
Techniques for Evolution-Aware
Runtime Verification

Owolabi Legunsen, Yi Zhang, Milica Hadži-Tanović,

Grigore Roșu, Darko Marinov

ICST 2019

4/26/2019

CCF-1421503, CCF-1421575,
CCF-1763788, CNS-1619275,
CNS-1646305, CNS-1740916

Runtime Verification (RV)

• RV dynamically checks program executions against formal properties,
whose violations can help find bugs
• a.k.a. runtime monitoring, runtime checking, monitoring-oriented

programming, typestate checking, etc.

• RV has been around for decades, now has its own conference (RV)

•Many RV tools:

2

JavaMOP: a representative RV tool

Code + Tests
JavaMOP

Violations

Properties

3

Example property: Collection_SynchronizedCollection (CSC)

4

…
65: im = Collections.synchronizedList(…);
66: for (IInvokedMethod iim : im) { … }
…

SuiteHTMLReporter

TestOnClassListener

TestNG example: from RV of test executions to bugs

JavaMOP

CSC was violated on… SuiteHTMLReporter.java:66… a
synchronized collec�on was accessed in thread−unsafe manner

Violations

…
CSC

Manual inspection:
multiple threads can
access “im”

5

RV during Continuous Integration (CI)?

Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

Fetch Changes

6 Release/Deploy

Builds per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single open-source

projects: up to 80

Releases per day
• Etsy: 50

6

CI
Server

?

Pass/Fail

* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;

• Observation: All prior
RV techniques are
evolution-unaware
(Base RV)

• Base RV would re-
incur entire overhead
if re-run after each
code change

Developers

Version Control

C
o

m
m

it

C
h

an
ge

s

1

2

5

6 Release/Deploy

7

CI
Server

?

Pass/Fail

New Idea: Focus RV on code changes?

Code changes are
typically very small
relative to entire
code base

Fetch Changes

0.97% of classes
changed on average
in our experiments

Contribution: Evolution-aware Runtime Verification

• Goal: leverage software evolution to scale RV better during testing

• Intended benefits:
1. Reduce accumulated runtime overhead of RV across multiple program versions

2. Show developers only new violations after code changes

• Complementary to techniques that improve RV on single program versions
• Faster RV algorithms for single program versions

• Running tests in parallel

• Improve properties to have fewer false alarms

8

How JavaMOP works

9

Code
+

Tests

Instrumentation
Instrumented
Code + Tests

Execution

Monitors

Events

Violations

Properties

CSC

Collections.synchronizedList()
Collection+.iterator()

We proposed three evolution-aware RV techniques

1. Regression Property Selection (RPS)
• Re-monitors only properties that can be violated in parts of code affected by changes

2. Violation Message Suppression (VMS)
• Shows only new violations after code changes

3. Regression Property Prioritization (RPP)
• Splits RV into two phases:
• critical phase: check properties more likely to find bugs on developer’s critical path
• background phase: monitor other properties outside developer’s critical path

10
The three techniques can be used together

Evolution-aware RV in JavaMOP

11

Code
+

Tests

Instrumentation
Instrumented
Code + Tests

Execution

Monitors

Events

Violations

Properties

Code
+

Tests

1. Regression Property Selection (RPS)

2. Violation Message
Suppression (VMS)

3. Regression Property Prioritization (RPP)

Evolution-aware RV – Result Overview

• RPS and RPP significantly reduced accumulated runtime overhead of Base RV

• Average: from 9.4x to 1.8x

• Maximum: from 40.5x to 4.2x

• VMS showed 540x fewer violations than Base RV

• RPS did not miss any new violation after code changes

• In theory can miss, but empirically it did not

• See paper for details on VMS and RPP

12

Base RV during software evolution

13

A

TC TE

Code

Tests P2

P1

CSC

Properties

• Base RV re-monitors all properties after every code change
• No knowledge of dependencies in the code, or between code and properties

Old Version: monitor CSC, P1, P2

New Version: re-monitor CSC, P1, P2

B

C

D

E

B

Δ = {B}

Regression Property Selection (RPS) Overview

Selected subset of properties are those that may generate new violations

14

RPS
Old version of Code+Tests

All available properties

Subset of all
available properties

New version of Code+Tests

Regression Property Selection (RPS) – step 1

15

A

TC

B D

E

TE

C

B

Re-monitors only properties that can be violated in parts of code affected by changes

Inheritance or Use

P2

P1

May Generate events for

CSC
Step 1a: Build Class Dependency Graph
(CDG) for new version

Step 1b: Map classes to properties for
which the classes may generate events

Δ = {B}

Regression Property Selection (RPS) – step 2

16

A

TC

B D

E

TE

C

B

Re-monitors only properties that can be violated in parts of code affected by changes

Inheritance or Use

P2

P1

May Generate events for

CSC
Affected classes: those that generate events that
can lead to new violations after code changes

Step 2: Compute affected classes

Class X is affected if

1. X changed or is newly added

2. X transitively depends on a changed class, or

3. Class Y that satisfies (1) or (2) can transitively
pass data to X

C

TC

D

A

Δ = {B}

Regression Property Selection (RPS) –Steps 3 & 4

17

A

TC

B D

E

TE

C

B

Re-monitors only properties that can be violated in parts of code affected by changes

Inheritance or Use

P2

P1

May Generate events for

CSC

C

TC

D

Step 3: Select affected properties – those for
which affected classes may generate events

Step 4: Re-monitor affected properties: {CSC, P1}

• P2 is NOT re-monitored in the new version
• Affected classes cannot generate P2 events
• Saves time to monitor P2; does not show old P2 violations

A

Δ = {B}

Total RPS time must be less than Base RV time

18

Step 2: Compute affected classes

Step 3: Select affected properties

Step 4: Re-monitor only affected properties

Step 1a: Build Class Dependency Graph (CDG) for new version

Step 1b: Map classes to properties for which they may generate events
Analysis

Re-monitoring

Base RV (Re-monitor all properties)

Analysis Re-monitoring
Time Savings

Total Time for RPS

Static and Fast

4.3% of RPS time

RPS Safety and Precision - Definitions

• Evolution-aware RV is safe if it finds all new violations that Base RV finds

• Evolution-aware RV is precise if it finds only new violations that Base RV finds

• RPS discussed so far is safe but not precise
• Safe modulo CDG completeness, test-order dependencies, dynamic language features

19

Results of Safe RPS – ps1

20How can we improve these results?

• 20 versions each of 10 GitHub projects
• Average project size: 50 KLOC
• Average test running time without RV: 51 seconds

RPS variants that use fewer affected classes
Goal: Reduce RV overhead by varying “what” set of affected classes is used
to select properties

A

TC

B D

E

TE

C

B

Inheritance or Use

P2

P1

May Generate events for

CSC

C

TC

D

A What classes are used to select
properties?

ps1

Changed classes (i.e., Δ)

Dependents of Δ

Dependees of Δ

Dependees of Δ’s Dependents

ps2

ps3

Δ = {B}

21

Using fewer affected classes can be (un)safe, e.g., ps2

A

TC

B D

E

TE

C

B

Inheritance or Use

P2

P1

May Generate events for

CSC

C

TC

D

A
class D {

static void foo(boolean b) {
if (b) { // P1 events}
else { // No P1 events}

}}

class C {
void getF() {

D.foo(B.b);
}}

class B {
- public static boolean b = false;

+ public static boolean b = true;
}Δ = {B}

22

ps2 can be safe if C does not pass data to D

RPS variants that instrument fewer classes
Goal: Reduce RV overhead by varying “where” selected properties are
instrumented

A

TC

B D

E

TE

C

B

Inheritance or Use

P2

P1

May Generate events for

CSC

C

TC

D

A Where selected properties are
instrumented (i ∈ {1,2,3})	

psi

affected(Δ)

affected(Δ)c

third-party libraries

ps�
�

ps�
�

ps�
��

Δ = {B}

23

• have fewer violations
• ~36% of RV overhead
• excluding them can be safe

RPS Variants – Expected Efficiency/Safety Tradeoff

24

“more efficient than” “less safe than”

2 Strong RPS variants are safe under certain assumptions: ��� and ���
�

10 Weak RPS variants are unsafe; they trade safety for efficiency

RPS Results – Runtime Overhead

25
Base RV RPS Variants

26

Base RV RPS Variants

RPS Results – Violations Reported

RPS Results – precision and safety

• VMS is precise – it shows only new violations
• RPS is not precise – it shows two orders of magnitude more violations than VMS

• We manually confirmed whether all RPS variants find all violations from VMS

• Surprisingly, all weak RPS variants were safe in our experiments

27

Why weak RPS variants were safe in our experiments

• 75% of event traces observed by monitors involved only one class

• 32 of 33 new violations were due to changes whose effects are in ps3

• Additional scenarios captured by ps1 and ps2 did not lead to new violations

• We may have missed old violations when not tracking ps1 or ps2 scenarios

• 87% of old violations missed by excluding third-party libraries did not involve
any event from the code

28

Regression Property Prioritization (RPP)

Combining RPS+RPP reduced RV overhead to 1.8x (from 9.4x) 29

All
properties

M

N

M+1

N - 1

V1 V2 V3Critical
phase

Background
phase

…

…

Conclusion

• We proposed three evolution-aware RV techniques: RPS, VMS, RPP

• Our techniques reduced Base RV overhead from 9.4× to as low as 1.8×

• Taking evolution into account can significantly reduce Base RV overhead
during software evolution

30

Owolabi Legunsen: legunse2@illinois.edu
Yi Zhang: yzhng173@illinois.edu
Milica Hadži-Tanović: milicah2@illinois.edu

Grigore Roșu: grosu@illinois.edu
Darko Marinov: marinov@illinois.edu

