
Length Leakage in Oblivious Data Access Mechanisms

Grace Jia
Yale University

Rachit Agarwal
Cornell University

Anurag Khandelwal
Yale University

Abstract
This paper explores the problem of preventing length leakage
in oblivious data access mechanisms with passive persistent
adversaries. We show that designing mechanisms that pre-
vent both length leakage and access pattern leakage requires
navigating a three-way tradeoff between storage footprint,
bandwidth footprint, and the information leaked to the ad-
versary. We establish powerful lower bounds on achievable
storage and bandwidth footprints for a variety of leakage pro-
files, and present constructions that perfectly or near-perfectly
match the lower bounds.

1 Introduction

Cloud services offer scalable, fault-tolerant, and easy-to-
manage systems for storing and querying data. However, us-
ing (untrusted) cloud services also leads to significant security
concerns: data accesses that used to be contained within an
organization’s trusted domain are now visible to potentially
untrusted entities on the cloud. A now-long line of work has
shown that, even if offloaded data is encrypted, an adversary
can exploit data access patterns to learn damaging information
about the data [1–4]. To protect against such access pattern
attacks, our community has developed a large and active body
of research on oblivious data access mechanisms: on different
adversarial settings (e.g., active [5] vs. persistent passive [6]),
enabling transactional [7] and asynchronous queries [8, 9],
enabling distributed proxy deployments [10, 11], achieving
performance scalability [12–19], and identifying performance
limits [20–25], to name a few.

This paper explores a complementary problem: preventing
length leakage in oblivious data access mechanisms. Specifi-
cally, both ORAM-based [5] and PANCAKE-based [6] oblivi-
ous data access mechanisms assume that all data objects are
of the same size; this is far from realistic in practice—recent
studies from real-world production systems have established
that data object sizes can vary by multiple orders of magni-
tude [26]. For such realistic scenarios, it becomes important

to design systems that not only enable oblivious data access
but also protect against length leakage.

Preventing length leakage in oblivious data access mech-
anisms raises new challenges: as we will show, it requires
navigating a complex three-way tradeoff between the storage
used by the mechanism (i.e., its storage footprint), the total
amount of access traffic to the storage per query (i.e., its band-
width footprint), and the precise information leaked to the
adversary. To provide some intuition, consider the following
two extreme design points. One obvious design is “padding”-
based [27]: each object is padded with random bits to the
largest object size, say, smax (queries are responded to in an
obvious manner); with n objects, this design requires storage
footprint equal to n · smax, bandwidth footprint proportional
to smax per query1, and informally speaking, leaks informa-
tion about the number of objects (n) and the largest object
size (smax) to the adversary. At the other extreme are more
recent “packing”-based designs [28], in particular size-locked
indexes [29]: all data objects are packed into one blob (each
data access query is responded to by downloading the entire
blob). This requires storage and bandwidth footprint equal to
the sum of the sizes of the plaintext objects—∑i si; informally,
such packing-based designs leak information about the sum
of the sizes of the plaintext objects to the adversary. Returning
to the three-way tradeoff: the first design has higher storage
footprint, lower bandwidth footprint, and (informally) less
information leakage than the second design. Thus, depend-
ing on the storage budget, bandwidth budget, and/or security
goals, either of the two design points may be of interest.

This paper explores fundamental limits and achievable de-
sign points for preventing length leakage in oblivious data
access mechanisms. We focus on passive persistent adver-
saries, as motivated by the PANCAKE work [6]. We provide
details on our system and security model in §2, but briefly,
an encryption proxy takes as input a collection of n plaintext
objects of sizes S = {s1,s2, . . . ,smax}, and creates encrypted
objects that will be stored in an untrusted storage server. The

1ORAM and PANCAKE incur Ω(lg(n)) · smax and 3 · smax bandwidth
footprint, respectively.

adversary can observe all the (encrypted) queries/responses
between the proxy and storage, but it cannot inject queries;
instead, queries are sampled from a distribution π. The en-
cryption mechanism has an estimate of the distribution, and
the adversary knows the precise distribution. The adversary
“wins” if it can distinguish the sequence of queries from a
sequence of uniformly distributed accesses to fixed-sized ran-
dom bit strings—capturing both access pattern and length
leakage. We introduce a formal security framework that cap-
tures this setting as real-or-random indistinguishability under
chosen distribution and length attack (ROR-CDLA, §7).

1.1 Summary of Key Results
We establish the following results (Table 1):

(1) First, we establish the intuitive result that padding-
based schemes [27] applied to oblivious data access mecha-
nisms [6] yield bandwidth-optimal constructions, while pro-
viding strong security: leaking only the number of objects
(n) and the largest object size (smax) to the adversary. In par-
ticular, we establish that any scheme that reveals only n and
smax must incur a minimum bandwidth footprint α× smax per
query, where α≥ 1 is a constant (independent of n) for any
fixed storage footprint; larger storage footprint may enable
a smaller α. Furthermore, we establish that padding-based
schemes [27] applied to oblivious data access mechanisms [6]
achieve an upper bound that precisely matches this lower
bound. These results imply that it is possible to design mecha-
nisms that offer strong security at low bandwidth overheads2

if there is little variance in object sizes (i.e., the average ob-
ject size is close to the largest) but quite high for use cases
where object sizes may vary by orders of magnitude [26].
This motivates the relaxation of security for more storage and
bandwidth-efficient schemes.

(2) Second, we establish lower and upper bounds for packing-
based designs [28, 29]. Specifically, our lower bound shows
that when restricted to minimum possible storage—the sum
of all the object sizes—any scheme that reveals n and ∑i si
must have a bandwidth overhead of ∑i si (matching the band-
width overhead of the size-locked index construction [29]).
Our lower bound and the construction whose performance
meets the lower bound is more general: given even slightly
more storage than ∑i si, it is possible to dramatically reduce
bandwidth footprint, albeit with slightly more leakage than
size-locked indexes. In contrast to size-locked indexes that
pack all objects into one bin, our generalized construction first
bin-packs objects across smax-sized bins and then employs a
PANCAKE-based oblivious access mechanism over the bins.
This construction achieves our generalized lower-bounds, i.e.,
if a scheme is allowed to leak the plaintext object sizes (in-
stead of the sum of the object sizes as in the size-locked index

2A scheme’s bandwidth overhead is its bandwidth footprint relative to an
insecure baseline’s footprint. A similar definition holds for storage overhead.

Leaked information Bandwidth Lower-bound Optimal Scheme

n,smax (§3) ⌊κn⌋
⌊κn⌋−n+1 · smax Padded PANCAKE

n,S (§4) ⌊κn⌋
⌊κn⌋−NOPT +1 · smax

3 Stuffed PANCAKE

n,smax,π (§5) No closed form Greedy PANCAKE

n,S,π (§6) No closed form MILP

Table 1: Summary of our results for n objects with sizes S =
{s1, . . . ,sn} and access distribution π. κ is a parameter that bounds
storage to κ · n · smax, and NOPT is the minimum number of smax-
sized bins required to contain all objects.

construction), its bandwidth footprint lower bound decreases
to a smaller multiple of smax (compared to (1)), with the multi-
ple decreasing even faster as the given storage increases. This
is particularly useful for datasets with objects of very variable
sizes, where bin-packing objects can permit massive reduc-
tion of the bandwidth overhead for a given storage footprint.

(3) Third, for the case of leaking the access distribution,
we present an improvement over the existing state-of-the-
art construction, PANCAKE [6]. Our scheme greedily repli-
cates objects with higher access probabilities and is provably
bandwidth-optimal. Since the scheme can leak the access dis-
tribution, the bandwidth footprint depends on the distribution
and can often be much smaller than those for (1). This is par-
ticularly useful for real-world key-value stores where accesses
follow well-known Zipfian or bimodal distributions [26, 32].

(4) Finally, for the case of leaking both the individual ob-
ject sizes and the access distribution, we demonstrate a fun-
damental limitation in existing constructions in terms of
achieving bandwidth optimality. We demonstrate that exist-
ing oblivious data access mechanisms perform uniform load
balancing of requests across object replicas; however, non-
uniform load balancing is necessary to achieve optimality. We
present a Mixed-Integer Linear Program (MILP)-based con-
struction that performs non-uniform load-balancing to achieve
bandwidth-optimality, outperforming all PANCAKE-variants
introduced above. Depending on the input object sizes and
access distribution across them, this construction can achieve
a significantly low bandwidth overhead. However, the MILP
approach does not scale beyond a few hundred objects, so
we approximate its behavior using a polynomial-time scheme
(Greedy Stuffed PANCAKE, §6.2).

In §2.3, we discuss how an adversary can use each leakage
profile to extract meaningful information about the data.

Practical implications. We also empirically characterize the
three-way tradeoff space for real-world datasets. Figure 1
shows the bandwidth overhead of each of the constructions in
Table 1 as a function of their storage overhead.

Figure 1 confirms our results (1)-(4): bandwidth overheads
for each scheme decrease with more storage, and given any

3Bound only holds for ŝ = smax and ŝ≥ ⌊κn⌋
⌊κn⌋−NOPT +1 · smax.

Figure 1: Bandwidth vs. storage overhead across schemes with different leakage (§1.1). We use real-world datasets from Twitter [30]
(top) and Wikipedia [31] (bottom) (see Appendix for Facebook datasets [26]) and Zipf access patterns with varying skew (left to right). The
rightmost column shows the dataset’s object size CDF. Bandwidth overheads for schemes that do not leak object sizes start from n · smax
(required for security). The y-axes are in log-scale broken between bandwidth overheads 120–106× (Twitter) and 15000–106× (Wikipedia).

fixed storage, bandwidth overheads decrease as more infor-
mation is leaked. Considering dataset-specific characteristics,
we find that since Wikipedia has a large range of object sizes,
all schemes observe a minimum of ∼1000× overhead, since
hiding each object’s identity requires each query to fetch the
largest object size, which is 1000× larger than the average
(similar observations have been made in prior work [33]).
However, schemes that leak the object lengths (as noted in (2),
(4)) incur lower bandwidth overheads, confirming our theoreti-
cal results. As such, the bandwidth overhead for such schemes
is over 10× lower than schemes that do not leak object sizes.
On the other hand, the Twitter dataset with less variability in
object sizes can use schemes that do not leak object sizes for
stronger security at a lower bandwidth overhead. Specifically,
it observes < 10× bandwidth overhead with 2–3× storage
overhead, which reduces to 2–3× bandwidth overhead on
leaking object sizes.

For access patterns with varying skew, schemes that do not
leak the access distribution have the same bandwidth overhead
regardless of skew, as expected; for schemes that leak access
distribution, we observe lower bandwidth overheads (as noted
in (3), (4)). Bandwidth overheads increase with the access
skew since hiding the identity of the most popular object
requires injecting more noise for all other objects.

Takeaways. For the problem of simultaneously preventing
length leakage and access pattern leakage, our results estab-
lish a rich tradeoff space between the storage footprint, band-
width footprint, and information leakage. Our constructions
demonstrate that existing oblivious data access mechanisms
can resist length leakage attacks with simple modifications
in proxy-side encryption mechanisms. Even so, this paper
only takes the first step in laying the intellectual foundation
for preventing length leakage in oblivious data access mech-

anisms. Much more work needs to be done in this space; to
that end, we close the paper by outlining several avenues of
future research.

2 Overview

We now describe our system and security models.

2.1 System Model

Our setup consists of a key-value (KV) store that supports
(single-key) get and put operations on KV pairs (k,v) sub-
mitted by one or more clients. Our results can, however, be
applied to any data store that supports read and write oper-
ations. We focus on a trusted proxy architecture commonly
used by encrypted data stores [8, 10–12, 34], which assumes
multiple client applications route query requests through a
single trusted proxy. The proxy manages the execution of
these queries on behalf of the clients, sending queries to the
untrusted storage service. We assume all communication chan-
nels are encrypted, e.g., using TLS.

2.2 Security Model

We now define our adversary and class of considered schemes.

Threat model. We use a trusted proxy threat model where the
client and proxy servers belong to a trusted domain. We model
client queries as independent samples from a distribution π

over keys, i.e., the probability of access to a key k is π(k). This
work focuses on settings where the underlying distribution π

is static. We discuss how our results may translate to the
dynamic setting where π changes over time in §8.

We assume that the untrusted cloud storage service is con-
trolled by a passive persistent adversary. This is typical of
secure cloud-deployments [1, 2, 4, 6, 35], where the adversary
(usually the cloud provider) can observe the volume (i.e., the
number and size) of client queries, as well as the encrypted
data stored at and retrieved from the storage service. It can-
not, however, access cryptographic keys or change queries,
responses, or stored data. The adversary aims to infer any
information about individual KV pairs that are accessed. Sim-
ilar to prior work [6, 9, 10, 12], we do not target hiding the
timing of client queries.

Considered schemes. We consider a class of schemes M,
where each scheme Π ∈M is defined as a pair of algorithms
Π = (Init,Query). While we defer the formal security defini-
tions to §7, we focus on an intuitive description here.

Init is an initialization algorithm that takes as input:

• a set KV of n key-value pairs {(k1,v1), . . . ,(kn,vn)},
• a set S of value sizes {s1, . . . ,sn}, where si is the size of vi.

• a distribution π over KV, where π(ki) corresponds to the
probability of accessing key ki, and,

• a storage parameter σ, which decides the total storage ca-
pacity available to the scheme.

Init outputs the following:

• a new set EKV of n̂ KV pairs {(k̂1, v̂1), . . . ,(k̂n̂, v̂n̂)},
• a mapping P that maps each key ki in KV to a set of keys in
EKV whose values “contain” vi in a contiguous sequence
of si bytes. If Keys(KV) and Values(KV) denote the set of
keys and values in KV respectively, then:

∀k ∈ Keys(KV),P(k) = {k̂ ∈ Keys(EKV) | v̂ contains v}

• a set πr of functions indexed by key k, where πr[k] takes as
input k̂ ∈ Keys(EKV) and outputs the access probability of
the copy of k’s value contained in k̂’s encrypted value 4,

• a distribution π f over EKV, where π f (k̂) denotes the prob-
ability of accessing key k̂ via “fake” queries or noise,

• the proportion of real queries δ to EKV, and,

• a constant B≥ 1 that will be used by Query and determine
bandwidth footprint.

The mapping P is stored at the proxy and is hidden from the
adversary; so are πr and π f . Note that since values of KV are
contained in a contiguous sequence of si bytes in values of
EKV (identified by P), M implicitly rules out compression
or other encoding schemes that increase or decrease the size
of data contained in values v ∈ Values(KV). Each key-value
pair (k̂, v̂) in EKV is ultimately encrypted by applying a se-
cretly keyed pseudorandom function (PRF) to the key (e.g.,

4Note that the function πr[k] is not a distribution over P(k), since
∑k̂ πr[k](k̂) = π(k), i.e., the original access probability of key k and not 1.

HMAC) to generate a label, denoted F(k̂), and symmetrically
encrypting the value using authenticated encryption, denoted
E(v′). These labels and encrypted values are ultimately stored
in the storage service, while the secret keys needed for F and
E are stored at the proxy and, therefore, hidden from an ad-
versary. Because F is deterministic, the proxy can perform
operations for key k̂ by instead requesting F(k̂)5. We have
omitted the two required cryptographic secret keys in our
notation for simplicity. We cryptographically bind labels and
value ciphertexts by using the label as associated data with E.

EKV additionally satisfies the following three properties:

Property 1. Each value v̂ in Values(EKV) has the same size
ŝ≥maxi(si).

Property 2. The total storage used by values Values(EKV)
must be less than σ, i.e., ŝ× n̂≤ σ.

Property 3. Each vi in Values(KV) is “contained” in at least
one v̂ j in Values(EKV), i.e., ∀ki ∈ Keys(KV), |P(ki)| ≥ 1.

Intuitively, Property 1 ensures protection against length-
leakage, while Property 2 bounds the scheme’s storage foot-
print. Finally, Property 3 ensures that all the data in KV is still
present in EKV, i.e., the scheme is lossless.

Query is a query algorithm that transforms a query on plain-
text keys in Keys(KV) to one or more queries on encrypted
keys in Keys(EKV). Query takes as input:

• Init’s outputs P, πr, π f , δ, B and,

• a sequence of queries Q = {q1, . . . ,qq} on plaintext keys in
Keys(KV), where each query q j is drawn from the distribu-
tion π; i.e., Pr[q j = ki] = π(ki).

Query generates as output:

• a sequence of queries Q̂ = {q̂1, . . . , q̂q̂} over encrypted keys
in Keys(EKV), where q̂ = q ·B.

The generated sequence of queries satisfies two properties:

Property 4. All keys in EKV are accessed with equal proba-
bility, i.e., ∀i, j, Pr[q̂ j = F(k̂i)] = 1/n̂.

Property 5. The expected number of accesses to any key k ∈
Keys(KV) is no more than the expected number of accesses
to all keys k̂ ∈ Keys(EKV) that k maps to in P:

∀k ∈ Keys(KV),E(k ∈ Q)≤ ∑
k̂∈P(k)

E(k̂ ∈ Q̂).

Property 4 ensures security by requiring protection against
access pattern leakage. Property 5 ensures correctness by re-
quiring that all queries in Q are answered in expectation over
the randomness in Query’s execution. We use “in expectation”

5There is a negligible probability for two distinct keys k̂i, k̂ j to have
F(k̂i) = F(k̂ j); we ignore this case for simplicity.

rather than “with high probability” to strengthen our results:
since our lower bounds (§3, §4) hold for the more relaxed
expectation-based correctness, they must also hold for more
stringent probability-based correctness. Property 5 thus ex-
cludes from M any mechanism that achieves security (i.e.,
Properties 1 and 4) “incorrectly”, e.g., by ignoring a large
fraction of client queries or responding with incorrect values.

We base our analysis on two key performance metrics:

• The storage footprint of Π is defined as σ, the total storage
capacity available to the scheme.

• The bandwidth footprint of Π is defined as β := B · ŝ, the
number of bytes fetched from EKV per query in Q.

2.3 Considered Leakage Profiles
How much information can be leaked about the underlying
data store differs by application; we capture these standards
in the leakage profile L atop our considered class of schemes
M. Leakage profiles describe an upper bound on what an
adversary learns from the execution of some scheme Π ∈M:
any information other than the output of L must be hidden.

Again, we only provide an intuitive description of the secu-
rity goal with leakage here and defer a formal simulator-based
ROR-CDLA security definition to §7. Given any input store
KV with access distribution π, value sizes S, storage footprint
σ, and a sequence Q of q queries sampled from π, we consider
the “real world” where Π produces a sequence of (encrypted)
queries Q̂. In contrast, the “ideal world” uses a sequence of
q ·B accesses generated from a uniform distribution over a set
of n̂ random bit strings of size ŝ. For some leakage profile L,
a scheme Π ∈M is L-secure (or, Π ∈ML) if the outputs of
the real and ideal worlds are indistinguishable. In the ideal
world, n̂, ŝ and B are generated by an algorithm S that only
sees L(KV,S,π,σ). In other words, any adversary’s view of
Π’s execution must be simulatable given only L’s output and
no other information about Π’s inputs or internal state. In
§7, we will show that the real and ideal worlds correspond to
ROR-CDLA0 and ROR-CDLA1, respectively.

We emphasize that these leakage profiles only relax what in-
formation is revealed during the initialization of the encrypted
store EKV. Any Π ∈M must still meet Properties 1-5, ensur-
ing that for every query, the identity of the accessed key and its
associated value are hidden. Thus, all schemes in our consid-
ered class M resist existing access pattern attacks [1, 36, 37]
and length leakage attacks [2, 38, 39], since they rely on leak-
age due to accesses to the KV store via client queries, i.e.,
information revealed after initialization.

We focus on four leakage profiles that determine whether or
not the scheme reveals KV’s value sizes or access distribution:

Lm (§3): MLm is the subset of schemes in M with leakage
profile Lm, where Lm(KV,S,π,σ) = (n,smax,B). Intuitively,
an adversary only learns the number of keys and the maxi-
mum value size in KV, along with the number of encrypted

queries Π makes, q ·B, ensuring protection against both ac-
cess distribution and length leakage-abuse attacks. Since our
considered leakage profiles have the same input and outputs
that always contain n,B, we will omit them in our notation.

LS (§4): MLS denotes the class of schemes in M with leakage
profile LS, where LS outputs (S). For any scheme Π ∈MLS,
an adversary can observe the sizes of all values in KV S and
the output of Lm. This permits, for instance, compression-
based attacks in the vein of CRIME [38] and BREACH [39],
which leverage the sizes of encrypted values to learn about
the plaintext values. As a concrete example, consider two
sensitive database tables with noticeably different value size
distributions, e.g., flu records in one table (with smaller, less
detailed reports) and cancer records in another (with longer,
more detailed reports), in a medical database. In this setting,
the attacker can distinguish between the tables and identify
when a request is for a flu or cancer record. This is analogous
to attacks in traffic analysis literature over websites, which
distinguish between different websites by observing the sum
of packet sizes across its visited webpages [40].

Lπ (§5): MLπ denotes the class of schemes in M with leakage
profile Lπ, where Lπ outputs (smax,π). For any scheme Π ∈
MLπ, an adversary can identify the access distribution π over
KV and the output of Lm. Like in the previous setting, an
attacker can distinguish between two database tables by their
access distributions, e.g., a table with flu records and uniform
access pattern from a table with cancer records and skewed
access pattern. Note that Lπ still excludes traditional access
pattern attacks [1, 2, 36, 37] that exploit the mapping between
KV pairs and their access frequencies.

LSπ (§6): MLSπ denotes the class of schemes in M with
leakage profile LSπ, where LSπ outputs (S,π). For any scheme
Π ∈MLSπ, an adversary can identify the value lengths S and
access distribution π. In this setting, attacks on schemes can
exploit the leakage of size distribution (i.e., attacks in LS),
access distribution (i.e., attacks in Lπ), or a combination of
the two (e.g., a volume and access pattern leakage-abuse
attack [41]). Continuing our medical database example, a
third table of arthritis records with uniform access patterns
and longer reports can be distinguished from the cancer table
by value sizes and the flu table by access pattern.

3 Lm: Revealing the largest value size

Under our strictest leakage profile, the adversary may only
learn the largest value size (smax) and the number of keys
(n). We do not explore stricter profiles that hide even smax
since they would yield impractically high bandwidth footprint
overheads (even Lm yields impractical overheads as noted in
§1.1). To understand what constructions are possible under
this leakage profile, consider a KV with three key-value pairs,
with sizes and access probabilities, as shown in Figure 2a.

(a) Example input KV. (b) Packing. (c) Padding + replication.
Figure 2: Sample constructions under M; see §3 for details.

First, since no value size other than smax = 5 can be leaked,
all values in the output EKV must be at least 5 bytes in size.

It may be tempting to pack the values of keys k0 and k1 into
a single 5-byte value for space efficiency (Figure 2b); however,
this scheme is /∈MLm. By observing that EKV consumes 10
bytes of storage, the adversary learns a bound on the sum of
the value lengths and that at least one value is smaller than
smax. As such, for any scheme in MLm, its storage footprint
must be independent of the value sizes S. We, therefore, focus
on schemes that pad the values for k0 and k1 to size smax.

The second security requirement is a uniform access dis-
tribution across keys in EKV. Consider a scheme that injects
“fake” accesses to each padded value to equalize the access
probabilities of the keys. However, the additional volume of
access traffic to EKV reveals information about the original
access distribution over the input KV, e.g., an access distri-
bution skewed towards k0 in Figure 2a requires more fake
accesses to k1 and k2, while one where all key access probabil-
ities are equal does not require any additional fake accesses.
An adversary can distinguish between these two cases by
observing the traffic volume to EKV. Thus, the bandwidth
footprint of any scheme in MLm must be independent of the
access distribution π over KV.

Other schemes that naively replicate the key-value pairs or
combine replication and fake accesses can still be insecure
under MLm. Consider a scheme that replicates the padded
value of k0 and divides its accesses equally between the copy
and the original. This results in four padded values (Figure 2c),
and the remaining non-uniformity in access distribution can
be smoothed using fake accesses. This scheme can still reveal
information about the original access distribution over the
input KV: if replication is used to smooth access frequencies
based purely on the skew in the input distribution, then the
total number of replicas (which is output by Init) leaks this
degree of skew. In particular, if π were uniform, no replicas
would be needed, and the output EKV would only contain
three key-value pairs instead of four replicas in our example.
As such, the storage footprint of a scheme in MLm must also
be independent of the access distribution π.

We formalize these intuitive observations, i.e., a scheme

Π ∈ MLm must have output storage and bandwidth foot-
prints independent of the value sizes and access distribu-
tions over KV, into performance lower bounds for any scheme
Π ∈MLm in §3.1. We then show in §3.2 that an adaptation
of the PANCAKE algorithm [6] — dubbed Padded PANCAKE
or PPC — is a bandwidth-optimal MLm scheme.

3.1 Performance Bounds
Any scheme Π ∈MLm must output a EKV that has the same
storage footprint (n̂ · ŝ) across all input stores KV of n key-
value pairs — otherwise it reveals information about the value
sizes S, or at the very least, some information about ∑i si. For
correctness, all data encoded in KV must also be in EKV
(Property 3). An input where all values have size smax requires
EKV to store at least n · smax bytes for no information to be
lost from KV. Then for any n-key input to Π, the output
EKV must always have a storage footprint of at least n · smax.
Moreover, we find that in minimizing bandwidth footprint,
schemes in MLm do not benefit from using EKV value size ŝ
larger than smax. This is because larger EKV values increase
the number of bytes transferred per access without reducing
the proportion of fake queries required. We generalize these
observations to all schemes in M that do not leak S in the
following two lemmas, deferring their proofs to Appendix B.

Lemma 1. Any Π ∈M with leakage L and S /∈ L requires
storage footprint σ≥ n · smax.

Lemma 2. Given storage footprint σ = κ ·n · smax, a scheme
Π ∈M with leakage L and S /∈ L that incurs the minimum
possible bandwidth footprint must use ŝ = smax.

In Theorem 3.1, we leverage the above lemmas to show that
the minimum bandwidth footprint for any scheme in MLm

with storage footprint σ = κ ·n ·smax (κ≥ 1) is ⌊κn⌋
⌊κn⌋−n+1 ·smax.

Since MLm schemes do not leak π, their bandwidth footprint
must be the same for any π. Intuitively, our proof identifies
inputs S and π that maximize any scheme’s bandwidth foot-
print — this happens when all values are as large as possible
and access distribution is as skewed as possible. An MLm
scheme must incur the same bandwidth footprint for any other
S and π, so the minimum bandwidth footprint achievable in
this worst case is also the lower-bound for any MLm scheme.

Theorem 3.1. Any Π ∈MLm with storage footprint σ = κ ·
n · smax (κ≥ 1) must have bandwidth footprint β≥ ⌊κn⌋·smax

⌊κn⌋−n+1 .

Proof. Suppose for contradiction that Π incurs storage foot-
print σ = κ ·n · smax and minimum possible bandwidth foot-
print β = (1−δ) · ⌊κn⌋

⌊κn⌋−n+1 · smax for some 0 < δ < 1. We will
show that the scheme cannot be Lm-secure.

We define an Lm-adversary A as in Figure 3. The intuition
behind A’s attack — and our proof — is that given a heavily
skewed access distribution as input, Π does not have enough

A1: Computing inputs:

S←{smax, ...,smax}
π←{1− ε, ε

n−1 , ...,
ε

n−1 }
σ← κ ·n · smax

KV← /0

For i in 1 to n:
ki←${0,1}m

vi←${0,1}S[i]

KV←∪ (ki,vi)

Return KV,S,π,σ

A2(EKV, Q̂): Computing output bit:

Build histogram of accesses in Q̂; Let x be
the maximum number of accesses to any k̂ ∈
Keys(EKV).
If x > (c+3

√
c) ln n̂:

b← 0
Else:

b← 1
Return b

Figure 3: Real-or-random adversary A for Theorem 3.1. ε→ 0 is
chosen by A to skew the access distribution.

bandwidth to ensure a uniform access distribution over its
output EKV (e.g., by injecting fake accesses). We show this
in Step 1 of our proof below. This allows the adversary A

to distinguish between ROR-CDLA0 and ROR-CDLA1 by ex-
amining the sequence of output queries Q̂ and performing a
simple statistical test: it simply guesses that it is interacting
with the real Π if the maximum number of queries to any
key in EKV is above some threshold. The threshold must
be carefully chosen such that the probability of exceeding it
is low for a uniform distribution of queries but high for the
non-uniform distribution of queries that Π would generate
with insufficient bandwidth. This forms the basis of Step 2,
where we show that the adversary has a non-trivial probability
of distinguishing between ROR-CDLA0 and ROR-CDLA1 for
δ > 0, completing the proof.

The attack assumes that Q̂ has a sufficiently large num-
ber of queries, specifically q̂ = |Q̂| = cn̂ ln n̂ queries, where
c > 1/ ln n̂ is a polynomial in n̂, ensuring that A’s attack is
polynomial-time. Looking ahead, we set the threshold A uses
to be q̂/n̂+3

√
c ln n̂ = (c+3

√
c) ln n̂, and c = n̂2.

Step 1: Given A’s choice of inputs, Π’s output EKV has a
non-uniform access distribution. To this end, we show that
∃k̂ ∈ Keys(EKV) with access probability Pr[k̂]> 1

n̂ .
Recall that in the KV generated by A1, all n values are of

size smax, the most heavily accessed key (which we shall call
h) has access probability 1− ε, and the remaining n−1 keys
have access probability ε

n−1 . Lemma 2 shows that for Π to
incur the minimum possible bandwidth it must use ŝ = smax.
Then the number of values in EKV is n̂ = ⌊σ

ŝ ⌋ = ⌊κn⌋, and
each value can contain exactly one value from KV. Now for
Π to fulfill Property 5, the sum of accesses to each ĥ ∈ P(h)
in Q̂ must be at least the number of accesses to h in Q in
expectation. This gives the inequality below:

(1− ε) ·q≤

(
∑

ĥ∈P(h)
Pr
[
ĥ ∈ Q̂

])
·q ·B

or, B≥ 1− ε

∑ĥ∈P(h) Pr
[
ĥ ∈ Q̂

]
)

Since bandwidth footprint is proportional to B, in the best
case Π can minimize the bandwidth footprint by splitting the
access probability of h uniformly across P(h), i.e.,

Figure 4: Placement of values v ∈ Values(KV) across values v̂ ∈
Values(EKV) to minimize bandwidth footprint with Lm leakage. vh
(highlighted) is the value associated with key h in Theorem 3.1.

B≥ 1− ε

|P(h)| · p
(1)

where p is the probability of accessing any key ĥ ∈ P(h).
Since Π controls |P(h)|, it can minimize B by maximizing
|P(h)|. To do so, Π must assign the n−1 keys other than h to
as few keys in Keys(EKV) as possible, i.e., n−1 keys. This
allows h to be mapped to the remaining ⌊κn⌋−n+1 values
in EKV, i.e., |P(h)| = ⌊κn⌋− n+ 1, as shown in Figure 4.
Substituting |P(h)| in (1), we lower bound p:

p≥ 1− ε

B(⌊κn⌋−n+1)

Since Π’s bandwidth footprint β is

B · ŝ = (1−δ) · ⌊κn⌋
⌊κn⌋−n+1

· smax,

Rearranging gives us 1
⌊κn⌋(1−δ) =

1
B(⌊κn⌋−n+1) , which plugs

into the above lower bound on p to give:

p≥ 1
⌊κn⌋

· 1− ε

1−δ
=

1
n̂
· 1− ε

1−δ
.

Since EKV contains a key with access probability p≥ 1
n̂ ·

1−ε

1−δ
,

we know that A can choose a ε such that p > 1
n̂ , resulting in a

non-uniform distribution over keys in EKV.
At this point, a computationally unbounded adversary can

already distinguish the non-uniform distribution over the real
Π’s output from the uniform distribution over a simulated
output by observing a large enough sequence of Π’s out-
put queries (Q̂). However, ROR-CDLA security employs a
polynomial-time adversary A; so, we define A2 in Figure 3 to
use the simple threshold-based test to detect non-uniformity
in Q̂’s access distribution over EKV, where |Q̂| is polyno-
mial in n̂. We then show that this test gives A non-negligible
advantage against Π for all simulator algorithms S.

Step 2: A has a non-negligible advantage. To show this,
we lower-bound Advror-cdla

Π,Lm,A,S(λ) by a function f (n̂,ε,δ),
and show that with ε→ 0 and sufficiently large values of
n̂, f (n̂,ε,δ) approaches 1 for 0 < δ < 1 and ε→ 0. Since

Advror-cdla
Π,Lm,A,S(λ) = |Pr[ROR-CDLA0

Π,Lm,A,q(λ) = 1]

−Pr[ROR-CDLA1
Π,Lm,A,S,q(λ) = 1]|,

We obtain this function by finding (i) an upper bound on
Pr[ROR-CDLA0

Π,Lm,A,q(λ) = 1], and (ii) a lower bound on
Pr[ROR-CDLA1

Π,Lm,A,S,q(λ) = 1]. We also note that since

A2’s test does not leverage n̂, ŝ and B generated by the al-
gorithm S, A works against all possible S.

Step 2(i): We upper-bound Pr[ROR-CDLA0
Π,Lm,A,q(λ) = 1],

i.e., the probability that A guesses incorrectly that the queries
Q̂ it is given are sampled from a uniform distribution rather
than generated by Π.

To do so, we focus on the key ĥ ∈ P(h) with access
probability p. A2 outputs 1 if, for all keys in EKV, the
number of queries they receive is less than or equal to
A’s threshold. We can, therefore, use the probability that
ĥ receives ≤ (c+ 3

√
c) ln n̂ queries as an upper bound for

Pr[ROR-CDLA0
Π,Lm,A,q(λ) = 1], and compute the same using

the one-sided Chebyshev inequality. While we defer its full
derivation to Appendix B.1, we state the upper bound below:

Pr[ROR-CDLA0
Π,Lm,A,q(λ) = 1]

≤ (1− ε)(n̂(1−δ)− (1− ε))

(1− ε)(n̂(1−δ)− (1− ε))+
c ln n̂
(

1−ε

1−δ
−1− 3√

c

)2

n̂(1−δ)2

. (2)

Note that A must choose a small enough ε such that a > 0,
specifically ε < 1− (1+ 3

√
c)(1− δ). Since we also need

ε > 0 for the π chosen by A to be a valid distribution, the
attack can only work with δ > 3

3+
√

c .

Step 2(ii): We lower-bound Pr[ROR-CDLA1
Π,Lm,A,S,q(λ) = 1],

i.e., the probability that A guesses correctly that the queries
in Q̂ are sampled from a uniform distribution.

Once again, A outputs 1 if all keys receive more than
(c+3

√
c) ln n̂ queries, so we represent the number of queries

to a key in EKV with a binomial random variable. We then use
the Chernoff bound to compute the upper bound of the prob-
ability that all keys receive > (c+3

√
c) ln n̂ queries, which

we subtract from 1 to obtain the desired lower bound on
Pr[ROR-CDLA1

Π,Lm,A,S,q(λ) = 1]. Again, while its derivation
is deferred to Appendix B.1, we have the lower bound:

Pr[ROR-CDLA1
Π,Lm,A,S,q(λ) = 1]≥ 1− n̂−2. (3)

Finally, we compute A’s advantage using (2) and (3):

Advror-cdla
Π,Lm,A,S(λ) = |Pr[ROR-CDLA0

Π,Lm,A,q(λ) = 1]

−Pr[ROR-CDLA1
Π,Lm,A,S,q(λ) = 1]|

≥

∣∣∣∣∣1− 1
n̂2 −

(1− ε)(n̂(1−δ)− (1− ε))

(1− ε)(n̂(1−δ)− (1− ε))+
c ln n̂
(

1−ε

1−δ
−1− 3√

c

)2

n̂(1−δ)2

∣∣∣∣∣
= f (n̂,ε,δ)

giving us our lower-bound function f on the advantage. We
let A set ε→ 0 and c = n̂2, giving us:

f (n̂,δ) =

∣∣∣∣∣1− n̂−2− n̂(1−δ)−1

n̂(1−δ)−1+
n̂2 ln n̂

(
1

1−δ
−1− 3

n̂

)2

n̂(1−δ)2

∣∣∣∣∣
Figure 5 shows that for large n̂, the bound on δ > 3

3+
√

c
for which A’s attack works becomes vanishingly small, and

0 0.2 0.4 0.6 0.8 1
0

0.5

1

δ

f(
n̂,

δ
)

n̂ = 103

n̂ = 104

Figure 5: Variation of f (n̂,δ) with δ and n̂.

f (n̂,ε,δ) is a nonzero value that rapidly approaches 1. Since f
represents a lower bound on Advror-cdla

Π,Lm,A,S(λ), our adversary
A has a non-zero advantage, completing the proof.

Observe that as n grows large, the lower-bound converges
to κsmax

κ−1 , which depends solely on the storage footprint since
κ = σ

nsmax
. This highlights a fundamental trade-off between

storage and bandwidth footprints: an optimal MLm scheme
can leverage more storage to lower the bandwidth footprint.

3.2 Padded PANCAKE: Optimal MLm scheme

We now present a MLm scheme, Padded PANCAKE (Figure 6),
defined as PPC := (InitPPC,QueryPPC) and adapted from PAN-
CAKE [6] to the variable-length setting. We begin with a
summary of PANCAKE’s approach and then describe Padded
PANCAKE’s key differences.

PANCAKE leverages knowledge of the access distribution π

to ensure an adversary observes a uniform access distribution
over the encrypted KV pairs. First, it selectively replicates
KV pairs with high access probability while ensuring the total
number of keys in the encrypted store is exactly 2 ·n (adding
fake replicas if necessary). This smoothes out the access dis-
tribution over the resulting encrypted KV pairs to some extent;
the remaining non-uniformity is removed by injecting fake
queries. To this end, it computes a fake access distribution
π f over the replicated encrypted KV pairs required to ensure
uniform distribution, assuming the proportion of real queries
is δ (set to 1/2 by default). All encrypted queries are sent
in batches of size B = 3 to ensure that the adversary cannot
distinguish fake queries from real ones. PANCAKE thus se-
cures the KV store against access pattern attacks with a 3×
bandwidth overhead and 2× storage overhead but assumes
that the store contains only uniform-size values.

Padded PANCAKE generalizes PANCAKE to support values
of arbitrary sizes. At a high level, it pads every key to the
largest value size, smax, and then simply applies PANCAKE to
the set of padded KV pairs. More specifically, given a total
storage footprint σ = κ · n · smax, its initialization function,
InitPPC, creates n̂ = ⌊σ/smax⌋ = ⌊κn⌋ values in the output
EKV. Of these values, n contain one of each value v ∈ KV
padded to length smax and encrypted. Of the remaining n̂−n
values, some hold padded and encrypted replicas of values in
KV that have access probability > 1

n̂−n+1 , while the rest are
dummy replicas to ensure that the number of values in EKV
is exactly n̂. QueryPPC generates a sequence of q ·B real and

fake queries to ensure a uniform access distribution across
k̂ ∈ Keys(EKV).

InitPPC(KV,S,π,σ):

smax ←max
s∈S
{s}

n← |KV|; n̂← ⌊σ/smax⌋
EKV← /0; r← 0
For (ki,vi) ∈ KV:

R(ki)← ⌈π(ki) · (n̂−n+1)⌉
For j ∈ [1, ...,R(ki)]:

k̂i j ← (ki, j)
v̂i j ← pad(vi,smax)

P[ki]←∪{k̂i j}
πr [ki](k̂i j)← π(ki)

R(ki)

π f (k̂i j)←
1−(n̂−n+1)

π(ki)
R(ki)

n−1

EKV←∪{(F(k̂i j),E(v̂i j))}
r← r+R(ki)

For j ∈ {1, ..., n̂− r}:
k̂D j ← (D, j)
πr [D](k̂D j)← 0
π f (k̂D j)← 1/n̂
EKV←∪{F(k̂D j),E(D)}

δ← (n̂−n+1)/n̂; B← 1/δ

Return EKV,P,πr ,π f ,δ,B

QueryPPC(Q,P,πr ,π f ,δ,B):

Q̂← /0; q̂← |Q| ·B
For k ∈ Keys(KV):

πk
r (k̂)←

πr [k](k̂)
∑k̂∈P(k) πr [k](k̂)

▷ πk
r denotes the real access distribu-

tion of k across k̂ ∈ P(k).
For qi ∈ Q:

k̂←π
qi
r P(qi)

AddToQueue(k̂)
For i = 1 to q̂:

qtype←δ {0,1}
If qtype = 0:

k̂i←$ π f

Else:
If QueueNotEmpty:

k̂i←Dequeue()
Else:

ki←$ π

k̂i←πr [ki]P(ki)

Q̂←∪{F(k̂i)}
Return Q̂

Figure 6: Padded PANCAKE’s Init and Query algorithms. The func-
tion pad(x,s) returns string x padded to size s.

Next, we show that PPC is bandwidth-optimal, i.e., it
achieves the bandwidth lower bound given by Theorem 3.1.

Theorem 3.2. For any storage footprint σ= κ ·n ·smax (κ≥ 1),
PPC is a bandwidth-optimal MLm scheme.

Proof. By construction in Figure 6, InitPPC sets B = n̂
n̂−n+1 ,

while ensuring πr, π f and δ are always valid for any π. As
such, PPC has β = B · smax = ⌊κn⌋·smax

⌊κn⌋−n+1 , equal to the lower
bound given by Theorem 3.1.

PPC’s bandwidth optimality demonstrates the viability of PAN-
CAKE-based solutions in M — simply padding values in PAN-
CAKE enables an optimal scheme in MLm that runs in poly-
nomial time. However, its bandwidth overheads may not be
practical for many storage scenarios (e.g., for the Wikipedia
dataset with large variance in data sizes, §1.1). We explore
relaxed leakage profiles for lower bandwidth footprints next.

4 LS: Revealing the value sizes

Now we consider the leakage profile LS = (S), i.e., the adver-
sary learns the sizes of values in KV. Since schemes in MLS
do not leak the access distribution (π), their bandwidth and
storage footprint must be independent of π. However, leak-
ing S allows us to consider new constructions not in MLm —
those whose bandwidth and/or storage footprint may depend
on S, e.g., the packing example in Figure 2b. We note that
it may be possible to leak more information than smax and
less than S, e.g., the sum of value sizes (∑i si), as explored in
recent work [33]. However, we restrict our focus on leaking S

since there are inputs for which ∑i si directly reveals S, e.g.,
if there are n− 1 values of size smax and one value of size
smax−1, knowing ∑i si = n · smax−1 immediately reveals S.
Moreover, our bandwidth lower bounds for leaking S hold
for leaking ∑i s. Indeed, our findings complement the recent
work, which investigates size-based leakage in greater depth.

4.1 Performance Bounds

The following theorem presents the minimum bandwidth
footprint for any scheme Π∈MLS with storage footprint σ =
κ ·n · smax. Our proof is similar to that of Theorem 3.1: since
a scheme in MLS must have the same bandwidth footprint
independent of π, we construct a worst-case π to maximize the
bandwidth footprint, giving us a lower-bound. However, the
relaxed leakage profile allows this lower-bound to be lower
than that of Theorem 3.1, depending on how well values in
KV can be packed into smax-sized bins.

Theorem 4.1. Let NOPT ≤ n be the minimum number of smax-
sized bins needed to bin-pack all values in KV. Any Π ∈
MLS with storage footprint σ = κ · n · smax (κ > 0) and ŝ =
smax or ŝ≥ ⌊κn⌋·smax

⌊κn⌋−NOPT+1 must have bandwidth footprint β≥
⌊κn⌋

⌊κn⌋−NOPT+1 · smax.

Proof. Suppose for contradiction that Π has storage foot-
print σ = κ · n · smax and bandwidth footprint β = (1− δ) ·

⌊κn⌋
⌊κn⌋−NOPT+1 · smax for some 0 < δ < 1. We will show that the
scheme cannot be LS-secure. Since our proof approach is
similar to the proof of Theorem 3.1, we omit common aspects
while outlining the salient differences.

Let LS-adversary A be defined as in Figure 3 with a sin-
gle modification: instead of S ← {smax, . . . ,smax}, A1 sets
S←{s1, . . . ,sn}, which is a list of arbitrary sizes sorted in de-
scending order. The order ensures that the key with the largest
value size has access probability 1−ε, which is crucial to A’s
approach. We will show that given the large, heavily accessed
key and limited range for ŝ, Π cannot maintain a uniform
access distribution over EKV with the assumed bandwidth
footprint in Step 1. A2 can then use the same threshold test
from Figure 3 to distinguish between ROR-CDLA0

Π,LS,A,q(λ)

and ROR-CDLA1
Π,LS,A,S,q(λ) in Step 2.

Step 1: Given A’s choice of inputs, Π’s output EKV has
a non-uniform access distribution. A1 generates KV of
variable-sized values, where the largest value is also most
heavily accessed. The key for this value (say, h) has access
probability 1− ε, and the remaining n−1 keys have access
probability ε

n−1 . We will show that one of the keys in EKV
that maps to h must have access probability > 1/n̂.

Since Π ∈M, by Property 1, each value v̂ ∈ Values(EKV)
has size ŝ and by Property 2, |EKV|= n̂≤ κnsmax/ŝ. To allow
Π to use as much storage as possible, we set n̂ = ⌊κnsmax/ŝ⌋.
For Property 3, Π maps each k ∈ Keys(KV) to a nonempty

set P(k)⊆ Keys(EKV). We focus on the set P(h) of keys in
EKV that h is assigned to; following the same reasoning as
Inequality 1 in Theorem 3.1, Property 5 allows us to show:

B≥ 1− ε

|P(h)| · p
(4)

where p is the equal probability of accessing any key ĥ∈P(h).
Again, minimizing bandwidth footprint (which is proportional
to B) requires minimizing |P(h)|, and we consider the follow-
ing two cases for it:

Case 1: ŝ≥ ⌊κn⌋·smax
⌊κn⌋−NOPT+1 . Π’s bandwidth footprint is:

β = B · ŝ = (1−δ) · ⌊κn⌋ · smax

⌊κn⌋−NOPT +1
(5)

so we have:

B =
(1−δ)

ŝ
· ⌊κn⌋ · smax

⌊κn⌋−NOPT +1
≤ (1−δ)< 1

violating the constraint B≥ 1, making this case impossible.

Case 2: ŝ = smax. Then n̂ = ⌊κn⌋. Since h has size smax, the
values of each ĥ ∈ P(h) may only contain the value corre-
sponding to h, and nothing else. Then to maximize |P(h)|, Π

must minimize the number of values that contain values of
the remaining keys Keys(KV)\{h}. This minimum number
is equal to the optimal number of smax-sized bins needed to
bin-pack the values of Keys(KV) \ {h}, which is NOPT − 1.
Therefore, |P(h)| ≤ n̂− (NOPT −1) = ⌊κn⌋−NOPT +1. Sub-
stituting this into (4), we get:

p≥ 1− ε

B(⌊κn⌋−NOPT +1)

Rearranging (5) gives us 1
⌊κn⌋(1−δ) =

1
B(⌊κn⌋−NOPT+1) for ŝ =

smax, which simplifies the above lower bound on p to:

p≥ 1
⌊κn⌋

· 1− ε

1−δ
=

1
n̂
· 1− ε

1−δ

EKV then contains a key with access probability p≥ 1
n̂ ·

1−ε

1−δ
,

which is the same result as in Theorem 3.1. While the value
of n̂ may differ, A can still choose an ε such that p > 1

n̂ ,
giving a non-uniform distribution. Once again, a computa-
tionally unbounded adversary can distinguish between Π’s
non-uniform access distribution and a uniform access distribu-
tion with a sufficiently-long Q̂. However, ROR-CDLA security
requires A2 (Figure 3) to distinguish between the distributions
in polynomial time. Specifically, we must show that A has
non-negligible advantage Advror-cdla

Π,LS,A,S(λ) against Π for all
simulator algorithms S. Fortunately, the approach for show-
ing this is identical to Step 2 in the proof of Theorem 3.1,
since A2 uses the exact same threshold-based test; we avoid
repeating it for brevity.

Theorem 4.1 imposes a bandwidth lower bound on MLS

schemes, but only for ŝ = smax and ŝ ≥ ⌊κn⌋·smax
⌊κn⌋−NOPT+1 . The

bound does not hold between these two sizes, as values in
EKV are large enough to benefit from a more strategic place-
ment of KV values across EKV values. We confirm this intu-
ition with a simple counterexample.

Lemma 3. There exists a scheme Π ∈MLS with smax < ŝ <
⌊κn⌋·smax

⌊κn⌋−NOPT+1 and input (KV,S,π,σ) for which Π has band-

width footprint β < ⌊κn⌋
⌊κn⌋−NOPT+1 · smax.

Proof. Let Keys(KV) := {k1,k2} with value sizes S :=
{10,1} and σ = 22, i.e., κn = σ/smax = 2.2. The minimum
number of smax-sized bins needed to bin-pack the values of
KV is NOPT = 2, so Theorem 4.1 gives the bandwidth lower
bound β = ⌊κn⌋

⌊κn⌋−NOPT+1 · smax = 20.
Now we give a scheme Π with 10 < ŝ < 20 and bandwidth

footprint β < 20 for all π. Let Π have ŝ = 11, making n̂ = 2.
Let each value in EKV contain a replica of both values in KV.
Then Π can equally divide access probabilities across EKV,
i.e., ∀k ∈ Keys(KV),∀k̂ ∈ Keys(EKV),πr[k](k̂) = π(k)/2,
which means both keys in EKV have access probability 1/2.
No additional queries are needed to smooth the access distri-
bution, so Π can set B = 1, making β = B · ŝ = 11 < 20.

In this example, a small increase in ŝ above smax vastly im-
proves space utilization. The possibility of this occurrence
depends on S, ŝ, and the corresponding bin-packing. For large
n, however, such cases should be rare, and Theorem 4.1’s
bound should hold for most ŝ.

Next, we introduce a polynomial-time MLS scheme that
achieves the bound outlined in Theorem 4.1 for ŝ = smax.

4.2 Stuffed PANCAKE: Optimal MLS scheme
Our proposed scheme in MLS exploits revealing S by bin-
packing the values in KV into equal-sized bins, and then using
PANCAKE to equalize access probabilities across bins.

InitSPC(KV,S,π,σ):

n← |KV|;smax ←max
s∈S
{s};EKV← /0

ŝ← smax; n̂← ⌊σ/ŝ⌋;σ′← n̂ · ŝ
KV′,P′←OptBinPack(KV, ŝ)
For (k′,v′) ∈ KV′:

πp(k′)← ∑k:k′∈P′(k) π(k)
S′←∪{|v′|}

EKV,P′′,π′r ,π f ,δ,B← InitPPC(KV
′,S′,πp,σ

′)

For k ∈ Keys(KV):
k′← P′[k]
P(k)←∪P′′[k′]
For k̂ ∈ P′′[k′]:

πr [k](k̂)← π(k)/|P(k)|
Return EKV,P,πr ,π f ,δ,B

QuerySPC(. . .):

Return
QueryPPC(. . .)

Figure 7: Stuffed PANCAKE pseudocode. We omit QueryGPC’s argu-
ments since they are the same as QueryPPC’s.

We define Stuffed PANCAKE (Figure 7) as SPC :=
(InitSPC,QuerySPC), where InitSPC first runs an optimal pack-
ing algorithm to place n values into n̂ bins of size smax. It

then leverages InitPPC with storage footprint σ = ⌊κn⌋ · smax
to generate the final EKV,π f , δ, B, and post-processes outputs
P and πr to ensure correct mappings from keys in KV to keys
in EKV. QuerySPC simply uses QueryPPC to generate queries
to EKV. Note that while we use ŝ = smax in our description
of SPC, it can easily use ŝ > smax. We now show that SPC
achieves Theorem 4.1’s lower bound.

Theorem 4.2. For any storage footprint σ= κ ·n ·smax (κ≥ 1),
SPC is a bandwidth-optimal MLS scheme.

Proof. In InitSPC, OptBinPack generates KV′ containing
NOPT values of size smax each. This KV′ is then input to
InitPPC along with storage ⌊κn⌋ · smax; since QuerySPC uses
the unmodified QueryPPC, SPC’s bandwidth footprint is the
same as PPC’s, except with n := NOPT and σ := ⌊κn⌋ · smax.
Substituting these values into Theorem 3.1, we have that SPC

has β = n̂
n̂−NOPT+1 · smax = ⌊κn⌋

⌊κn⌋−NOPT+1 · smax, equal to the
bound in Theorem 4.1.

Theorem 4.2 shows that SPC’s freedom to leak size distribu-
tion permits it to achieve a lower bandwidth footprint com-
pared to PPC for the same storage footprint.

Approximating OptBinPack. Optimal bin-packing is an NP-
hard problem; however, we can use near-optimal approximate
algorithms that run in polynomial time, e.g., First-Fit Decreas-
ing (FFD) which uses ≤ 11NOPT+6

9 bins [42].

5 Lπ: Revealing the access distribution

Our next leakage profile is Lπ = (smax,π). Like LS, Lπ is a
relaxation of Lm but allows new constructions that are distinct
from those under both Lm and LS. Since schemes in MLπ do
not leak value sizes S, their storage and bandwidth footprints
must be independent of S; however, they can depend on the
access distribution π. For instance, the packing approach of
Figure 2b is not in MLπ for the same reason that it is not
in MLm: it reveals information about the value sizes. How-
ever, the scheme in Figure 2c is in MLπ because the access
distribution can be revealed.

Unlike prior sections, we do not have a closed-form lower-
bound on bandwidth footprint for MLπ; we instead directly
provide a bandwidth-optimal MLπ scheme.

5.1 Greedy PANCAKE: Optimal MLπ scheme
We now present a scheme in MLπ that greedily replicates
values with the highest access probabilities, then smooths the
access distribution across the replicas with fake queries.

Let Greedy PANCAKE be GPC := (InitGPC,BatchGPC).
Given σ = κ ·n · smax storage, InitGPC starts with an array R of
n elements, where R[i] = |P(ki)| is the total number of keys
k̂ ∈ Keys(EKV) that key ki ∈ KV is mapped to. The access
probability of ki is split equally across the keys in P, i.e., for

all k̂ ∈ P,πr[ki](k̂) = π(ki)/R[i]. Initially R[i] = 1 for all ki;
for each of the remaining n̂− n keys in EKV, the scheme
assigns to it the key ki with the highest split access probabil-
ity π(ki)/R[i] at that point. Like in previous PANCAKE-based
schemes, InitGPC also computes π f ,δ,B to be used in the query
algorithm QueryGPC := QueryPPC.

InitGPC(KV,S,π,σ):

n← |KV|; smax ←max
s∈S
{s}

ŝ← smax; n̂← ⌊σ/ŝ⌋
EKV← /0; r← 0; R← [1, ...,1]

While
n
∑

i=1
R[i]< n̂ :

h← argmaxi π(ki)/R[i]
R[h]← R[h]+1

p̂max ← max
ki∈Keys(KV)

π(ki)/R[i]

For i ∈ [1, ...,n] :
For j ∈ [1, ...,R[i]] :

k̂i j ← (ki, j)
v̂i← pad(vi,smax)

P[ki]←∪{k̂i j}
πr [ki](k̂i j)← π(ki)/R[i]

π f (k̂i j)← p̂max−π(ki)/R[i]
n̂·p̂max−1

EKV←∪{(F(k̂i j),E(v̂i))}
δ← 1/(n̂ · p̂max); B← 1/δ

Return EKV,P,πr ,π f ,δ,B

QueryGPC(. . .):

Return QueryPPC(. . .)

Figure 8: Greedy PANCAKE’s Init & Query algorithms. We omit
QueryGPC arguments since they are the same as QueryPPC’s.

Theorem 5.1 shows that Greedy PANCAKE is bandwidth-
optimal if the entire storage footprint σ = κ · n · smax must
be used. We defer the proof to Appendix B but summarize
our approach here in two steps. First, since the bandwidth
footprint of all schemes in MLπ must be independent of S,
by Lemma 2, increasing the size ŝ of values in EKV beyond
smax is not beneficial to reducing bandwidth footprint for
schemes in MLπ. Second, we show that Greedy PANCAKE
using ŝ = smax is bandwidth-optimal using the “greedy stays
ahead” argument: for each of the n̂−n keys in EKV to which
GPC assigns a key from KV, the resulting maximal split access
probability p̂max = maxki∈Keys(KV) π(ki)/R[i] is at most that
of an optimal algorithm at the same step.

Theorem 5.1. For any storage footprint σ= κ ·n ·smax (κ≥ 1),
GPC achieves the lowest bandwidth footprint β for any MLπ

scheme that uses exactly σ storage.

Intuitively, since GPC can reveal the access distribution, it allo-
cates storage to values proportional to their access probability,
maximally utilizing the given storage footprint to minimize
bandwidth footprint. A caveat for Greedy PANCAKE, how-
ever, is that it is only bandwidth-optimal among schemes that
must use all of the storage given, i.e. exactly κ ·n · smax bytes.
There are cases when using storage less than κ ·n ·smax results
in a lower bandwidth footprint. Consider π = (1

5 ,
2
5 ,

2
5) and

σ = 6smax; GPC creates six replicas, i.e., β≥ σ · p̂max =
6
5 smax.

However, one can get a uniform access distribution over EKV
with just five replicas: assign 2 replicas each to the keys with

access probability 2
5 and 1 to the key with probability 1

5 , giv-
ing us β = smax. With this intuition, we can modify GPC to
achieve the minimum β for any σ≤ κ ·n · smax:

GPC∗. We define GPC∗=(InitGPC∗ ,QueryGPC), where InitGPC∗

iterates through storage footprints σ from n · smax to κ ·
n · smax. For each σ, GPC∗ runs (EKV,P,πr,π f ,δ,B) ←
InitGPC(KV,S,π,σ) and tracks a running minimum on band-
width footprint across the outputs from InitGPC, and returns
the (EKV,P,πr,π f ,δ,B) for the global minimum.

Theorem 5.2. For any storage footprint σ= κ ·n ·smax (κ≥ 1),
GPC∗ is a bandwidth-optimal MLπ scheme.

Proof. This follows from Theorem 5.1 and GPC∗’s use of GPC
in its exhaustive search for the optimal bandwidth footprint
over storage footprints from n · smax to κ ·n · smax.

6 LSπ: Revealing value sizes & distribution

Our last considered leakage profile is LSπ = (S,π), where
the adversary may know both the value sizes S and access
distribution π over KV. As the most relaxed leakage profile
considered, LSπ allows for a much larger solution space than
the previous leakage profiles. For instance, both packing (Fig-
ure 2b) and replication (Figure 2c) can be used by schemes
in MLSπ. Unfortunately, the search space for a performance-
optimal scheme in MLSπ is too large, and we currently do
not have a polynomial time algorithm that achieves the per-
formance lower-bound. However, we provide a MILP formu-
lation that yields a bandwidth-optimal construction (§6.1),
along with Greedy Stuffed PANCAKE (§6.2), a sub-optimal
poly-time algorithm in MLSπ that is efficient in practice.

6.1 MILP-based optimal MLSπ scheme
We formulate the problem of assigning values v∈Values(KV)
and access probabilities to values v̂ ∈ Values(EKV) to mini-
mize bandwidth footprint as an MILP.

For a key k ∈ Keys(KV), let p̂k,k̂ be the portion of its
real access probability π(k) assigned to k̂ ∈ Keys(EKV);
note that if k̂ /∈ P(k) then p̂k,k̂ = 0, and ∑k̂∈EKV p̂k,k̂ = π(k).
Let p̂k̂ = ∑k∈KV p̂k,k̂, i.e., the summed access probabilities
of the replicas of keys k ∈ Keys(KV) assigned to a key
k̂ ∈ Keys(EKV). Let p̂max = maxk̂∈EKV p̂k̂, and k̂∗ be the cor-
responding key in Keys(EKV). The objective function for
our MILP is given below. We prove that it lower-bounds the
bandwidth footprint in Lemma 5 (Appendix B).

minimize n̂ · ŝ · p̂max (6)

Our goal is subject to the following constraints:

(a) The real access probabilities must be between 0 and 1.

(b) The real access probabilities across the replicas of a key
k ∈ KV must sum to k’s real access probability.

(c) A key k ∈ KV assigned to k̂ ∈ EKV via P should have
non-zero access probability only if k̂ ∈ P(k).

(d) Sum of value sizes si ∈ S corresponding to keys ki ∈ KV
assigned to k̂ ∈ EKV via P must not exceed ŝ.

Let yk,k̂ ∈ {0,1} be a decision variable that denotes whether
or not key k ∈ KV mapped to key k̂ ∈ EKV via P. Then the
above constraints can be encoded in the MILP as follows:

∀k ∈ KV, k̂ ∈ EKV, 0≤ p̂k,k̂ ≤ 1 (a)

∀k ∈ KV, ∑
k̂∈EKV

p̂k,k̂ = π(k) (b)

∀k ∈ KV, k̂ ∈ EKV, p̂k,k̂ ≤ yk,k̂ ·π(k) (c)

∀k̂ ∈ EKV, ∑
ki∈KV

yki,k̂
· si ≤ ŝ (d)

The above formulation is not linear: since p̂max is the max-
imum of n̂ linear functions of decision variables, the goal
(6) contains a min-max term. However, this term can be lin-
earized through standard techniques [43], making it solvable.
Also, since the formulation does not ensure Property 4, we
adapt our MILP scheme below to fulfill this requirement.

For each storage capacity κ · n · smax and feasible pack
size ŝ ranging from smax to stot = ∑i si the InitMILP runs a
program solver Solve(·) on the problem formulation. After
choosing the bandwidth-optimal pack size, InitMILP computes
(EKV,P,πr) according to the solver output, and (π f ,δ,B)
based on InitPPC. Like GPC (§5.1), MILP uses exactly the stor-
age footprint σ given. As with GPC, this has a simple fix:
run InitMILP for each feasible storage footprint from stot to σ

for a bandwidth-optimal scheme for all σ ≤ κ ·n · smax. The
algorithm definitions are deferred to the full version [44].

Theorem 6.1. For any storage footprint σ= κ ·n ·smax (κ> 0),
MILP is a bandwidth-optimal MLSπ scheme.

Proof. Optimality follows from the objective function of
MILP, while feasibility follows from its constraints.

While the MILP enables an optimal MLSπ solution, it is an
NP-hard problem. We show a sub-optimal but polynomial-
time construction in MLSπ next.

6.2 PANCAKE-based poly-time MLSπ scheme
Greedy Stuffed PANCAKE (GSPC) is a combination of SPC
and GPC∗: InitGSPC first packs the values of KV into smax-sized
bins, then passes the result to InitGPC∗ , while QueryGSPC is the
same as QueryGPC∗ (see the full version [44] for pseudocode).
While GSPC runs in polynomial time, it is sub-optimal:

Lemma 4. There exists a scheme Π ∈ MLSπ and input
(KV,S,π,σ) for which Π has bandwidth footprint β lower
than GSPC’s.

ROR-CDLA0
Π,L,A,q(λ):

(KV,S,π,σ)←$A1

π̃← Est(π); Q← /0

(EKV,P,πr ,π f ,δ,B)
←$ Init(KV,S, π̃,σ)

kF←$K;kAE←$K

For i in 1 to q:
qi←$ π;Q←∪qi

Q̂←$Query(Q,P,πr ,π f ,δ,B)
b←$A2(EKV, Q̂)

Return b

ROR-CDLA1
Π,L,A,S,q(λ):

(KV,S,π,σ)←$A1

(n̂, ŝ,B)←$S(L(KV,S,π,σ))
EKV← /0; Q̂← /0

For i in 1 to n̂:
k̂i←${0,1}m

v̂i←${0,1}ŝ

EKV←∪{(k̂i, v̂i)}
For i in 1 to q̂:

k̂←$Keys(EKV); Q̂←∪{k̂}
b←$A2(EKV, Q̂)

Return b

Figure 9: ROR-CDLA security game for key-value store schemes.

Proof. Let the input have sizes S = {4,3,2,1}, access distri-
bution (0.1,0.1,0.3,0.5), and storage footprint σ = 16.

First, GSPC sets ŝ = 4 and bin-packs the values into
NOPT = 3 bins ({4},{3},{2,1}) with access probabilities
(0.1,0.1,0.8). GSPC then runs InitGPC∗ , which replicates the
last bin, giving ({4},{3},{2,1},{2,1}) with access probabil-
ities (0.1,0.1,0.4,0.4). Then GSPC sets B = n̂×0.4 = 1.6 to
get β = B · ŝ = 6.4.

Now consider an alternate scheme Π that makes the fol-
lowing assignment, where each tuple (s, p) denotes a value
of size s with access probability p, and separate values in
EKV are delineated by {}: {(4,0.1)}, {(1,0.2),(3,0.1)},
{(1,0.15),(2,0.15)},{(1,0.15),(2,0.15)}. Since p̂max = 0.3,
Π can set B = n̂×0.3 = 1.2 to get β = 4.8 < 6.4.

The counterexample highlights the key shortcomings of GSPC:
it cannot (i) replicate individual values in KV, or (ii) perform
non-uniform load balancing across replicas. Nevertheless, as
shown in §1.1 GSPC is bandwidth-efficient for large n.

7 Formal Security Analysis using ROR-CDLA

We present our new security model ROR-CDLA, which builds
on prior work [6] to capture schemes in M as defined in §2.2.
It extends prior work’s ROR-CDA model [6], which captures
security against access pattern attacks by a passive persistent
adversary without accounting for length leakage attacks.

Technical preliminaries. All algorithms including adver-
saries are assumed to run in time polynomial in the security
parameter, denoted λ. A scheme is secure if the advantage
gained by any adversary is negligible, i.e., tends to zero faster
than the inverse of any polynomial.

Definition 1 (ROR-CDLA with simulator).

Let Π = (Init,Query) be an encrypted storage scheme as
defined in §2 and let L be a leakage function. For algorithms
A and S, we define the two games:

ROR-CDLA0
Π,L,A,q(λ) A(1λ) picks inputs (KV,S,π,σ). The

game then runs (EKV,P,πr,π f ,δ,B)←$ Init(KV,S,π,σ),
samples q queries (Q) from π, and runs Q̂ ←

Leakage ROR-CDA⇒ML(·)? ML(·)⇒ ROR-CDA?
Lm ✗ ✓

LS ✗ ✓

Lπ ✗ ✗

LSπ ✗ ✗

Figure 10: ROR-CDA vs ROR-CDLA. The second column shows
for each leakage profile ML(·) whether or not any ROR-CDA-secure
scheme is in ML(·). The third column shows whether any scheme
in ML(·) is also ROR-CDA-secure.

Query(Q,P,πr,π f ,δ,B). It gives (EKV, Q̂) to A, which
eventually returns a bit that the game outputs.

ROR-CDLA1
Π,L,A,S,q(λ) A(1λ) picks inputs (KV,S,π,σ).

The game then runs (n̂, ŝ,B)←$S(L(KV,S,π,σ)) and gen-
erates an EKV consisting of n̂ random bit strings of size ŝ. It
samples Q̂ as q̂ = qB queries from a uniform distribution over
the keys of EKV, and gives (EKV, Q̂) to A, which eventually
returns a bit that the game outputs.
We define the ROR-CDLA-L-advantage of A and S to be

Advror-cdla
Π,L,A,S(λ) =|Pr[ROR-CDLA0

Π,L,A,q(λ) = 1]

−Pr[ROR-CDLA1
Π,L,A,S,q(λ) = 1]|

and we say that Π is ROR-CDLA-L-secure if for all
polynomial-time adversaries A there exists an algorithm S

such that Advror-cdla
Π,L,A,S(λ) is negligible.

Note that in the real world, Init for schemes in M must
use an estimate π̃ of π, though we define our constructions
on input π for simplicity. We will prove that our schemes
are secure if the estimate is sufficiently accurate, i.e., π̃ is
indistinguishable from π with a limited number of samples.

Comparison to ROR-CDA. While ROR-CDLA builds on ROR-
CDA, it captures a distinct security goal. As shown in Fig-
ure 10, no ROR-CDA scheme is ROR-CDLA-secure under
any leakage profile: unlike ROR-CDA, ROR-CDLA security
requires hiding individual value sizes during access.

For Lm and LS, all ROR-CDLA schemes are ROR-CDA-
secure as they hide the access distribution π, revealing only
value size related information (smax and S respectively) during
initialization. The similarity of the definitions means that Lm-
and LS-secure schemes can be derived from an ROR-CDA
scheme such as PANCAKE with minor transformations (i.e.,
to hide value sizes). The opposite holds for π-leaking profiles
Lπ and LSπ, as ROR-CDA requires hiding access distribution
during both access and initialization. While our secure con-
structions borrow selective replication and fake querying tech-
niques from PANCAKE, they do not directly use PANCAKE.
We prove the security of our constructions across §3.2–§6.2
in the full version of our paper [44].

8 Discussion & Future Work

Our work opens up several directions for future research:

Dynamic distributions. Our analysis focused on data stores
with static access patterns and value size distributions. While
our lower bounds still hold for dynamic distributions, finding
upper bounds is an important next step. For example, an adap-
tive alternative to MILP would be valuable, as MILP currently
requires complete re-initialization should the KV store’s ac-
cess or size distribution change. PANCAKE’s [6] adaptations
to dynamic access distributions provide a starting point, but
additional study is required for dynamic value sizes.

Performance bounds for efficient schemes. In §6.2 we in-
troduced Greedy Stuffed PANCAKE scheme as a polynomial-
time approximation of MILP that always finds a feasible, but
possibly suboptimal, solution. An analysis of whether its per-
formance is within a bounded factor of the optimal would be
interesting for future research.

Completeness of bounds. As Lemma 3 has shown, the lower
bound on bandwidth footprint for MLS does not hold for
smax < ŝ < ⌊κn⌋

⌊κn⌋−NOPT+1 · smax. This leaves a gap for which the
lower bound on bandwidth footprint, as well as an optimal
MLS scheme, is unknown. We believe multi-dimensional bin-
packing approaches, which take both access probability and
value sizes into account, could provide answers for both.

Active adversaries. Our constructions allow us to character-
ize the storage, bandwidth, and security tradeoff in M. How-
ever, M excludes active adversaries from our threat model.
While our lower bounds for passive persistent adversaries also
hold for active adversaries, our proposed constructions would
require additional protections against injected queries. Apply-
ing length leakage analysis to oblivious access schemes de-
signed for this stronger threat model, such as ORAMs, would
be a promising direction.

Compression. M rules out schemes that reduce the value
sizes in EKV via compression. However, such schemes may
improve throughput at lower storage footprints and even
achieve lower bandwidth than our bounds. Extending our
analysis to compression schemes will further expand the dis-
cussion on the storage-bandwidth-security tradeoff.

9 Conclusion

We explored the problem of hiding length leakage in oblivious
data access mechanisms with passive persistent adversaries.
We developed novel security models with different leakage
profiles and strong lower bounds on achievable storage and
bandwidth footprint under them. We also presented provably
secure schemes for each profile that are bandwidth-optimal.

Acknowledgments

We thank the anonymous reviewers and the shepherd for their
valuable feedback on our paper. We also thank Thomas Ris-

tenpart for many insightful discussions during this work. Our
research is supported in part by NSF Awards CNS-2054957,
CNS-2047220, CNS-2147946 and CNS-2112562.

References

[1] Mohammad Saiful Islam, Mehmet Kuzu, and Murat
Kantarcioglu. Access pattern disclosure on search-
able encryption: Ramification, attack and mitigation. In
NDSS, 2012.

[2] Georgios Kellaris, George Kollios, Kobbi Nissim, and
Adam O’Neill. Generic attacks on secure outsourced
databases. In ACM CCS, 2016.

[3] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In ACM CCS, 2015.

[4] Evgenios Kornaropoulos, Charalampos Papamanthou,
and Roberto Tamassia. Data recovery on encrypted
databases with k-nearest neighbor query leakage. In
IEEE S&P, 2019.

[5] Oded Goldreich and Rafail Ostrovsky. Software protec-
tion and simulation on oblivious rams. JACM, 1996.

[6] Paul Grubbs, Anurag Khandelwal, Marie-Sarah Lachar-
ité, Lloyd Brown, Lucy Li, Rachit Agarwal, and Thomas
Ristenpart. Pancake: Frequency smoothing for en-
crypted data stores. In USENIX Security, 2020.

[7] Natacha Crooks, Matthew Burke, Ethan Cecchetti, Sitar
Harel, Rachit Agarwal, and Lorenzo Alvisi. Obladi:
Oblivious serializable transactions in the cloud. In
USENIX OSDI, 2018.

[8] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia
Lin, and Stefano Tessaro. Taostore: Overcoming asyn-
chronicity in oblivious data storage. In IEEE S&P,
2016.

[9] Vincent Bindschaedler, Muhammad Naveed, Xiaorui
Pan, XiaoFeng Wang, and Yan Huang. Practicing obliv-
ious access on cloud storage: The gap, the fallacy, and
the new way forward. In ACM CCS, 2015.

[10] Midhul Vuppalapati, Kushal Babel, Anurag Khandelwal,
and Rachit Agarwal. SHORTSTACK: Distributed, fault-
tolerant, oblivious data access. In USENIX OSDI, 2022.

[11] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Nat-
acha Crooks, and Raluca Ada Popa. Snoopy: Surpassing
the scalability bottleneck of oblivious storage. In ACM
SOSP, 2021.

[12] Emil Stefanov and Elaine Shi. Oblivistore: High perfor-
mance oblivious cloud storage. In IEEE S&P, 2013.

[13] Anrin Chakraborti and Radu Sion. Concuroram: High-
throughput stateless parallel multi-client ORAM. In
NDSS, 2019.

[14] Elette Boyle, Kai-Min Chung, and Rafael Pass. Oblivi-
ous parallel ram and applications. In IACR TCC, 2016.

[15] T-H Hubert Chan, Kartik Nayak, and Elaine Shi. Per-
fectly secure oblivious parallel ram. In IACR TCC,
2018.

[16] T-H Hubert Chan and Elaine Shi. Circuit opram: Unify-
ing statistically and computationally secure orams and
oprams. In IACR TCC, 2017.

[17] Gareth T Davies, Christian Janson, and Daniel P Martin.
Client-oblivious opram. In ICICS, 2020.

[18] Peter Williams, Radu Sion, and Alin Tomescu. Privatefs:
A parallel oblivious file system. In ACM CCS, 2012.

[19] Jacob R. Lorch, Bryan Parno, James Mickens, Mariana
Raykova, and Joshua Schiffman. Shroud: Ensuring pri-
vate access to large-scale data in the data center. In
USENIX FAST, 2013.

[20] Elette Boyle and Moni Naor. Is there an oblivious RAM
lower bound? In ACM ITCS, 2016.

[21] Kasper Green Larsen and Jesper Buus Nielsen. Yes,
there is an oblivious ram lower bound! In IACR
CRYPTO, 2018.

[22] Giuseppe Persiano and Kevin Yeo. Lower bounds for dif-
ferentially private rams. In IACR EUROCRYPT, 2019.

[23] Mor Weiss and Daniel Wichs. Is there an oblivious
RAM lower bound for online reads? In Amos Beimel
and Stefan Dziembowski, editors, IACR TCC, 2018.

[24] Kasper Green Larsen, Mark Simkin, and Kevin Yeo.
Lower bounds for multi-server oblivious rams. In IACR
TCC, 2020.

[25] Sarvar Patel, Giuseppe Persiano, and Kevin Yeo. What
storage access privacy is achievable with small over-
head? In ACM PODS, 2019.

[26] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song
Jiang, and Mike Paleczny. Workload Analysis of a
Large-scale Key-value Store. In ACM SIGMETRICS
Performance Evaluation Review, 2012.

[27] Andrew C. Reed and Michael K. Reiter. Optimally
hiding object sizes with constrained padding, 2021.

[28] Seny Kamara and Tarik Moataz. Computationally
volume-hiding structured encryption. In IACR EURO-
CRYPT, 2019.

[29] Min Xu, Armin Namavari, David Cash, and Thomas
Ristenpart. Searching encrypted data with size-locked
indexes. In USENIX Security, 2021.

[30] Twitter 2010 data set. https://www.isi.edu/~lerman/
downloads/twitter/twitter2010.html.

[31] Wikimedia Downloads. https://dumps.wikimedia.
org/enwiki/20240101/.

[32] Juncheng Yang, Yao Yue, and K. V. Rashmi. A large
scale analysis of hundreds of in-memory cache clusters
at twitter. In USENIX OSDI, 2020.

[33] Evgenios M. Kornaropoulos, Nathaniel Moyer, Char-
alampos Papamanthou, and Alexandros Psomas. Leak-
age inversion: Towards quantifying privacy in search-
able encryption. In ACM CCS, 2022.

[34] Broadcom: Secure Web Gateway. https://www.

broadcom.com/products/cybersecurity/network/

web-protection.

[35] Simon Oya and Florian Kerschbaum. IHOP: Improved
statistical query recovery against searchable symmetric
encryption through quadratic optimization. In USENIX
Security, 2022.

[36] David Cash, Paul Grubbs, Jason Perry, and Thomas Ris-
tenpart. Leakage-abuse attacks against searchable en-
cryption. In ACM CCS, 2015.

[37] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and
Kenneth G Paterson. Learning to reconstruct: Statistical
learning theory and encrypted database attacks. In IEEE
S&P, 2019.

[38] Crime attack. https://threatpost.com/091312/

77006/.

[39] Yoel Gluck, Neal Harris, and Angelo Prado. BREACH:
reviving the CRIME attack. Unpublished, 2013.

[40] Kevin P. Dyer, Scott E. Coull, Thomas Ristenpart, and
Thomas Shrimpton. Peek-a-Boo, I Still See You: Why
Efficient Traffic Analysis Countermeasures Fail. In
IEEE S&P, 2012.

[41] Steven Lambregts, Huanhuan Chen, Jianting Ning, and
Kaitai Liang. VAL: Volume and access pattern leakage-
abuse attack with leaked documents. In ESORICS, 2022.

[42] György Dósa. The Tight Bound of First Fit Decreasing
Bin-Packing Algorithm Is FFD(I)≤ 11/9OPT(I) + 6/9.
In Combinatorics, Algorithms, Probabilistic and Exper-
imental Methodologies. Springer, 2007.

[43] Boris N. Pshenichnyj. The linearization method for
constrained optimization, volume 22. Springer, 2012.

https://www.isi.edu/~lerman/downloads/twitter/twitter2010.html
https://www.isi.edu/~lerman/downloads/twitter/twitter2010.html
https://dumps.wikimedia.org/enwiki/20240101/
https://dumps.wikimedia.org/enwiki/20240101/
https://www.broadcom.com/products/cybersecurity/network/web-protection
https://www.broadcom.com/products/cybersecurity/network/web-protection
https://www.broadcom.com/products/cybersecurity/network/web-protection
https://threatpost.com/091312/77006/
https://threatpost.com/091312/77006/

[44] Grace Jia, Rachit Agarwal, and Anurag Khandelwal.
Length leakage in oblivious data access mechanisms.
IACR ePrint, 2024. https://ia.cr/2024/863.

[45] Stéphane Boucheron, Gábor Lugosi, and Pascal Massart.
Concentration inequalities - a nonasymptotic theory of
independence. In Concentration Inequalities, 2013.

[46] Michael Mitzenmacher and Eli Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, 2005.

A Additional Experimental Results

In addition to the Twitter and Wikipedia datasets, we also
apply our key results from §1.1 to two workloads from Face-
book’s Memcached deployments [26]: (i) the USR workload
for user account status information, and (ii) the ETC workload
for large-scale, general-purpose KV storage.

Figure 11 remains consistent with our theoretical results:
all schemes observe a drop in bandwidth overhead as more
storage is provided, and the strongest leakage profile incurs
the highest bandwidth overhead.

Facebook-USR has a bimodal distribution of small value
sizes that differ by only 5 bytes. This allows all leakage
profiles to observe < 10× bandwidth overheads at a mere
1.3× storage overhead. In fact, the size distribution of this
dataset is so extreme that revealing it does not bring perfor-
mance benefits for data with near-uniform sizes; there is no
arrangement of values that better utilizes storage compared
to simply padding each value to smax. Lm and LS thus have
near-identical bandwidth overheads, as do Lπ and LSπ.

Meanwhile, Facebook-ETC has a long-tailed size distribu-
tion like Wikipedia’s, and exhibits similar bandwidth over-
head trends — the minimum storage overhead for Lm and Lπ

leakage settings is over 1200×, and the bandwidth overhead
for Lm is more than 109. Bandwidth overheads under LS and
LSπ are much lower in comparison but still over 1000×, since
hiding each value’s identity requires fetching for each query
smax bytes, which in Facebook-ETC is > 1000× larger than
the average value size. This again confirms our intuition that
long-tailed size distributions are more suited to LS or LSπ

leakage settings that avoid the costs of hiding value lengths.
As for access distribution skewness, the results match Fig-

ure 1: schemes that do not leak the access distribution (PPC
and SPC) observe the same bandwidth overhead regardless of
access skew across key-value pairs. For schemes that do leak
access distribution (GPC and GSPC), bandwidth overheads in-
crease with the access skew due to noise injection to hide the
identity of the most popular key.

B Additional Lemmas & Definitions

We present a bound on B for any scheme in Π ∈M:

Lemma 5. For any scheme Π ∈ M, let the sum of the
real access probabilities of keys k ∈ Keys(KV) contained
in key k̂ ∈ Keys(EKV) be p̂k̂ = ∑k∈KV πr[k](k̂). Let p̂max =
maxk̂∈EKV(p̂k̂); then B≥ n̂ · p̂max.

Proof. Since δ is the proportion of real accesses in Q̂ and B is
the ratio of the number of queries in Q̂ compared to Q, we use
δ to give a lower bound on B. For Property 4, Π must choose
δ and π f such that the probability of accessing any k̂ ∈ EKV
is 1/n̂, i.e.,

δ · p̂k̂ +(1−δ) ·π f (k̂) =
1
n̂

or, δ · ∑
k∈KV

πr[k](k̂)+(1−δ) ·π f (k̂) =
1
n̂

For the probability π f (k̂) to have a valid non-negative
value in the above equation for any k̂, Π must have δ ≤

1
n̂·∑k∈KV πr [k](k̂)

≤ 1
n̂·p̂max

.

Summing Property 5’s inequality over all k ∈ Keys(KV):

E(real queries in Q)≤ E(real queries in Q̂)

Since all queries in Q are real, and the expected number of
real accesses in Q̂ is δ · |Q̂|= δ ·q ·B, we have q≤ δ ·q ·B, i.e.,
B≥ 1

δ
≥ n̂ · p̂max.

We provide the proofs of Lemmas 1 and 2 (§3.1).

Lemma 1. Any Π ∈M with leakage L and S /∈ L requires
storage footprint σ≥ n · smax.

Proof. Let us consider a scheme Π that has storage foot-
print σ < n · smax when possible, i.e., the sum of its input
sizes ∑i si < n · smax. Against this scheme, we give an O(n)-
time adversary A that, for all algorithms S, has advantage
Advror-cdla

Π,L,A,S(λ) = 1/2.
Now we construct A. A1 chooses value sizes from one of

two distributions: S0 = {smax, ...,smax}, i.e., all values have
size smax; or S1 = {smax,1, ...,1}, i.e., only one value has size
smax, while the rest are size 1. The two size distributions
are chosen such that for S0 and S1, Π will output EKV0 and
EKV1 respectively — while EKV0 must have storage foot-
print σ≥ n · smax to fulfill Property 3, EKV1 has a lower stor-
age footprint.

A1 flips a coin b ∼ {0,1} and assigns value sizes corre-
sponding to Sb. It then outputs a KV with the chosen size
distribution and uniform π. A2 takes as input EKV and Q̂. A2
ignores Q̂, but checks if the storage footprint of EKV is less
than n · smax bytes (i.e., b = 1) or at least n · smax (i.e., b = 0).
If the storage footprint matches the coin-flip b, A2 outputs 1.
Otherwise, it outputs 0.

Suppose A is in ROR-CDLA0
Π,L,A,q(λ) interacting with

the real Π. If A chooses S0, Π always outputs an EKV
using n · smax bytes of storage. Similarly if A chooses S1,
Π always outputs an EKV using less storage, meaning
Pr[ROR-CDLA0

Π,L,A,q(λ) = 1] = 1.

https://ia.cr/2024/863

Figure 11: Bandwidth vs. storage overhead across schemes with different leakage (continued from §1.1). We use real-world workloads
Facebook-USR (top) and Facebook-ETC (bottom) from Facebook Memcached deployments [26], and Zipf access patterns with varying skew
(left to right). The rightmost column shows the dataset’s object size CDF. Bandwidth overheads for schemes that do not leak object sizes
start from the minimum storage footprint required for security, i.e., n · smax. The y-axes are in log-scale broken between bandwidth overheads
1200–2e5× (Facebook-USR) and 70000–2e5× (Facebook-ETC).

Now suppose A is in ROR-CDLA1
Π,L,A,S,q(λ) interacting

with a simulator S. S only knows the output of Lm on the KV
given by A, which is n and smax. Without access to b, S can
only guess whether A chose S0 or S1, and output pack sizes
with the storage footprint that A expects. S guesses correctly
with probability 1

2 , so Pr[ROR-CDLA1
Π,L,A,S,q(λ) = 1] = 1

2 .

Thus A’s advantage Advror-cdla
Π,L,A,S(λ) = |1− 1

2 |=
1
2 .

Lemma 2. Given storage footprint σ = κ ·n · smax, a scheme
Π ∈M with leakage L and S /∈ L that incurs the minimum
possible bandwidth footprint must use ŝ = smax.

Proof. Let Π be given inputs KV,S,π,σ. Since Π does not
leak S, it must incur the same bandwidth footprint for all S.
As such, we consider the worst-case S = {smax, . . . ,smax}.

By Property 1, each value v̂ ∈ Values(EKV) has the same
size, say ŝ = γ · smax for some γ ≥ 1. Since all the values
v ∈ Values(KV) are size smax, we can view each value v̂ ∈
Values(EKV) as a set of γ “slots”, where each slot can hold a
copy of an smax-sized input value v ∈ Values(KV).

By Property 3, each value in KV maps to at least one smax-
sized slot in EKV’s values. The goal now is to map each key
in KV to one or more slots in a manner that incurs at most β

bandwidth footprint. Note that since every v ∈ Values(KV) is
exactly size smax, non-integer values of γ would only result in
wasted space in each value v̂ and, therefore, wasted bandwidth
per access; as such, we only focus on integral γ values. Since
EKV uses total storage κ · n · smax, the number of values in
EKV is n̂ = κn

γ
.

Let p̂k̂ be the sum of the access probabilities of the keys
k ∈ Keys(KV) assigned to key k̂ ∈ Keys(EKV), i.e., p̂k̂ =

∑k∈KV πr[k](k̂). Let p̂max = max
k̂∈EKV

(p̂k̂). Lemma 5 gives us

B≥ n̂ · p̂max, so we have bandwidth footprint:

β = B · γ · smax ≥ n̂ · p̂max · γ · smax

=
κn
γ
· p̂max · γ · smax = σ · p̂max

As such, minimizing p̂max minimizes β. Note p̂max is mono-
tonically non-decreasing in γ: larger γ would allow more keys
k ∈ Keys(KV) to be mapped to keys k̂ ∈ Keys(EKV) and in-
crease p̂max. Thus, the smallest possible value γ= 1 minimizes
bandwidth footprint β.

B.1 Bandwidth Bound of MLm

We present the full version of Step 2 of Theorem 3.1’s proof,
including the derivation of the lower bound on the advantage
Advror-cdla

Π,Lm,A,S(λ) of adversary A as defined in Figure 3.

Step 2: A has a non-negligible advantage. To show this,
we lower-bound Advror-cdla

Π,Lm,A,S(λ) by a function f (n̂,ε,δ),
and show that with ε→ 0 and sufficiently large values of
n̂, f (n̂,ε,δ) approaches 1 for 0 < δ < 1 and ε→ 0. Since

Advror-cdla
Π,Lm,A,S(λ) = |Pr[ROR-CDLA0

Π,Lm,A,q(λ) = 1]

−Pr[ROR-CDLA1
Π,Lm,A,S,q(λ) = 1]|,

We obtain this function by finding (i) an upper bound on
Pr[ROR-CDLA0

Π,Lm,A,q(λ) = 1], and (ii) a lower bound on
Pr[ROR-CDLA1

Π,Lm,A,S,q(λ) = 1]. We also note that since
A2’s test does not leverage n̂, ŝ and B generated by the al-
gorithm S, A works against all possible S.

Step 2(i): We upper-bound Pr[ROR-CDLA0
Π,Lm,A,q(λ) = 1],

i.e., the probability that A guesses incorrectly that the queries
Q̂ it is given are sampled from a uniform distribution rather
than generated by Π.

To do so, we focus on the key ĥ ∈ P(h) with access
probability p. A2 outputs 1 if, for all keys in EKV, the
number of queries they receive is less than or equal to
A’s threshold. We can, therefore, use the probability that
ĥ receives ≤ (c+ 3

√
c) ln n̂ queries as an upper bound for

Pr[ROR-CDLA0
Π,Lm,A,q(λ) = 1], and compute the same using

the one-sided Chebyshev inequality, as we show next.
Let Xĥ be the random variable that counts the number

of queries to ĥ in Q̂. Xĥ follows a binomial distribution
B(q̂, p) with mean µ = q̂p ≥ q̂

n̂ ·
1−ε

1−δ
and variance σ2 =

q̂p(1− p) = q̂
(

1
n̂ ·

1−ε

1−δ

)(
1− 1

n̂ ·
1−ε

1−δ

)
. Since q̂ = cn̂ ln n̂, we

have µ = c ln n̂
(

1−ε

1−δ

)
and σ2 = c ln n̂(1−ε)(n̂(1−δ)−(1−ε))

n̂(1−δ)2 .

To compute Pr[Xĥ≤ (c+3
√

c) ln n̂], we apply the one-sided
Chebyshev inequality [45]: Pr[Xĥ ≤ µ−a]≤ σ2

σ2+a2 . We set:

a = µ− (c+3
√

c) ln n̂ = c ln n̂
(1− ε

1−δ
−1− 3√

c

)
.

Then, substituting into Chebyshev’s inequality, we have:

Pr[Xĥ ≤ (c+3
√

c) ln n̂]

≤
c ln n̂(1−ε)(n̂(1−δ)−(1−ε))

n̂(1−δ)2

c ln n̂(1−ε)(n̂(1−δ)−(1−ε))
n̂(1−δ)2 + c2 ln2 n̂

(1−ε

1−δ
−1− 3√

c

)2

=
(1− ε)(n̂(1−δ)− (1− ε))

(1− ε)(n̂(1−δ)− (1− ε))+
c ln n̂
(

1−ε

1−δ
−1− 3√

c

)2

n̂(1−δ)2

.

This gives us our upper-bound:

Pr[ROR-CDLA0
Π,Lm,A,q(λ) = 1]

≤ (1− ε)(n̂(1−δ)− (1− ε))

(1− ε)(n̂(1−δ)− (1− ε))+
c ln n̂
(

1−ε

1−δ
−1− 3√

c

)2

n̂(1−δ)2

. (2)

Note that A must choose a small enough ε such that a > 0,
specifically ε < 1− (1+ 3

√
c)(1− δ). Since we also need

ε > 0 for the π chosen by A to be a valid distribution, the
attack can only work with δ > 3

3+
√

c .

Step 2(ii): We lower-bound Pr[ROR-CDLA1
Π,Lm,A,S,q(λ) = 1],

i.e., the probability that A guesses correctly that the queries
in Q̂ are sampled from a uniform distribution.

Once again, A outputs 1 if all keys receive more than
(c+3

√
c) ln n̂ queries, so we represent the number of queries

to a key in EKV with a binomial random variable. We then use
the Chernoff bound to compute the upper bound of the prob-
ability that all keys receive > (c+3

√
c) ln n̂ queries, which

we subtract from 1 to obtain the desired lower bound on
Pr[ROR-CDLA1

Π,Lm,A,S,q(λ) = 1], as we show next.
Let Xk̂ be the random variable that counts the number of

queries to k̂ ∈ Keys(EKV). Each Xk̂ has a binomial distribu-
tion B(q̂,1/n̂). To find Pr[Xk̂ ≤ (c+3

√
c) ln n̂], we apply the

Chernoff bound [46]:

Pr[Xk̂ ≥ (1+a)µ]≤ exp
(−a2µ

3

)
for any 0 < a < 1

Substituting in a = 3/
√

c:

Pr[Xk̂ ≥ (c+3
√

c) ln n̂]≤ exp

(−(3√
c

)2
c ln n̂

3

)
= n̂−3

By the union bound, the probability that any key receives
more than (c+3

√
c) ln n̂ queries is ≤ n̂(n̂−3) = n̂−2. Thus,

Pr[ROR-CDLA1
Π,Lm,A,S,q(λ) = 1]≥ 1− n̂−2. (3)

B.2 Bandwidth-optimality of GPC

Here we prove that Greedy PANCAKE is bandwidth-optimal.

Theorem 5.1. For any storage footprint σ= κ ·n ·smax (κ≥ 1),
GPC achieves the lowest bandwidth footprint β for any MLπ

scheme that uses exactly σ storage.

Proof. Any MLπ scheme must have the same bandwidth
footprint for any input sizes S; as such, Lemma 2 holds for
schemes in MLπ; GPC already uses ŝ= smax, satisfying this re-
quirement. We show that GPC with κ ·n ·smax storage achieves
the optimal bandwidth footprint for S := {smax, ...,smax}, and,
by extension, all other S.

Let R[i] = |P(ki)| be the number of keys k̂ ∈ Keys(EKV)
mapped to key ki ∈ Keys(KV) by GPC, and let R∗[i]
be the number of k̂ ∈ Keys(EKV) mapped to key ki ∈
Keys(KV) by an optimal algorithm. Let f (j,R) :=
maxki∈Keys(KV) π(ki)/R[i] after j out of n̂ keys in EKV have
been assigned a key in KV. By induction on j, we show that
f (j,R)≤ f (j,R∗) for n≤ j ≤ n̂.

Base case: j = n. Since each key k ∈ Keys(KV) is initially
assigned exactly one key k̂ ∈ Keys(EKV), we have:

f (j,R) = f (j,R∗) = max
ki∈Keys(KV)

{π(ki)}

Induction. Let f (j,R) ≤ f (j,R∗) hold for some j >

n. Consider the (j + 1)th key k̂ j+1 ∈ Keys(EKV) to be
assigned a key in Keys(KV). GPC assigns to it h =
argmaxki∈Keys(KV) π(ki)/R[i], which means before this step,
∀k̂ ∈ P(h),πr[h](k̂) = f (j,R). Since we know f (j,R) ≤
f (j,R∗), the best choice that the optimal algorithm has in
minimizing f (j + 1,R∗) is to assign its k̂∗j+1 to the key h∗

for which ∀k̂ ∈ P(h),πr[h](k̂) = f (j,R∗). Since f (j,R∗) ≥
f (j,R), we still have that f (j+1,R)≤ f (j+1,R∗).

We now show that the optimal f (j+ 1,R) allows GPC to
achieve the minimum bandwidth footprint. Assume for the
sake of contradiction that there is an optimal R∗ that has a
lower bandwidth footprint than R. Bandwidth footprint is
β = B · ŝ, and by Lemma 5, B ≥ n̂ · f (j,R∗). Then R∗ using
less bandwidth than R can only mean that f (j,R∗)< f (j,R)
for j = n̂ — a contradiction.

	Introduction
	Summary of Key Results

	Overview
	System Model
	Security Model
	Considered Leakage Profiles

	Lm: Revealing the largest value size
	Performance Bounds
	Padded Pancake: Optimal MLm scheme

	LS: Revealing the value sizes
	Performance Bounds
	Stuffed Pancake: Optimal LS scheme

	Lp: Revealing the access distribution
	Greedy Pancake: Optimal scheme

	LSp: Revealing value sizes & distribution
	MILP-based optimal LSp scheme
	Pancake-based poly-time LSp scheme

	Formal Security Analysis using ror-cdla
	Discussion & Future Work
	Conclusion
	Additional Experimental Results
	Additional Lemmas & Definitions
	Bandwidth Bound of Lm
	Bandwidth-optimality of gpc

