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Regression Testing

• Rerun tests to ensure that code changes did not break 
existing functionality
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• Problem: Regression testing can be very slow! (many tests)
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Regression Test Selection (RTS)

• Speed up regression testing by rerunning only tests that 
are affected by code changes
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• This paper: we studied static RTS approaches and 
compared with state-of-the-art dynamic RTS

Finding dependencies can be done statically or 
dynamically
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Motivation for our Study

• Dynamic RTS has been getting adopted recently

• Dynamic RTS may not always be applicable
• Instrumentation costs can be high 

• Dependencies may be incomplete, e.g., due to non-determinism

• Static RTS was proposed previously but not evaluated at 
scale on modern software 
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How RTS works
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• An affected test can behave differently due to code changes

• A test is affected if any of its dependencies changed



Finding and Analyzing Dependencies

• Dependencies: entities that can affect test behavior
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1. Finding Dependencies:
• T1 depends on A, B, C, D, T1
• T2 depends on B, C, T2
• T3 depends on E, T3
• T4 depends on D, E, F, T4

2. Analyzing Dependencies:
• T1 & T2 are affected
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Important RTS Considerations

• End-to-end time of RTS must be less than time to run all tests
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Run All Tests 

Find Dependencies Analyze Run Affected Tests
Time Savings

End-to-End Time for RTS

• RTS is safe if it selects to rerun all affected tests

• RTS is precise if it selects to rerun only affected tests



RTS Techniques Evaluated

• Finding dependencies can be done dynamically or statically

• Dependencies can be at different levels of granularity, e.g., 
methods, classes, jar files, etc.

• In this paper, we compare these approaches:

8

Class-Level Dynamic Class-Level Static Method-Level Static

End-to-End Time

Safety

Precision ? ? ?
See details on method-level RTS in paper



Class-Level Dynamic RTS (Ekstazi[1])

• Find Dependencies: dynamically track classes used while 
running each test class

• Changes: classes whose .class (bytecode) files differ

• Analyze Dependencies: select test classes for which any 
of its dependencies changed

9[1] M. Gligoric, L. Eloussi, and D. Marinov. Practical Regression Test Selection with Dynamic File 
Dependencies. ISSTA 2015



Class-Level STAtic RTS (STARTS)

• First, statically build a class dependency graph
• Each class has an edge to direct parents and referenced classes

• Find Dependencies: classes reachable from test class in 
the graph

• Changes: computed in same way as Ekstazi

• Analyze Dependencies: select test classes that reach a 
changed class in the graph
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Variants of RTS Techniques

• We studied 12 RTS techniques in total

• 2 variants of the static/dynamic class-level RTS
• Offline: pre-compute dependencies before changes are known

• Online: compute dependencies after changes are known

• 8 variants of static method-level RTS technique

11

See details on method-level RTS in paper



Research Questions

• RQ1: How do RTS techniques compare w.r.t. number of 
tests selected? 

• RQ2: How do RTS techniques compare w.r.t. end-to-end 
time?

• RQ3: How do static RTS techniques compare with class-
level dynamic RTS in terms of precision and safety?

• RQ4: How do variants of method-level static RTS influence 
the cost/safety trade-offs?
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See answer to RQ4 in paper



Experimental Setup

• 22 open-source projects from ASF and GitHub
• Single-module Maven projects with JUnit4 tests

• Project sizes: from 2 kLOC to 185 kLOC

• 985 revisions of these 22 projects
• Selection criteria: subset of latest 100 commits

• Compile successfully

• All tests pass

• Ekstazi runs successfully
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RQ1: Tests Selected
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Ekstazi selects fewer tests
than STARTS

20.6% vs. 29.4%



RQ2: End-to-End Time
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RQ3: Safety and Precision

• Safety and precision were measured against Ekstazi

• Safety violation: STARTS misses Ekstazi-selected tests:

• Precision violation: STARTS selects tests that Ekstazi does 
not:
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RQ3: Safety and Precision
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Reflection caused all Safety Violations
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Example simplified from Apache commons-math

InterpolatorTest

Integrator

AbstractIntegratorSTARTS misses this edge 
because it is not aware 

of reflection

AbstractInterpolatorTest

name = interpolatorName.replaceAll("Interpolator", "Integrator");
Class clz = (Class) Class.forName(name);
i = clz.getConstructor(…).newInstance(field, field.getOne());



Since this paper was accepted …

• We are making STARTS safer with respect to reflection

• We are evaluating STARTS on larger software systems

• We have improved the STARTS tool to
• handle multi-module Maven projects

• find dependencies from bytecode much faster
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Conclusions

• We performed the first, large-scale empirical study of 
static RTS and its comparison with dynamic RTS

• At the class level, we found static RTS (STARTS)  
comparable with state-of-the-art dynamic RTS (Ekstazi)
• Similar end-to-end times

• STARTS had very few safety violations

• Method-level static RTS requires more work to be usable
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