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Runtime Verification (RV)

• RV dynamically checks program executions against formal properties, 
whose violations can help find bugs
• a.k.a. runtime monitoring, runtime checking, monitoring-oriented 

programming, typestate checking, etc.

• RV has been around for decades, now has its own conference (RV)

•Many RV tools:
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JavaMOP: a representative RV tool

Code + Tests
JavaMOP

Violations

Properties
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Example property: Collection_SynchronizedCollection (CSC)
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…
65:   im = Collections.synchronizedList(…);
66:   for (IInvokedMethod iim : im) { … }
…

SuiteHTMLReporter

TestOnClassListener

TestNG example: from RV of test executions to bugs

JavaMOP

CSC was violated on… SuiteHTMLReporter.java:66… a
synchronized collec�on was accessed in thread−unsafe manner

Violations

…
CSC

Manual inspection: 
multiple threads can 
access “im”
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RV during Continuous Integration (CI)?
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Fetch Changes

6 Release/Deploy

Builds per day:
• Facebook: 60K*
• Google: 17K
• HERE: 100K
• Microsoft: 30K
• Single open-source 

projects: up to 80

Releases per day
• Etsy: 50
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CI 
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?
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* Android only; Facebook: https://bit.ly/2CAPvN9 ; Google: https://bit.ly/2SYY4rR ;
HERE: https://oreil.ly/2T0EyeK ; Microsoft: https://bit.ly/2HgjUpw ; Etsy: https://bit.ly/2IiSOJP ;

• Observation: All prior 
RV techniques are 
evolution-unaware 
(Base RV)

• Base RV would re-
incur entire overhead 
if re-run after each 
code change
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CI 
Server

?

Pass/Fail

New Idea: Focus RV on code changes?

Code changes are 
typically very small 
relative to entire 
code base

Fetch Changes

0.97% of classes 
changed on average 
in our experiments



Contribution: Evolution-aware Runtime Verification

• Goal: leverage software evolution to scale RV better during testing

• Intended benefits:
1. Reduce accumulated runtime overhead of RV across multiple program versions

2. Show developers only new violations after code changes

• Complementary to techniques that improve RV on single program versions
• Faster RV algorithms for single program versions

• Running tests in parallel

• Improve properties to have fewer false alarms
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How JavaMOP works
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We proposed three evolution-aware RV techniques

1. Regression Property Selection (RPS)
• Re-monitors only properties that can be violated in parts of code affected by changes

2. Violation Message Suppression (VMS)
• Shows only new violations after code changes

3. Regression Property Prioritization (RPP)
• Splits RV into two phases:
• critical phase: check properties more likely to find bugs on developer’s critical path 
• background phase: monitor other properties outside developer’s critical path
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The three techniques can be used together



Evolution-aware RV in JavaMOP
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1. Regression Property Selection (RPS)

2. Violation Message 
Suppression (VMS)

3. Regression Property Prioritization (RPP)



Evolution-aware RV – Result Overview

• RPS and RPP significantly reduced accumulated runtime overhead of Base RV

• Average: from 9.4x to 1.8x 

• Maximum: from 40.5x to 4.2x

• VMS showed 540x fewer violations than Base RV

• RPS did not miss any new violation after code changes

• In theory can miss, but empirically it did not

• See paper for details on VMS and RPP
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Base RV during software evolution
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Tests P2
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CSC

Properties

• Base RV re-monitors all properties after every code change
• No knowledge of dependencies in the code, or between code and properties

Old Version: monitor CSC, P1, P2

New Version: re-monitor CSC, P1, P2

B

C

D

E

B

Δ = {B}



Regression Property Selection (RPS) Overview

Selected subset of properties are those that may generate new violations
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RPS
Old version of Code+Tests

All available properties

Subset of all 
available properties

New version of Code+Tests



Regression Property Selection (RPS) – step 1
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Inheritance or Use

P2

P1

May Generate events for
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Step 1a: Build Class Dependency Graph 
(CDG) for new version 

Step 1b: Map classes to properties for 
which the classes may generate events

Δ = {B}



Regression Property Selection (RPS) – step 2
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Re-monitors only properties that can be violated in parts of code affected by changes

Inheritance or Use

P2

P1

May Generate events for

CSC
Affected classes: those that generate events that 
can lead to new violations after code changes

Step 2: Compute affected classes

Class X is affected if

1. X changed or is newly added

2. X transitively depends on a changed class, or

3. Class Y that satisfies (1) or (2) can transitively 
pass data to X
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Regression Property Selection (RPS) –Steps 3 & 4
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A
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Re-monitors only properties that can be violated in parts of code affected by changes

Inheritance or Use

P2

P1

May Generate events for

CSC

C

TC

D

Step 3: Select affected properties – those for 
which affected classes may generate events

Step 4: Re-monitor affected properties: {CSC, P1}

• P2 is NOT re-monitored in the new version
• Affected classes cannot generate P2 events
• Saves time to monitor P2; does not show old P2 violations

A

Δ = {B}



Total RPS time must be less than Base RV time
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Step 2: Compute affected classes

Step 3: Select affected properties

Step 4: Re-monitor only affected properties

Step 1a: Build Class Dependency Graph (CDG) for new version 

Step 1b: Map classes to properties for which they may generate events
Analysis

Re-monitoring

Base RV (Re-monitor all properties) 

Analysis Re-monitoring
Time Savings

Total Time for RPS

Static and Fast

4.3% of RPS time



RPS Safety and Precision - Definitions

• Evolution-aware RV is safe if it finds all new violations that Base RV finds

• Evolution-aware RV is precise if it finds only new violations that Base RV finds

• RPS discussed so far is safe but not precise
• Safe modulo CDG completeness, test-order dependencies, dynamic language features
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Results of Safe RPS – ps1

20How can we improve these results?

• 20 versions each of 10 GitHub projects
• Average project size: 50 KLOC
• Average test running time without RV: 51 seconds  



RPS variants that use fewer affected classes
Goal: Reduce RV overhead by varying “what” set of affected classes is used 
to select properties
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Using fewer affected classes can be (un)safe, e.g., ps2

A

TC

B D

E
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B

Inheritance or Use

P2
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May Generate events for

CSC

C

TC

D

A
class D {

static void foo(boolean b) {
if (b) { // P1 events}
else { // No P1 events}

}}

class C {
void getF() {

D.foo(B.b);
}}

class B {
- public static boolean b = false;

+ public static boolean b = true; 
}Δ = {B}
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ps2 can be safe if C does not pass data to D



RPS variants that instrument fewer classes
Goal: Reduce RV overhead by varying “where” selected properties are 
instrumented
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Δ = {B}
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• have fewer violations
• ~36% of RV overhead
• excluding them can be safe



RPS Variants – Expected Efficiency/Safety Tradeoff
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“more efficient than” “less safe than”

2 Strong RPS variants are safe under certain assumptions:  ��� and ���
�

10 Weak RPS variants are unsafe; they trade safety for efficiency



RPS Results – Runtime Overhead
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Base RV RPS Variants
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Base RV RPS Variants

RPS Results – Violations Reported



RPS Results – precision and safety

• VMS is precise – it shows only new violations
• RPS is not precise – it shows two orders of magnitude more violations than VMS

• We manually confirmed whether all RPS variants find all violations from VMS

• Surprisingly, all weak RPS variants were safe in our experiments
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Why weak RPS variants were safe in our experiments

• 75% of event traces observed by monitors involved only one class

• 32 of 33 new violations were due to changes whose effects are in ps3

• Additional scenarios captured by ps1 and ps2 did not lead to new violations

• We may have missed old violations when not tracking ps1 or ps2 scenarios

• 87% of old violations missed by excluding third-party libraries did not involve 
any event from the code
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Regression Property Prioritization (RPP)

Combining RPS+RPP reduced RV overhead to 1.8x (from 9.4x) 29
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Conclusion

• We proposed three evolution-aware RV techniques: RPS, VMS, RPP

• Our techniques reduced Base RV overhead from 9.4× to as low as 1.8×

• Taking evolution into account can significantly reduce Base RV overhead 
during software evolution
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