
An Extensive Study of Static Regression
Test Selection in Modern Software Evolution

Owolabi Legunsen, Farah Hariri, August Shi,
Yafeng Lu, Lingming Zhang, and Darko Marinov

FSE 2016
Seattle, Washington
November 16, 2016

CCF-1409423, CCF-1421503,
CCF-1438982, CCF-1439957,
CCF-1566589

Regression Testing

• Rerun tests to ensure that code changes did not break
existing functionality

2
• Problem: Regression testing can be very slow! (many tests)

A

T1 B

D

E

F

T2

T3

T4

CC

T4

T3

T2

T1

Regression Test Selection (RTS)

• Speed up regression testing by rerunning only tests that
are affected by code changes

3

• This paper: we studied static RTS approaches and
compared with state-of-the-art dynamic RTS

Finding dependencies can be done statically or
dynamically

A

T1 B

D

E

F

T2

T3

T4

CCT2

T1

A

B

Motivation for our Study

• Dynamic RTS has been getting adopted recently

• Dynamic RTS may not always be applicable
• Instrumentation costs can be high

• Dependencies may be incomplete, e.g., due to non-determinism

• Static RTS was proposed previously but not evaluated at
scale on modern software

4

How RTS works

5

Code + Tests

Changes

Find
Dependencies

Dependencies

Analyze
Dependencies

Affected Tests

• An affected test can behave differently due to code changes

• A test is affected if any of its dependencies changed

Finding and Analyzing Dependencies

• Dependencies: entities that can affect test behavior

6

1. Finding Dependencies:
• T1 depends on A, B, C, D, T1
• T2 depends on B, C, T2
• T3 depends on E, T3
• T4 depends on D, E, F, T4

2. Analyzing Dependencies:
• T1 & T2 are affected

A

T1 B

D

E

F

T2

T3

T4

CC

Important RTS Considerations

• End-to-end time of RTS must be less than time to run all tests

7

Run All Tests

Find Dependencies Analyze Run Affected Tests
Time Savings

End-to-End Time for RTS

• RTS is safe if it selects to rerun all affected tests

• RTS is precise if it selects to rerun only affected tests

RTS Techniques Evaluated

• Finding dependencies can be done dynamically or statically

• Dependencies can be at different levels of granularity, e.g.,
methods, classes, jar files, etc.

• In this paper, we compare these approaches:

8

Class-Level Dynamic Class-Level Static Method-Level Static

End-to-End Time

Safety

Precision ? ? ?
See details on method-level RTS in paper

Class-Level Dynamic RTS (Ekstazi[1])

• Find Dependencies: dynamically track classes used while
running each test class

• Changes: classes whose .class (bytecode) files differ

• Analyze Dependencies: select test classes for which any
of its dependencies changed

9[1] M. Gligoric, L. Eloussi, and D. Marinov. Practical Regression Test Selection with Dynamic File
Dependencies. ISSTA 2015

Class-Level STAtic RTS (STARTS)

• First, statically build a class dependency graph
• Each class has an edge to direct parents and referenced classes

• Find Dependencies: classes reachable from test class in
the graph

• Changes: computed in same way as Ekstazi

• Analyze Dependencies: select test classes that reach a
changed class in the graph

10

Variants of RTS Techniques

• We studied 12 RTS techniques in total

• 2 variants of the static/dynamic class-level RTS
• Offline: pre-compute dependencies before changes are known

• Online: compute dependencies after changes are known

• 8 variants of static method-level RTS technique

11

See details on method-level RTS in paper

Research Questions

• RQ1: How do RTS techniques compare w.r.t. number of
tests selected?

• RQ2: How do RTS techniques compare w.r.t. end-to-end
time?

• RQ3: How do static RTS techniques compare with class-
level dynamic RTS in terms of precision and safety?

• RQ4: How do variants of method-level static RTS influence
the cost/safety trade-offs?

12

See answer to RQ4 in paper

Experimental Setup

• 22 open-source projects from ASF and GitHub
• Single-module Maven projects with JUnit4 tests

• Project sizes: from 2 kLOC to 185 kLOC

• 985 revisions of these 22 projects
• Selection criteria: subset of latest 100 commits

• Compile successfully

• All tests pass

• Ekstazi runs successfully

13

RQ1: Tests Selected

14

Ekstazi selects fewer tests
than STARTS

20.6% vs. 29.4%

RQ2: End-to-End Time

15

RQ3: Safety and Precision

• Safety and precision were measured against Ekstazi

• Safety violation: STARTS misses Ekstazi-selected tests:

• Precision violation: STARTS selects tests that Ekstazi does
not:

16

��������������� =
|� \ �|

|� ∪ �|

� = ����� �������� �� �������

� = ����� �������� �� ������

������������������ =
|� \ �|

|� ∪ �|

RQ3: Safety and Precision

17

��������������� =
|� \ �|

|� ∪ �|

������������������ =
|� \ �|

|� ∪ �|

Reflection caused all Safety Violations

18

Example simplified from Apache commons-math

InterpolatorTest

Integrator

AbstractIntegratorSTARTS misses this edge
because it is not aware

of reflection

AbstractInterpolatorTest

name = interpolatorName.replaceAll("Interpolator", "Integrator");
Class clz = (Class) Class.forName(name);
i = clz.getConstructor(…).newInstance(field, field.getOne());

Since this paper was accepted …

• We are making STARTS safer with respect to reflection

• We are evaluating STARTS on larger software systems

• We have improved the STARTS tool to
• handle multi-module Maven projects

• find dependencies from bytecode much faster

19

Conclusions

• We performed the first, large-scale empirical study of
static RTS and its comparison with dynamic RTS

• At the class level, we found static RTS (STARTS)
comparable with state-of-the-art dynamic RTS (Ekstazi)
• Similar end-to-end times

• STARTS had very few safety violations

• Method-level static RTS requires more work to be usable

20legunse2@illinois.edu

