load and epoch

sizes. We then evaluate the Sincronia implementation with

TCP/DiffServ on a 16-server testbed interconnected with a

FatTree topology comprising 20 commodity switches (§5.3).

5.1 Workloads and Performance Metrics
We use two workloads in our evaluation. The first workload

is the one used in all prior network designs [10]: a 526-coflow

trace obtained from one-hour long run of MapReduce jobs

on a 3000-machine cluster at Facebook. Unfortunately, the

Facebook trace makes several simplifying assumptions, is

limited in number of coflows and imposes low network load.

The second workload is a collection of traces generated using

a coflow workload generator [1] that allows upsampling the

Facebook trace to desired number of coflows, network load,

etc., while keeping workload characteristics similar to the

original Facebook trace. Unless mentioned otherwise, all

results for these “custom” traces use the baseline of 2000

coflows, 0.9 network load and time horizon reset after 8

epochs. Varys does not support weighted coflow scheduling;

thus, to make a fair comparison, we use unit weights for

all coflows. We provide other setup details (e.g., topology,
3
Sincronia implementation and simulator are publicly available at:

https://github.com/sincronia-coflow.

link bandwidth, etc.) for simulations and implementation in

respective subsections.

Metrics. For the offline algorithm, we evaluate the perfor-

mance in terms of CCT, on an average and at high percentiles.

For the online algorithm, we evaluate the performance of

Sincronia using the slowdown metric; for a given coflow,

the slowdown is defined as the ratio of its CCT and its OCT

(recall from §4.4, the OCT of a coflow is its completion time

when its the only coflow in the network). In presence of

other coflows, CCT of a coflow may be much larger than its

OCT; thus, our evaluation results for the online version of

Sincronia are against the best possible baseline.

5.2 Simulation Results
We now evaluate Sincronia against the state-of-the-art [10]

using simulations, and perform sensitivity analysis of Sin-

cronia performance over a variety of parameters.

Setup. Varys uses a flow-level simulator in its evaluation.

For a fair comparison, we incorporate Sincronia within Varys

simulator, with BSSI for coflow ordering (Algorithm 1, §3.1)

and greedy algorithm for flow scheduling (Algorithm 2, §4.3).

We use the same setup used in Varys, modeling the network

using a non-blocking 150-port switch, where each port corre-

sponds to a top-of-the-rack switch in 3000-machine cluster.

Offline Algorithm. We first evaluate Sincronia against ex-

isting network designs for the offline case, that is, when all

coflows arrive at time 0. While not a practical scenario, this

allows us to tease out the performance benefits of Sincronia’s

BSSI algorithm against those used in prior network designs.

Figure 5(a)-5(c) show that Sincronia significantly improves

upon state-of-the-art (Varys [10] and other heuristics) across

all evaluated workloads. Specifically, Figure 5(a) shows that,

when compared to TCF and Varys, Sincronia improves CCT

by 1.7× on an average and by 7.9× at 99-th percentile. In ad-

dition, Figure 5(b) shows that Sincronia improvements over

Varys increase with larger number of coflows in the trace,

both on an average and at high percentiles. Since both Varys

and Sincronia are work-conserving, CCT for some coflows

has to degrade for improvement in CCT for other coflows.

Figure 5(c) shows the CDF for distribution of improvement

across all coflows; interestingly, Sincronia degrades the CCT

for less than 20% of the coflows while improving the CCT

for more than 65% of the coflows.

Figure 5(d)-5(e) provide more insights on how Sincronia

achieves the observed improvements. Figure 5(d) shows that

most of the improvements come from Sincronia’s ordering al-

gorithm, Bottleneck-Select-Scale-Iterate (BSSI) — even when

BSSI is used with MADD, the rate allocation mechanism

from Varys, we observe significant CCT improvements on

an average and at tail. Figure 5(e) provides more insights

https://github.com/sincronia-coflow

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary S. Agarwal et al.

 1

 2

 4

 8

 16

 32

 64

 128

Average 90th 99th

F
a

c
to

r
o

f
Im

p
ro

v
e

m
e

n
t

 u
s
in

g
 S

in
c
ro

n
ia

 o

v
e

r
e

x
is

ti
n

g
 h

e
u

ri
s
ti
c
s

Percentile

NCF
SCF
TCF

Varys

 1

 2

 4

 8

 16

Average 90th 99th

F
a

c
to

r
o

f
Im

p
ro

v
e

m
e

n
t

 u
s
in

g
 S

in
c
ro

n
ia

 o

v
e

r
V

a
ry

s

Percentile

FB
Custom 1000
Custom 2000
Custom 4000

 0

 0.2

 0.4

 0.6

 0.8

 1

2
-5

2
-4

2
-3

2
-2

2
-1

2
0

2
1

2
2

2
3

2
4

2
5

2
6

C
D

F

Factor of Improvement using Sincronia over Varys

FB
Custom 1000
Custom 2000
Custom 4000

 1

 2

 4

 8

 16

Average 90th 99th

F
a

c
to

r
o

f
Im

p
ro

v
e

m
e

n
t

 u
s
in

g
 S

in
c
ro

n
ia

 (

u
s
in

g
 B

S
S

I
+

 G
re

e
d

y
)

Percentile

 SEBF+MADD
 BSSI+MADD

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18

F
a

c
to

r
o

f
Im

p
ro

v
e

m
e

n
t

 u
s
in

g
 S

in
c
ro

n
ia

 o

v
e

r
V

a
ry

s

 f
o

r
in

d
iv

id
u

a
l
c
o

fl
o

w
s

OCT bins

Custom 1000
Custom 2000
Custom 4000

Figure 5: Sincronia evaluation results for the offline case. Sincronia achieves consistently better performance compared to existing

heuristics for the original Facebook trace (top left) and maintains these improvements across a variety of workloads (top center, top right).

Most of Sincronia’s improvements are due to its BSSI scheduling algorithm from §3 (bottom left, bottom right). More discussion in §5.2.

about BSSI’s performance. The figure plots the average fac-

tor of improvement measured across coflows binned by their

OCTs normalized by the smallest OCT; that is, an OCT bin i
contains the set of coflows whose OCT is within [2i , 2i+1) of
the OCT of the smallest coflow. The figure shows that, when

compared to Varys, Sincronia results in CCT improvements

by making better scheduling decisions for coflows that are

neither too small (low OCTs) nor too large (high OCTs). In-

deed, scheduling decisions for small and large coflows are

rather straightforward, and both Sincronia and Varys end

up making similar decisions; it is precisely the medium size

coflowswhere the weight scaling step in BSSI helps Sincronia

in making the “right” decisions.

Online Algorithm.We now evaluate Sincronia for the case

when coflows arrive over time. We focus on custom traces

only since the Facebook trace has very low load and does

not provide meaningful insights. As discussed in §5.1, we

use the absolute best possible baseline here — ratio of coflow

CCT and its OCT. Figure 6 shows that Sincronia handles

online arrival of coflows very well; when compared to an

unloaded network (slowdown = 1), Sincronia at load 0.9
performs within 1.7× on an average and within 5.7× at high

percentiles for the Custom 4000 trace.

Figure 6(b)-6(c) provide more insights into Sincronia’s per-

formance. The former shows that around 60% of the coflows

achieving slowdown 1, that is, are optimally scheduled by

Sincronia. As the size of the trace increases, contention for

network resources increases resulting in higher slowdowns.

Figure 6(c) shows that larger slowdowns are caused mainly

by larger coflows; this is not only because smaller coflows

should indeed be prioritized but also that the work conserva-

tion heuristic in Sincronia (§4.2) prioritizes smaller coflows

until long coflows have been waiting for a long time.

Sensitivity Analysis. Figure 5 and Figure 6 already show

impact of trace sizes on Sincronia performance. We per-

form additional sensitivity analysis of Sincronia performance

against network load, number of epochs before resetting the

time horizon, and various epoch mechanisms in Figure 7.

Figure 7(a) shows that, as expected, Sincronia performance

improves as the network load decreases from 0.9 to 0.7. We

see in Figure 7(b) that Sincronia performance varies with

number of epochs before resetting the time horizon — as

the number of epochs increase, larger fraction of coflows

observe completion times close to their OCTs but the tail

slowdown also worsens. Intuitively, as the number of epochs

increase, the largest epoch size also increases; this, in turn,

increases the chance of a small coflow arriving between

epoch boundaries and being blocked by a large “ordered”

coflow, one that was ordered at the start of the epoch and

hence has higher priority than the small coflow. Finally, we

compare the performance of Sincronia with varying epoch

mechanisms. We use exponentially-increasing epoch sizes,

fixed-epoch sizes (with size equal to the longest epoch in

exponentially-increasing epoch size mechanism) and the “im-

mediate recomputation” mechanism that executes the BSSI

algorithm upon each coflow arrival and departure. Figure 7(c)

Sincronia: Near-Optimal Network Design for Coflows SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

 1

 2

 4

 8

Average 90th 99th

S
lo

w
d

o
w

n

Percentile

 Custom 1000
 Custom 2000
 Custom 4000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

C
D

F

Slowdown

Custom 1000

Custom 2000

Custom 4000
 1

 2

 3

 4

 5

 0 2 4 6 8 10 12 14 16 18

S
lo

w
d

o
w

n

OCT bins

Custom 1000

Custom 2000

Custom 4000

Figure 6: Sincronia evaluation results for the online case. (left, center) For the evaluated workloads, Sincronia achieves performance

within 1.7× on an average and 5.7× at high percentiles when compared to an unloaded network; (right) Coflows with larger sizes observe

larger slowdown in online version of Sincronia. More discussion in §5.2.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5

C
D

F

Slowdown

load = 0.7

load = 0.9
 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

C
D

F

Slowdown

Number of epochs = 6
Number of epochs = 8

Number of epochs = 10
Number of epochs = 12

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7

C
D

F

Slowdown

Immediate recomputation
Exponential epochs

Linear epochs

Figure 7: Sensitivity analysis of Sincronia performance over varying network load (left), varying number of epochs before resetting

the time horizon (center) and varying epoch mechanisms (right). More discussion in §5.2.

shows that, over the evaluated workloads, the first two mech-

anisms perform comparably and are only marginally worse

when compared to the (impractical) immediate recomputa-

tion mechanism.

5.3 Implementation Results
We now present evaluation results for Sincronia implementa-

tion on top of TCP (using Diffserv [6] for priority scheduling).

Our implementation runs on a topology shown in Figure 9.

We compare Sincronia performance against coflow-agnostic

TCP implementation
4
.

The main challenge in running these experiments is that

TCP does not handle incast traffic very well, precisely the

scenario for coflows (multiple sources sending data to the

same destination). Thus, we compute the expected load on

a destination (by using network load along with expected

number of sources sending data to a destination in the Face-

book trace), and refer to it as Maximum Sustainable Load

(MSL) for the cluster. We then generate the workloads for the

cluster using the workload generator for 16 ingress/egress

ports, with 1Gbps access link bandwidth and varying loads

(0.7×MSL, 1.4×MSL and 2.1×MSL).

4
Despite trying for several weeks, we were not able to run Varys [10] over

our topology; the code for Varys is not maintained and the software stack

for which this code was written has evolved. Nevertheless, we would like

to thank the authors of Varys [10] to share their implementation with us

and helping us to try and run their code.

Figure 8 shows that for a workload comprising 526 coflows

at load 0.7×MSL, Sincronia implementation on top of TCP

improves the CCT by 18.61× on an average, by 46.95× at 90-

th percentile, and 149.05× at 99-th percentile when compared

to coflow-agnostic TCP.

As expected, the improvements are even more significant

for larger loads. Figure 8(b) shows that Sincronia achieves

these improvements by slowing down less than 10% of

the coflows by more than 2× (and even smaller fraction

for higher loads). Finally, Figure 8(c) shows that Sincronia

achieves similar benefits for larger traces. This evaluation

is a bit unfair — TCP is neither designed for coflows nor

for minimizing average completion times. However, these

results give us some indication on performance of Sincronia

against existing network designs; for instance, Varys [10]

reports to improve upon TCP by a factor of 1.85× on an

average, and roughly by the same number at 95 percentiles.

6 RELATEDWORK & OPEN PROBLEMS
There has been tremendous recent effort on network design

for coflows, both in networking and in theory communities.

In this section, we compare and contrast Sincronia against

related work from these communities, and discuss a number

of problems that remain open in the context of network

design for coflows.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary S. Agarwal et al.

 1

 4

 16

 64

 256

 1024

 4096

Average 90th 99th

F
a

c
to

r
o

f
Im

p
ro

v
e

m
e

n
t

 u
s
in

g
 S

in
c
ro

n
ia

Percentile

load = 0.7 MSL
load = 1.4 MSL
load = 2.1 MSL

 0

 0.2

 0.4

 0.6

 0.8

 1

2
-6

2
-4

2
-2

2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

C
D

F

Factor of Improvement using Sincronia

load = 0.7 MSL
load = 1.4 MSL
load = 2.1 MSL

 0

 0.2

 0.4

 0.6

 0.8

 1

2
-6

2
-4

2
-2

2
0

2
2

2
4

2
6

2
8

2
10

C
D

F

Factor of Improvement using Sincronia

526 coflows
2000 coflows

Figure 8: Evaluation results for Sincronia implementation on top of TCP over our testbed in Figure 9. Sincronia when implemented

on top of TCP/DiffServ significantly improves coflow performance when compared to coflow-agnostic TCP both on an average and at high

percentiles (left), and maintains these improvements across varying network loads (center) and trace sizes (right). More discussion in §5.3.

Figure 9: Testbed used in our experiments has 16 servers, each
with 1Gbps access link bandwidth, interconnected with a FatTree

topology comprising 20 PICA8 switches. Each switch supports

priority queueing with 8 distinct levels.

Gap between lower and upper bounds. Existing network
designs for coflows from networking community [7, 9, 10, 12]

can perform arbitrarily worse than the optimal in terms of

average CCT [2]. Qiu et. al. [22] provided the first coflow

scheduling algorithm that achieves approximation guaran-

tees of 64/3 for the offline case with zero release dates. This

result was improved by Ahmadi et. al. [3] to 4-approximation

for zero release dates and to 5-approximation with release

dates. However, all these results require a central coordina-

tor to either solving complex linear programs or to perform

complex per-flow rate allocations. Sincronia achieves state-

of-the-art approximation guarantees, both for zero release

dates and, using a simple extension of the BSSI algorithm [2],

for the case of release dates. However, Sincronia shows that

these guarantees can be achieved without any complex per-

flow rate allocation, thus overcoming the limitations of all

existing results from the networking and the theory com-

munity. Despite all the above results, there is a gap between

known lower bounds for coflow scheduling (impossibility

of better than 2-approximation, §2) and the known upper

bounds (4-approximation for offline problem with zero re-

lease dates) [2, 3]. It remains an intriguing problem to bridge

this gap.

Improved competitive ratio for online coflow schedul-
ing. Khuller et. al. [19] were the first to present an online

algorithm that achieves a competitive ratio of 12. Sincronia

achieves similar guarantees. Is it possible to design a coflow

scheduling algorithm with a better competitive ratio? Note

that an offline algorithm that achieves a better approxima-

tion factor for the case of zero release dates will already

lead to improvements in the online algorithm by using the

framework from Khuller et. al. [19].

Necessity of centralized solutions. As discussed in §2,

there is a strong lower bound of Ω(
√
n) on achievable approx-

imation for average CCT using algorithms that do not use

any coordination [8]. However, the “amount of coordination”

required to mitigate this lower bound is unclear. For instance,

similar to [10, 28, 29], Sincronia requires a centralized con-

troller to implement BSSI. While the amount of computation

required by Sincronia’s centralized scheduler is much lower

than that of prior solutions (since Sincronia scheduler does

not need to do per-flow rate allocation), it remains an open

problem to understand the amount of computation needed

to be done at the centralized controller.

Coflows with paths. Sincronia, similar to [10, 12], assumes

that routing of flows within and across coflows are decided

by the network layer (either via specific routing mechanisms,

or via packet spraying). However, it is a priori conceivable

that better performance may be achievable by co-designing

routing along with scheduling of coflows. This problem has

been studied in a few recent papers [18, 29]; however, de-

signing optimal algorithms for this problem remains open.

Extensions to Non-clairvoyant scheduler. Sincronia,

similar to [10, 12, 29], assumes that the information about

a coflow is available at the arrival time (and no earlier). For

many applications, this is indeed the case (see [10] and the

discussion therein). Moreover, recent work has shown that

it is possible to identify coflows and their properties within

Sincronia: Near-Optimal Network Design for Coflows SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary

reasonable estimate for many applications [28]. However,

designing a near-optimal non-clairvoyant scheduler remains

an interesting future direction.

Extensions to other performance metrics. Finally, simi-

lar to most of the existing literature on coflows [8, 10, 28, 29],

Sincronia is designed to optimize for average (weighted) com-

pletion time. It remains an interesting question to extend our

results to the case of deadline-sensitive coflows and for min-

imizing other metrics such as tail coflow completion time.

An intriguing question in this direction is also to define a

notion of fairness for coflows.

7 PROOF OUTLINE FOR THEOREM 1
In this section, we provide a high-level idea for our results in

§3. The detailed proofs for these results are in the technical

report [2].

At a high-level, we use a linear programming relaxation

to obtain a lower bound on the optimal value of the average

CCT, and obtain our approximation guarantee by comparing

the average CCT of our algorithm to this lower bound. Our

algorithm is purely combinatorial, in that it does not require

solving an LP.

In our algorithm, we decouple the problem of obtaining a

feasible schedule into two parts: we first obtain an ordering

of coflows, and then obtain a feasible schedule by using a

greedy rate allocation scheme that maintains this order.

To obtain an ordering of coflows, we also relax the prob-

lem by ignoring the dependencies between the input and

output ports; more specifically, we consider an instance of a

concurrent open shop problem where there are 2m machines

corresponding to them ingress and them egress ports, and

one job corresponding to each of the n coflows. The process-

ing requirement for job c on machine k is the total load at

port k due to coflow c , and the weight of job c is the weight
associated with coflow c . Observe that the optimal value

of this concurrent open shop instance is a lower bound on

the optimal value of the original coflow scheduling instance

since any feasible solution to the latter can be viewed as

a feasible solution for the former with the same objective

function value. Next, observe that there is an optimal solu-

tion for the concurrent open shop input in which the order

of the jobs processed on each machine is the same: given

any optimal solution, if we consider the last job on the most

heavily loaded machine we can push that job to the end on

each other machine while maintaining that none of the job

completion times increases. We can repeat this to obtain

a solution where the jobs are processed in the same order

on each machine without increasing the objective function

value. So we have reduced our problem to one of just finding

an ordering of coflows, since given a ordering, determining

a feasible schedule is straightforward.

We use a primal-dual algorithm to compute an ordering

such that the weighted completion time of the jobs is at

most twice the optimal value for the concurrent open shop

instance; hence, by our lower bound argument, this weighted

completion time is at most twice the optimal value for the

coflow scheduling problem as well.

For the second part of the problem, we present a greedy

rate-allocation scheme that maintains the order returned

by the primal-dual algorithm. More specifically, we ensure

that a flow from input port i to output port j on a coflow c
is scheduled only after all flows between this pair of ports

from coflows of a higher priority have completed. So, if we

consider the last flow processed for some coflow c , say from

input port i to output port j, this property, coupled with the

fact that the algorithm is work-conserving, implies that at

least one of the ports i or j was busy for at least half the com-

pletion time of coflow c with processing flows from coflows

with an equal or higher priority than coflow c . Since the

total amount of work from higher priority coflows that can

be done on these ports is at most the completion time of

coflow c in the concurrent open shop instance, we arrive at

the conclusion that the completion time of coflow c in our

greedy rate-allocation scheme is at most twice the comple-

tion time of coflow c in the concurrent open shop instance.

This result in fact extends to any rate allocation scheme that

is preemptive, work-conserving, and maintains the ordering

of the coflows. Combining the above two results directly

yields the 4-approximation result.

8 CONCLUSION
We have presented Sincronia, a network design for coflows

that provides near-optimal performance and can be imple-

mented on top on any transport layer mechanism for flows

that supports priority scheduling. Sincronia achieves this

using a key technical result — we show that given a “right”

ordering of coflows, any per-flow rate allocation mechanism

achieves average coflow completion time within 4× of the

optimal as long as (co)flows are prioritized with respect to

the ordering. This allows Sincronia to use a simple greedy

mechanism to “order” all unfinished coflows; all flows within

and across coflows can then be greedily scheduled using

any transport mechanism that supports priority scheduling

(without any per-flow rate allocation mechanism). Evalua-

tion results suggest that Sincronia not only admits a practical,

near-optimal design but also improves upon state-of-the-art

network designs for coflows.

ACKNOWLEDGMENTS
This work was supported in part by NSF grants CCF-1526067,

CMMI-1537394, CCF- 1522054, and CCF-1740822.

SIGCOMM ’18, August 20–25, 2018, Budapest, Hungary S. Agarwal et al.

REFERENCES
[1] 2018. Sincronia Repository. https : / / github . com /
sincronia-coflow.

[2] Saksham Agarwal, Shijin Rajakrishnan, Akshay Narayan, Rachit Agar-

wal, David Shmoys, and Amin Vahdat. 2018. Sincronia: Near-Optimal

Network Design for Coflows. In Tech Report.
[3] Saba Ahmadi, Samir Khuller, Manish Purohit, and Sheng Yang. 2017.

On scheduling coflows. In MOS IPCO.
[4] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick

McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: Minimal

Near-optimal Datacenter Transport. In ACM SIGCOMM.

[5] Nikhil Bansal and Subhash Khot. 2010. Inapproximability of hyper-

graph vertex cover and applications to scheduling problems. In EATCS
ICALP.

[6] Kwok Ho Chan, Jozef Babiarz, and Fred Baker. 2006. Configuration

Guidelines for DiffServ Service Classes. https://tools.ietf.
org/html/rfc4594.

[7] Mosharaf Chowdhury and Ion Stoica. 2012. Coflow: A networking

abstraction for cluster applications. In ACM HotNets.
[8] Mosharaf Chowdhury and Ion Stoica. 2015. Efficient coflow scheduling

without prior knowledge. In ACM SIGCOMM.

[9] Mosharaf Chowdhury, Matei Zaharia, Justin Ma, Michael I Jordan, and

Ion Stoica. 2011. Managing data transfers in computer clusters with

orchestra. In ACM SIGCOMM.

[10] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. Efficient

coflow scheduling with varys. In ACM SIGCOMM.

[11] Jeffrey Dean and Sanjay Ghemawat. 2004. MapReduce: simplified data

processing on large clusters. In USENIX OSDI.
[12] Fahad R Dogar, Thomas Karagiannis, Hitesh Ballani, and Antony Row-

stron. 2014. Decentralized task-aware scheduling for data center net-

works. In ACM SIGCOMM.

[13] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia

Ratnasamy, and Scott Shenker. 2015. phost: Distributed near-optimal

datacenter transport over commodity network fabric. InACMCoNEXT.
[14] Naveen Garg, Amit Kumar, and Vinayaka Pandit. 2007. Order sched-

uling models: hardness and algorithms. In IARCS FSTTCS.
[15] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, An-

drewMoore, Gianni Antichi, and Marcin Wojcik. 2017. Re-architecting

datacenter networks and stacks for low latency and high performance.

In ACM SIGCOMM.

[16] Chi-Yao Hong, Matthew Caesar, and P Godfrey. 2012. Finishing flows

quickly with preemptive scheduling. In ACM SIGCOMM.

[17] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fet-

terly. 2007. Dryad: distributed data-parallel programs from sequential

building blocks. In ACM EuroSys.
[18] Hamidreza Jahanjou, Erez Kantor, and Rajmohan Rajaraman. 2017.

Asymptotically Optimal Approximation Algorithms for Coflow Sched-

uling. In ACM SPAA.
[19] Samir Khuller, Jingling Li, Pascal Sturmfels, Kevin Sun, and Prayaag

Venkat. 2018. Select and Permute: An Improved Online Framework

for Scheduling to Minimize Weighted Completion Time. In LATIN.
[20] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo

Kyrola, and Joseph MHellerstein. 2012. Distributed GraphLab: a frame-

work for machine learning and data mining in the cloud. Proceedings
of the VLDB Endowment, 5(8): 716-727.

[21] Grzegorz Malewicz, MatthewHAustern, Aart JC Bik, James C Dehnert,

Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a

system for large-scale graph processing. In ACM SIGMOD.
[22] Zhen Qiu, Cliff Stein, and Yuan Zhong. 2015. Minimizing the total

weighted completion time of coflows in datacenter networks. In ACM
SPAA.

[23] Thomas A. Roemer. 2006. A note on the complexity of the concurrent

open shop problem. In Journal of Scheduling, 9(4): 389-396. Springer.
[24] Sushant Sachdeva and Rishi Saket. 2013. Optimal inapproximability

for scheduling problems via structural hardness for hypergraph vertex

cover. In IEEE CCC.
[25] ChristoWilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.

2011. Better never than late: Meeting deadlines in datacenter networks.

In ACM SIGCOMM.

[26] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,

Pradeep Kumar Gunda, and Jon Currey. 2008. DryadLINQ: A System

for General-Purpose Distributed Data-Parallel Computing Using a

High-Level Language.. In USENIX OSDI.
[27] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave,

Justin Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and

Ion Stoica. 2010. Resilient distributed datasets: A fault-tolerant ab-

straction for in-memory cluster computing. In USENIX NSDI.
[28] Hong Zhang, Li Chen, Bairen Yi, Kai Chen, Mosharaf Chowdhury,

and Yanhui Geng. 2016. CODA: Toward automatically identifying and

scheduling coflows in the dark. In ACM SIGCOMM.

[29] Yangming Zhao, Kai Chen, Wei Bai, Minlan Yu, Chen Tian, Yanhui

Geng, Yiming Zhang, Dan Li, and Sheng Wang. 2015. Rapier: Integrat-

ing routing and scheduling for coflow-aware data center networks. In

IEEE INFOCOM.

https://github.com/sincronia-coflow
https://github.com/sincronia-coflow
https://tools.ietf.org/html/rfc4594
https://tools.ietf.org/html/rfc4594

	Abstract
	1 Introduction
	2 Sincronia Overview
	2.1 The Coflow Abstraction
	2.2 Problem Statement and Prior Results

	3 Sincronia Design
	3.1 Coflow Ordering
	3.2 Per-Flow Rate Allocation is Irrelevant

	4 Sincronia Implementation
	4.1 End-to-end system design
	4.2 From Offline to Online
	4.3 Sincronia + Existing Transport Layers
	4.4 Prioritized Work Conservation
	4.5 Other Practical Considerations

	5 Evaluation
	5.1 Workloads and Performance Metrics
	5.2 Simulation Results
	5.3 Implementation Results

	6 Related Work & Open Problems
	7 Proof Outline for Theorem 1
	8 Conclusion
	Acknowledgments
	References

