
Evolution-Aware
Monitoring-Oriented Programming

(eMOP)

Owolabi Legunsen, Darko Marinov, and Grigore Roşu

ICSE 2015 (NIER Track)
Florence, Italy
May 21, 2015

ITI RPS #28
CCF-1439957
CCF-1012759



Monitoring-Oriented Programming
(MOP)
Runtime monitoring of software against formal properties
• Existing technique targeted at single program version

2

CodeCode
Runtime
Monitors
Runtime
MonitorsMOPMOPPropertyProperty……

PropertyProperty

Violation *

Problems: High overhead and too many violations shown
during evolution across many versions



Evolution-Aware MOP (eMOP)
Make MOP faster and show fewer violations during evolution
• Proposed

3

Code
Changes

Code
Changes

Runtime
Monitors
Runtime
MonitorsMOPMOPPropertyProperty……

PropertyProperty

Violation *

TestsTests



Input: (Potentially Buggy) Code

Line 5 should be i2.hasNext()

4

Mimics two real bugs found in older AspectJ code

1 public boolean m(List a, List b) {
2 ...
3 for(Iterator i = a.iterator(); i.hasNext();){
4 ...
5 for(Iterator i2 = b.iterator(); i.hasNext();){
6 ... i2.next() ...
7 }
8 } return ...
9 }



Input: Formally Specified Properties

5

1. When to fire Events

2. Specification over Events

3. Handler code

after Iterator.hasNext() == true, before Iterator.next()

Iterator.hasNext() == true precedes every Iterator.next()

User-defined action when specification is violated

Many properties can be monitored at once



Output

Violation: next() was called without calling hasNext()

6

1 public boolean find(List a, List b) {
2 ...
3 for(Iterator i = a.iterator(); i.hasNext();){
4 ...
5 for(Iterator i2 = b.iterator(); i.hasNext();){

6 ... i2.next() ...
7 }
8 } return ...
9 }

// event: “before Iterator.next()”



Current State of MOP Research

• Many papers, focus on reducing runtime overhead
• Many bugs found in well-used, well-tested code
• All prior research focused on one version

• Recurring costs of monitoring are high, e.g.,

7

Run Properties
Monitored

Total
Violations

Time(s)

No MOP v1 n/a n/a 8.4
MOP v1 180 27,895 164.1
MOP v2 180 27,904 231.8



Evolution-Aware MOP (eMOP)

• Improve MOP during software evolution
• Faster: re-monitor based on parts affected by changes
• Show fewer violations: show only violations due to changes

• We propose three techniques
• Can be used separately or combined
• Property selection
• Monitor selection
• Test selection

8



Technique: Property Selection

• What subset of properties to re-monitor in new version?
• Preliminary evaluation by seeding i2.next() bug :

• Only Iterator_HasNext is affected by changes

9

Run Properties
Monitored

Properties
Violated

HasNext
Violations

Total
Violations

Time(s)

No MOP v1 n/a n/a n/a n/a 8.4
MOP v1 180 6 0 27,895 164.1
MOP v2 180 7 9 27,904 231.8
eMOP v2 1 1 9 9 8.8



Technique: Monitor Selection
• Generate monitors for parts of code affected by change
• Example: Foo.java and Bar.java both use Iterator

10

Foo.javaFoo.java

Bar.javaBar.java

changeschanges
Foo.javaFoo.java

Bar.javaBar.java

Do not generate
Iterator_HasNext

Monitors

Do not generate
Iterator_HasNext

Monitors

Generate
Iterator_HasNext

Monitors

Generate
Iterator_HasNext

Monitors
Old Version New Version



Technique: Test Selection (MOP + RTS)
• In eMOP we monitor execution of tests

• RTS selects subset of tests that can be affected by code changes
• If fewer tests are run, fewer violations and less overhead

11



Some Challenges

• Safely determining properties/monitors/tests that
can’t have new violations

• Non-determinism, e.g.,

12

In these versions, the same
tests are run, but different
number of violations

12



Conclusions

• All prior research on MOP targeted single code versions
• eMOP aims to adapt MOP to software evolution

• Make MOP faster between versions of software
• Show only violations due to changes between versions

• We proposed three techniques for eMOP
• Property selection
• Monitor selection
• Test selection

13


