Techniques for Evolution-Aware
Runtime Verification

Owolabi Legunsen, Yi Zhang, Milica Hadzi-Tanovic,
Grigore Rosu, Darko Marinov
ICST 2019
4/26/2019

INPUT | QUTPUT

\ 7 CCF-1421503, CCF-1421575, u@ | .
[>9-CCF-1763788, CNS-1619275, < QUALCON\N\

5l CNS-1646305, CNS-1740916

Runtime Verification (RV)

* RV dynamically checks program executions against formal properties,
whose violations can help find bugs

* a.k.a. runtime monitoring, runtime checking, monitoring-oriented
programming, typestate checking, etc.

* RV has been around for decades, now has its own conference (RV)

Rul

Java—MAC LOLA

\I\\
Many RV tools: Aema J aV aMOP

‘ ,J’ J\ T‘;S/w II(} 's (

; P{?%}LP QL ﬂJaSS

2
Hawk [4% g

JavaMOP: a representative RV tool

Violations

Properties

JavaMOP

Code + Tests

Example property: Collection SynchronizedCollection (CSC)

C @& https://docs.oracle.com/javase/7/docs/api/java/util/Collections.html#synchronizedCollection(java.util. Collection)

synchronizedCollection

public static <T> Collection<T> synchronizedCollection(Collection<T> c)

It is imperative that the user manually synchronize on the returned collection when iterating over it:

Collection ¢ = Collections.synchronizedCollection(myCollection);

synchronized (c) {
Iterator i = c.iterator(); // Must be in the synchronized block
while (i.hasNext())
foo(i.next());

I
Failure to follow this advice may result in non-deterministic behavior. 4

TestNG example: from RV of test executions to bugs

l CSC was violated on... SuiteHTMLReporter.java:66... a

Manual inspection: synchronized collection was accessed in thread—unsafe manner

multiple threads can
access “im”

JavaMOP

66: for (lInvokedMethod iim . {..}

0 TestOnClassListener |
5

RV during Continuous Integration (Cl)?

* Observation: All prior
RV techniques are

evolution-unaware
@ Fetch Changes cl (Base RV)
g Server

Version Control

o Pass/Fail

e Base RV would re-
incur entire overhead

0 if re-run after each
code change
0 Release/Deploy ‘

D V | r * Android only; Facebook: https://bit.ly/2CAPvVN9 ; Google: https://bit.ly/2SYY4rR ;
eve Ope S HERE: https://oreil.ly/2TOEyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/21iSOJP ;

Changes

£
e
S
L

New ldea: Focus RV on code changes?

Version Control

0.97% of classes
changed on average
In our experiments

\/ \
2)
% 0@ Release/Deploy

Developers

Contribution: Evolution-aware Runtime Verification

* Goal: leverage software evolution to scale RV better during testing

* Intended benefits:
1. Reduce accumulated runtime overhead of RV across multiple program versions
2. Show developers only new violations after code changes

* Complementary to techniques that improve RV on single program versions
* Faster RV algorithms for single program versions
* Running tests in parallel
* Improve properties to have fewer false alarms

How JavaMOP works

CSC

Instrumentation

Instrumented
Code + Tests

Execution

Events

Collections.synchronizedList()
Collection+.iterator()

We proposed three evolution-aware RV techniques

1. Regression Property Selection (RPS)
* Re-monitors only properties that can be violated in parts of code affected by changes

Version Control

Fetch Changes
2. Violation Message Suppression (VMS) Clﬁ gi

* Shows only new violations after code changes |

it

Comm
Changes

N
G
o’\?a‘;:\
o Cl Server
N

3. Regression Property Prioritization (RPP)
* Splits RV into two phases: DevEioners

« critical phase: check properties more likely to find bugs on developer’s critical path
* background phase: monitor other properties outside developer’s critical path

The three techniques can be used together

10

2. Violation Message

Evolution-aware RV in JavaMOP Suppression (VMS)

1. Regression Property Selection (RPS)

Violations

Monitors
Properties
Instrumented

i Execution
Instrumentation Code + Tests

Cs:
l'l{,’calp

3. Regression Property Prioritization (RPP) 1

Evolution-aware RV — Result Overview

* RPS and RPP significantly reduced accumulated runtime overhead of Base RV
* Average: from 9.4x to 1.8x
 Maximum: from 40.5x to 4.2x

 VMS showed 540x fewer violations than Base RV

* RPS did not miss any new violation after code changes
* In theory can miss, but empirically it did not

* See paper for details on VMS and RPP

Base RV during software evolution

* Base RV re-monitors all properties after every code change
* No knowledge of dependencies in the code, or between code and properties

" “ Properties

Code -

Old Version: monitor CSC, P1, P2

Tests {

New Version: re-monitor CSC, P1, P2

000

D
E

A = {B}

Regression Property Selection (RPS) Overview

Old version of Code+Tests mmmmm—ms

New version of Code+TestsS mmmmmmmg

Subset of all
—> : :
available properties

All available properties g

Selected subset of properties are those that may generate new violations

14

Regression Property Selection (RPS) —step 1

Re-monitors only properties that can be violated in parts of code affected by changes

A=1B
B} Step 1a: Build Class Dependency Graph
“ Q (CDG) for new version

: Step 1b: Map classes to properties for
© which the classes may generate events

Inheritance or Use May Generate events for

Regression Property Selection (RPS) — step 2

Re-monitors only properties that can be violated in parts of code affected by changes

A=1B
1B} : Step 2: Compute affected classes

Affected classes: those that generate events that

O can lead to new violations after code changes
Inheritance or Use May Generate events for

© Class X is affected if

1. X changed or is newly added
2. X transitively depends on a changed class, or

3. Class Y that satisfies (1) or (2) can transitively
pass data to X

Regression Property Selection (RPS) —Steps 3 & 4

Re-monitors only properties that can be violated in parts of code affected by changes

A ={B}

Step 3: Select affected properties — those for
Q which affected classes may generate events

\ / O Step 4: Re-monitor affected properties: {CSC, P1}

* P2 is NOT re-monitored in the new version
» Affected classes cannot generate P2 events
* Saves time to monitor P2; does not show old P2 violations

Inheritance or Use May Generate events for

Total RPS time must be less than Base RV time

Analysis -

Re-monitoring -

Static and Fast

4.3% of RPS time

- Step 1a: Build Class Dependency Graph (CDG) for new version

Step 1b: Map classes to properties for which they may generate events

Step 2: Compute affected classes

| Step 3: Select affected properties

Step 4: Re-monitor only affected properties

Base RV (Re-monitor all properties)

. " Time Savings
Analysis Re-monitoring

Total Time for RPS 18

RPS Safety and Precision - Definitions

e Evolution-aware RV is safe if it finds all new violations that Base RV finds

* Evolution-aware RV is precise if it finds only new violations that Base RV finds

* RPS discussed so far is safe but not precise
» Safe modulo CDG completeness, test-order dependencies, dynamic language features

19

Avg. JavaMOP Overhead (,,0p/t1ests)

Results of Safe RPS — ps,

e 20 versions each of 10 GitHub projects
* Average project size: 50 KLOC
* Average test running time without RV: 51 seconds

o0
1

(o]
1

BN Basc RV BB Safe RPS BN Basc RV B Safe RPS

@ 50 1
S
S 401
>
S 30

i 3
E 90
=

27 80 1
<€

0 0-

psi BL psi

20

How can we improve these results?

RPS variants that use fewer affected classes

Goal: Reduce RV overhead by varying “what” set of affected classes is used
to select properties

A ={B}

What classes are used to select | ps; | ps, | PS;
properties?

Changed classes (i.e., A)

Dependents of A

.

000

Dependees of A

SISTNS
NN
LI BN N

Dependees of A’s Dependents

Inheritance or Use May Generate events for

Using fewer affected classes can be (un)safe, e.g., ps,

class B{
- public static boolean b = false;
+ public static boolean b = true;

A ={B} }
1 Q ‘ class D {
O class C{ static void foo(boolean b) {
y void getF() { | if(b){//Plevents}
/ O D.foo(B.b); else{// No P1 events}
:))

ps, can be safe if C does not pass data to D

Inheritance or Use May Generate events for 22

RPS variants that instrument fewer classes

Goal: Reduce RV overhead by varying “where” selected properties are

instrumented

A ={B}

L

Inheritance or Use

000

May Generate events for

Where selected properties are | ps; | psy | ps; |ps;
instrumented (i € {1,2,3})

affected(A) v v | v
affected(A)® v | x| v | %
third-party libraries vV v | x| x
~—

* have fewer violations
e ¥36% of RV overhead
e excluding them can be safe

RPS Variants — Expected Efficiency/Safety Tradeoff

“more efficient than” “less safe than”
Ps1 e e Ps1, PS3
P JE o
P‘Sl S , ff,,fff"’r .“'51 28 1 e /
~E e 7
P 31 p ﬁ{
_ Ps2 PSo
= P 2
’“‘52 ~ ; e 1”52 !'JSE ; e f}sg
JER - A2
= psgt
283
ot . _PS3
) S‘f - - sS e “~
PS3 = PA3 p.snf _ps§
))S.Cf il 3 . e T
P53 p,g%‘i)

2 Strong RPS variants are safe under certain assumptions: ps; and psy

10 Weak RPS variants are unsafe; they trade safety for efficiency

24

RPS Results — Runtime Overhead

@)
1

(@)
1

b
1

Avg. JavaMOP Overhead (%,0p/t1ests)

0 = ; P L ; ” ; —
BL psi1 PS] psa pss pSs BL! ps{ psg psﬁf psé PSS psgf psgf
|) J
| |
Base RV RPS Variants

25

RPS Results — Violations Reported

54

50 1
wn
c
o
5 40
R
>
5 301
O
0
5
= 20 o1
e
>
< 1()-

04 013
BL BL' pst psi psa psh psi ps§t pss psk pss psSt psy ps§ \ums
\) J
| |
Base RV RPS Variants

26

RPS Results — precision and safety

* VMS is precise — it shows only new violations
* RPSis not precise — it shows two orders of magnitude more violations than VMS

* We manually confirmed whether all RPS variants find all violations from VMS

 Surprisingly, all weak RPS variants were safe in our experiments

Why weak RPS variants were safe in our experiments
* 75% of event traces observed by monitors involved only one class

* 32 of 33 new violations were due to changes whose effects are in ps,
 Additional scenarios captured by ps, and ps, did not lead to new violations
* We may have missed old violations when not tracking ps, or ps, scenarios

* 87% of old violations missed by excluding third-party libraries did not involve
any event from the code

Regression Property Prioritization (RPP)

Vi Critical V2 V3
phase

properties

Background
phase

Combining RPS+RPP reduced RV overhead to 1.8x (from 9.4x)

29

Conclusion

* We proposed three evolution-aware RV techniques: RPS, VMS, RPP
* Our techniques reduced Base RV overhead from 9.4x to as low as 1.8x

* Taking evolution into account can significantly reduce Base RV overhead
during software evolution

Owolabi Legunsen: legunse2@illinois.edu Grigore Rosu: grosu@illinois.edu
Yi Zhang: yzhngl73@illinois.edu Darko Marinov: marinov@illinois.edu
Milica Hadzi-Tanovi¢: milicah2 @illinois.edu

30

