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Abstract—Many techniques were proposed for detecting soft-
ware misconfigurations in cloud systems and for diagnosing
unintended behavior caused by such misconfigurations. Detection
and diagnosis are steps in the right direction: misconfigurations
cause many costly failures and severe performance issues. But,
we argue that continued focus on detection and diagnosis is
symptomatic of a more serious problem: configuration design
and implementation are not yet first-class software engineering
endeavors in cloud systems. Little is known about how and why
developers evolve configuration design and implementation, and
the challenges that they face in doing so.

This paper presents a source-code level study of the evolution
of configuration design and implementation in cloud systems.
Our goal is to understand the rationale and developer practices
for revising initial configuration design/implementation decisions,
especially in response to consequences of misconfigurations. To
this end, we studied 1178 configuration-related commits from
a 2.5 year version-control history of four large-scale, actively-
maintained open-source cloud systems (HDFS, HBase, Spark,
and Cassandra). We derive new insights into the software
configuration engineering process. Our results motivate new tech-
niques for proactively reducing misconfigurations by improving
the configuration design and implementation process in cloud
systems. We highlight a number of future research directions.

I. INTRODUCTION

Software configuration design and implementation have
significant impact on the functionality, reliability, and per-
formance of large-scale cloud systems. The idea behind
configuration is to expose configuration parameters which
enable deployment-time system customization. Using different
parameter values, system users (e.g., operators, sysadmins, and
DevOps engineers) can port a software system to different
environments, accommodate different workloads, or satisfy
new user requirements. In cloud systems, configuration pa-
rameters are changed constantly. For example, at Facebook,
configuration changes are committed thousands of times a day,
significantly outpacing source-code changes [1].

With the high velocity of configuration changes, misconfig-
urations (in the form of erroneous parameter values) inevitably
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become a major cause of system failures, severe service
outages, and downtime. For example, misconfigurations were
the second largest cause of service-level disruptions in one of
Google’s main production services [2]. Misconfigurations also
contribute to 16% of production incidents at Facebook [1], in-
cluding the worst-ever outage of Facebook and Instagram that
occurred in March 2019 [3]. Similar statistics and incidents
were reported in other systems [4]–[11].

Software configurations also impose significant total cost of
ownership on software vendors, who need to diagnose user-
reported failures or performance issues caused by miscon-
figurations. Vendors may even have to compensate users, if
the failures lead to outages and downtime. Software vendors
also need to support and help users with configuration-related
questions, e.g., how to find the right parameter(s) and set
the right value(s) [12]. Note that system users are often not
developers; they may not understand implementation details
or they may not be able to debug code [13]–[15].

Unfortunately, configuration design and implementation
have been largely overlooked as first-class software engi-
neering endeavors in cloud systems, except for few recent
studies (Section VIII). The focus has been on detecting
misconfigurations and diagnosing their consequences [13],
[16]–[30]. These efforts tremendously improve system-level
defenses against misconfigurations, but they do not address
the fundamental need for better software configuration design
and implementation. Yet, better configuration design can ef-
fectively reduce user difficulties, reduce configuration com-
plexity while maintaining flexibility, and proactively reduce
misconfigurations [12], [31]–[33]. Also, better configuration
implementation can help detect and correct misconfigurations
earlier to prevent failure damage [13], [16].

The understanding of what constitutes software configu-
ration engineering in cloud systems is preliminary in the
literature, compared with other aspects of engineering these
software systems (e.g., software architecture, modeling, API
design, and testing) which are well studied. Meanwhile, we
observed that developers struggle to design and implement
configurations. For example, we found that developers raise
many configuration-related concerns and questions—“is the
configuration helpful?” (Spark-25676), “can we reuse an
existing parameter?” (HDFS-13735), “what is a reasonable
default value?” (HBase-19148). Furthermore, we found that
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TABLE I: Summary of our findings on configuration design and implementation, and their implications.

FINDINGS ABOUT CONFIGURATION INTERFACE IMPLICATIONS
F.1 Software developers often parameterize constant values into I.1 Configuration auto-tuning techniques that consider reliability and func-
configuration parameters. Performance and reliability tuning are common tionality are needed, in addition to performance-only optimization. Timing
rationales for such parameterization. parameters are an example (critical to both performance and reliability).
F.2 Over 50% of parameterizations were driven by severe consequences I.2 Techniques for identifying pathological configuration use cases through
of deficiencies in constant values. Unfortunately, use cases that drove the testing and analysis are desired. Tools that can identify and categorize use
parameterization were often poorly discussed or documented. cases could help proactively parameterize deficient constants.
F.3 Only 28.1% of default-value changes mentioned systematic testing; I.3 Many default values in existing software systems may not be optimal.
31.3% of default changes chose values that work around reported issues. Research on how to better select default values is needed.

FINDINGS ABOUT CONFIGURATION USAGE IMPLICATIONS
F.4 Most configuration-checking code were added as afterthoughts, I.4 Proactive parameter value checking and validation can prevent many
postmortem to system failures and performance issues in production. severe consequences (but they are still not a common engineering practice).
F.5 Over 50% of checks added as afterthoughts are basic (non-emptiness I.5 Automated solutions for generating basic checking code and applying
and value-range checks); other commits invoked checking code earlier. them in program early execution phases are useful and feasible.
F.6 Throwing exceptions is common for handling misconfigurations; I.6 Automatically correcting configuration errors is feasible and should be
auto-correction is not, missing opportunities to help users handle errors. explored in future research.
F.7 Developers often enhance configuration-related log/exception mess- I.7 Techniques on automated enhancement of configuration-related log and
ages by including related parameters and providing guidance. exception messages to improve misconfiguration diagnosis are needed.
F.8 Reusing existing parameters in different program locations is a com- I.8 Tools are needed for identifying and fixing various inconsistencies
mon practice. However, parameter reuse leads to various inconsistencies. among configuration parameters and their code implementations.

FINDINGS ABOUT CONFIGURATION DOCUMENTATION IMPLICATIONS
F.9 Inadequate and outdated information are major reasons behind I.9 Enforcing complete, up-to-date documentation of configuration info-
the changes that enhance configuration documents. mation is still a challenge (despite a lot of research effort).
F.10 Configuration use cases, parameter constraints and dependencies I.10 Configuration documentation should be systematically augmented
between parameters are commonly added to documents. to include critical, user-facing information.

developers frequently revise configuration design/implemen-
tation decisions, usually after observing severe consequences
(e.g., failures and performance issues) induced by the initial
decisions (Sections IV-A1 and IV-A2).

This paper presents a source-code level study of the evo-
lution of configuration design and implementation in cloud
systems, towards filling the knowledge gap and better un-
derstanding the needs that configuration engineering must
meet. Specifically, we study 1178 configuration-related com-
mits spanning 2.5 years (2017.6–2019.12) in four large-scale,
widely-used, and actively-maintained open-source cloud sys-
tems (HDFS, HBase, Spark, and Cassandra). Each commit that
we study is associated with a JIRA/GitHub issue or a Pull
Request link which provides more context about the change
and the discussions among developers. (Section III describes
our methodology for selecting configuration-related commits).

Our goal is to understand current configuration engineering
practices, identify developer pain points, and highlight future
research opportunities. We focus on analyzing commits that
revise or refine initial configuration design or implementation
decisions, instead of commits that add or remove parameters
as code evolves. These revisions or refinements were driven
by consequences of misconfigurations. Our analysis helps to
1) understand the rationale for the changes, 2) learn design
lessons and engineering principles, and 3) motivate future
automated solutions that can prevent such consequences.

To systematically analyze configuration-related commits,
we propose a taxonomy of configuration design and imple-
mentation changes in cloud systems along three dimensions:
1) interface: why and how developers change the configu-
ration interface (parameters, default values and constraints).
2) usage: how developers change and improve parameter value

checking, error-handling, and uses. 3) documentation: how
developers improve configuration documentation.

Note that this paper focuses on cloud systems, instead
of desktop software or mobile apps, because misconfiguring
cloud systems results in more far-reaching impact. Moreover,
we focus on runtime configurations [34] whose values can be
changed post-deployment without re-compiling the software.
Runtime configurations fundamentally differ from compile-
time configurations such as #ifdef-based feature flags [35].
But runtime and compile-time configurations have similar
problems. So, there are opportunities to extend techniques that
solve problems for one to the other.

This paper makes the following contributions:
? Study and Insights. We study code changes to understand

the evolution of configuration design and implementation
in cloud systems. We find insights that motivate future
research on reducing misconfigurations in these systems.

? Taxonomy. We develop a taxonomy of cloud system
configuration design and implementation evolution.

? Data. We release our dataset and scripts at “https://github.
com/xlab-uiuc/open-cevo” to help followup research (see
Appendix B for the replication package).

Table I summarizes our findings and their implications.

II. TAXONOMY

Figure 1 shows the three parts of our taxonomy of cloud-
system configuration engineering: interface, usage, and docu-
mentation. We focus on aspects that affect how system users
interact with configurations, and not on developer-focused
aspects like variability and testability. We organize our study
along the categories shown in Table II.

https://github.com/xlab-uiuc/open-cevo
https://github.com/xlab-uiuc/open-cevo
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Fig. 1: Three parts of our taxonomy of software configuration design
and implementation, and their components.

Interface. The configuration interface that a system exposes to
users consists primarily of configuration parameters (parame-
ters, for short). As shown in Fig. 1, a parameter is identified
by a name and it typically has a default value. Users can cus-
tomize system configuration by changing parameter values in
configuration files or by using command line interfaces (CLIs).
Each parameter places constraints (correctness rules) on its
values, e.g., type, range, dependency on other parameters.
Values that violate the constraints lead to misconfigurations.
In Table II, changes that contribute to configuration interface
evolution include adding parameters, removing parameters,
and modifying parameters.

Usage. Fig. 1 presents the configuration usage model. To use
a parameter, the software program first reads its value from a
configuration file or CLI, parses the value and stores it in a
program variable. The variable is then used when the program
executes. In principle, the program checks the value against
the parameter’s constraints before using it. If checks fail, the
program needs to handle the error and provide user with
feedback messages. In Table II, configuration usage evolution
consists of changes to all parts of the usage model.

Documentation. These are natural language descriptions re-
lated to configurations. We consider changes to user manuals
and code comments—the former are written for system users
while the latter are written for developers.

III. STUDY SETUP

To understand how configuration design/implementation
evolve, we identified and analyzed configuration-related com-
mits that modify configuration design and implementation.
Following [34], we refer to the design, implementation, and
maintenance of software configuration as configuration en-
gineering. We start from commits instead of bug databases
(e.g., JIRA and GitHub issues) because configuration design
and implementation evolution is not limited to bug fixing.
All cloud systems that we study record related issue or Pull
Request ID(s) in commit messages (Section III-A). We found
detailed context about changes in the configuration-related
commits through developer discussions. Moreover, commits
allow us to analyze the “diffs”—the actual changes.

TABLE II: Our taxonomy of configuration engineering evolution.

INTERFACE (SECTION IV)
AddParam Add new configuration parameters

AddNewCode Add new parameters when introducing new modules
AddCodeChange Add new parameters due to changes in existing code
AddParameterization Convert constant values to configuration parameters

RemoveParam Remove existing configuration parameters
RmvRmvModule Remove parameters when removing existing modules
RmvReplace Replace parameters with constants or automation

ModifyParam Modify existing configuration parameters
ModNaming Change the name of a configuration parameter
ModDefaultValue Change the default value of a configuration parameter
ModConstraint Change the constraints of a configuration parameter

USAGE (SECTION V)
Parse Change configuration parsing code
Check Change configuration checking code
Handle Change configuration error handling code

HandleAction Handling actions (correction and exceptions)
HandleMessage Feedback messages (log and exception messages)

Use Change how configuration values are used
UseChange Change existing code that uses parameters
UseAdd Add code to reuse a configuration parameter

DOCUMENTATION (SECTION VI)
User manual Change configuration-related user manual content
Code comment Change configuration-related source code comments

TABLE III: Software and their commits that we study.

SUBJECT #DESCRIPTION #PARAMS #ALLC #STUDIEDC

HDFS File system 560 1618 221
HBase Database 218 3516 268
Spark Data processing 442 6194 602
Cassandra Database 220 1868 87

A. Target Software and Version Histories

We study configuration design and implementation in four
open-source cloud systems, shown in Table III: HDFS, HBase,
Spark, and Cassandra. These projects 1) have many configura-
tion parameters and configuration-related commits, 2) are ma-
ture, actively-developed and widely-used, with well-organized
GitHub repositories and bug databases, (3) link to issue IDs
in commit messages, and 4) are commonly used subjects in
cloud and datacenter systems research.

In these subjects, we studied configuration-related commits
from June 2017 to December 2019, a 2.5–year time span.
In Table III, “#PARAMS” is the total number of documented
parameters in the most recent version, “#ALLC” is the total
number of commits in the 2.5–year span, and “#STUDIEDC”
is the number of configuration-related commits that we stud-
ied. We excluded configuration-related commits that only
added or modified test cases; we expected such commits
to yield less insights on design/implementation evolution. In
total, we studied 1178 configuration-related commits.

B. Data Collection and Analysis

To find configuration-related commits within our chosen
time span, we wrote scripts to automate the analysis of
commit messages and diffs, filter out irrelevant commits,
and select likely configuration-related commits. Then, we
manually inspected each resulting commit and its associated



issue. Overall, we collected 384 commits by analyzing commit
messages and 794 commits by analyzing the commit diffs,
yielding a total of 1178 configuration-related commits.

1) Analysis of Commit Messages: Keyword search on com-
mit messages is commonly used to find related commits,
e.g., [36]–[41]. We manually performed a formative study with
hundreds of commit messages and found that three strings
commonly occur in configuration-related commits: “config”,
“parameter” and “option”. These strings were previously used
in keyword searches [34], [36], and matched 525 times in all
four subjects. We manually inspected these 525 commits and
removed commits that did not change configurations, yielding
384 configuration-related commits.

2) Analysis of Commit Diffs: Many commit messages do
not match during keyword search, even though the diffs
show configuration-related changes. So, we further analyzed
diffs to find more configuration-related commits, and found
additional 794 configuration-related commits. Our diff analysis
determines whether diffs modify how parameters are defined,
loaded, used, or described. Accurate automated diff analysis
requires applying precise taint tracking—treating parameter
values as initial taints that are propagated along control- and
data-flow paths [13], [16]–[18], [20], [26], [36], [42]–[44]—
to each commit and its predecessor and comparing the taint
results in both commits. Such pairwise analysis does not scale
well to the 13196 commits in all four projects (Table III).

To scale diff analysis, we used a simple text-based search
of configuration metadata, including the 1) configuration in-
terface (including how configurations are defined and loaded),
2) default configuration file, and 3) message that contains con-
figuration information. Metadata are expected to be stable in
the mature cloud systems that we study; commits that modify
them may yield good insights on configuration evolution.

Finding commits that change parameter definitions. We
start from commits that change default configuration files or
parameter descriptions in those files. These two locations are
key user-facing parts of configuration design [13], [45]. Thus,
modification of parameters (introduction, deprecation, changes
to default values, etc.) likely requires changes to either. This
heuristic was effective: it found 272 additional configuration-
related commits with an average false positive rate of 3.2%.

Finding commits that change parameter loading or setting.
Here, we leverage knowledge of configuration APIs. As re-
ported in prior studies [13], [16], [42]–[44], [46] and validated
in our study, mature software projects have unified, well-
defined APIs for retrieving and assigning parameter values.
For instance, HDFS has getter or setter methods (e.g., getInt,
getBoolean, declared in a Java class; each of which has a
corresponding setter method (e.g., setInt, setBoolean). The
other evaluation subjects follow this pattern.1 So, identifying
commits that changed code containing getter or setter method
usage requires a few lines of code using regular expressions.

1This is common in Java and Scala projects: the configuration interface
typically wraps around core library APIs such as java.util.Properties
to provide configuration getter and setter methods.

TABLE IV: Configuration-related commits by category. Some com-
mits contain changes in multiple categories.

INTERFACE BEHAVIOR DOCUMENT COMMIT

HDFS 139 (62.9%) 58 (26.2%) 27 (12.2%) 221
HBase 171 (63.8%) 87 (32.5%) 21 (7.8%) 268
Spark 367 (61.0%) 182 (30.2%) 61 (10.1%) 602
Cassandra 54 (62.1%) 32 (36.8%) 5 (5.7%) 87

Total 731 (62.1%) 359 (30.5%) 114 (9.7%) 1178

This heuristic found 457 additional configuration-related com-
mits with a 19.9% average false positive rate.

Finding commits that change parameter value data flow.
If a commit changes code with variables that store parameter
values, then that commit is likely related to the data flow
of parameter values. We implemented a simple text-based
taint tracking to track such variables as follows. Once a
configuration value is stored in a variable, we add the variable
name to a global taint set. We perform the tracking for every
commit in the time span that we studied. We do not remove
variables from our taint set. We output candidate commits
where a modified statement contains a variable name in the
taint set. Taint tracking found 31 additional configuration-
related commits with an average false positive rate of 26.2%.

Identifying other configuration-related commits We applied
the same keyword search on commit messages (Section III-B1)
to messages that occur in diffs, to capture commits that change
related exception or log messages without modifying any other
code. We found 34 additional configuration-related commits
with an average false positive rate of 29.2%.

3) Inspection and Categorization: At least two authors
independently studied each configuration-related commit and
its corresponding issue. They independently categorized each
commit based on the taxonomy in Section II, and then met
to compare their categorization. When they diverged, a third
author was consulted for additional discussion until consensus
was reached. Further, in twice-weekly project meetings, the
inspectors met with a fourth author to review their catego-
rization of 15% of commits inspected during the week. These
meetings helped check that understanding of the taxonomy is
consistent. Our experience shows that consistently checking a
taxonomy like Figure 1 with concrete examples significantly
improves inter-rater reliability and categorization efficiency.

Note that we categorized each commit based on how it
revised the original configuration design/implementation. If
a commit adds a new parameter and also a manual entry
to document this new parameter, we treat this commit as
AddParam (Table II)—the commit revises the configuration
interface instead of documentation. Some commits modify
multiple (sub-)parts in our taxonomy.

4) Data Collection Results: Table IV shows the studied
configuration-related commits along the three parts of our
taxonomy. There is a significant number of commits in each
part. The rest of this paper summarizes our analysis and pro-
vides insights on how configuration design and implementation
evolve along these three parts.



IV. CONFIGURATION INTERFACE EVOLUTION

Changes to the configuration interface were the most
common, compared with behavior or documentation changes
(Table IV). We focus on analyzing changes to config-
urability—the level of user-facing configuration flexibility—
(Section IV-A) and default values (Section IV-B). We omit
other kinds of configuration interface changes which are often
routine and cannot directly lead to misconfigurations.

A. Evolution of User-Facing Configuration

Table V shows our categorization of changes to configura-
bility. Most changes add or remove parameters; per project,
removal is 5.1× to 21.2× less frequent than addition (with an
average of 8.4×). We find that adding or removing parameters
occur naturally during software evolution—parameters are
added with new code, and removed with code deletion. We
do not focus on co-addition or co-removal of parameters with
code. Rather, we focus on changes that revise previous config-
uration engineering decisions by 1) parameterizing constants
and 2) eliminating parameters or converting them to constants.

Our data corroborates a prior finding [12] that configuration
interface complexity increases rapidly over time, as more
parameters are added than are removed. Complexity measures
the size of the configuration space (number of parameters
multiplied by the number of all their possible values). Ap-
proaches for dealing with the rapid growth rate are desired.
Variability modeling [47]–[51] which is extensively researched
for compile-time configurations, can potentially be extended
to understand and manage runtime configuration complexity.

1) Parameterization: Developers often convert constants
into parameters after discovering that one constant cannot sat-
isfy all use cases. We find 142 commits that parameterize 169
constants (169 parameterizations). We report on 1) rationales
for the parameterizations, 2) how developers identify constants
to parameterize, 3) use cases that made constants insufficient,
and 4) how developers balance increase in configuration
complexity (caused by adding new parameters) with the need
for flexibility (which necessitates parameterization). Our re-
sults have ramifications for configuration interface design: we
provide understanding for managing the configurability versus
simplicity tradeoff. The rationales for parameterization also
motivate configuration parameter auto-tuning.

Rationales for parameterization. These include: perfor-
mance tuning, reliability, environment setup, manageability,
debugging, compatibility, testability, and security. Table VI
shows, for each rationale, the number of commits and param-
eters, an example parameter, and a description. We discuss the
top two rationales, due to space limits. Performance tuning was
the top rationale for parameterizing constants, involving 39.6%
(67/169) of parameters in 56 commits. Different workloads
need different values, so it is hard to find one-size-fits-all con-
stants. Resource-related (e.g., buffer size and thread number),
feature selection (turning on/off features with performance
impact, e.g., monitoring), and timing logic (mostly timeouts
and intervals) were the main resulting parameter types, with

TABLE V: Statistics on configuration interface changes.

HDFS HBASE SPARK CASSANDRA TOTAL

AddParam 106 122 277 42 547
AddNewCode 54 55 143 23 275
AddCodeChange 16 34 72 8 130
AddParameterization 36 33 62 11 142

RemoveParam 5 24 30 6 65
RmvRmvModule 3 16 25 4 48
RmvReplace 2 8 5 2 17

ModifyParam 28 25 60 6 119
ModNaming 5 8 30 1 44
ModDefaultValue 19 14 20 3 56
ModConstraint 4 3 10 2 19

20.9% (14/67), 37.3% (25/67), and 14.9% (10/67) new param-
eters, respectively. Others 26.9% (18/67) set algorithm-specific
parameters (e.g., weights and sample sizes).

Reliability, with 37 of 169 of the parameterizations, was
the second most common rationale. Of these, 17 were caused
by hardcoded timeout values that led to constant request
failures in the reported deployments, so developers made them
configurable. Note that new timing parameters were created
for both reliability and performance tuning. For example,
in HDFS, a new timing parameter was created to improve
performance. The previous constant was causing a “delete
file task to wait for... too long” (HBase-20401). But, another
HDFS timing parameter was created to improve reliability.
The previous constant was too small, causing “timeouts while
creating 3TB volume” (HDFS-12210).

DISCUSSION: Configuration auto-tuning techniques
that consider reliability and functionality are needed, in
addition to performance-only optimization [52]–[70].
Specifically, timing parameters have important impli-
cations to both reliability and performance; however,
not much work has been done on auto-tuning timing
parameters (e.g., timeouts and intervals).

How developers find constants to parameterize. 54.4%
(92/169) of parameterizations were postmortem to severe
consequences, e.g., system failures, performance degradation,
resource overuse, and incorrect results. Among previous con-
stants for these, 40.2% (37/92) led to performance degradation;
35.9% (33/92) caused severe failures; 19.6% (18/92) led to
incorrect or unexpected results (e.g., data loss and wrong
output); and 4.3% (4/92) resulted in resource overuse.

DISCUSSION: Despite the efforts in parameterization,
developers still overlook deficient constants that may
lead to severe consequences (e.g., failures and perfor-
mance issues). Proactive techniques for detecting de-
ficient constants and for automating parameterization
are needed; the latter could assist performance testing
of cloud systems.

https://issues.apache.org/jira/browse/HBASE-20401
https://issues.apache.org/jira/browse/HDFS-12210


TABLE VI: Statistics and examples of developers’ rationales for parameterization (excluding two commits that lacks information).

RATIONALE #COMMIT #PARAM EXAMPLE NEW PARAMETER LIMITATION OF PREVIOUS CONSTANT

Performance 56 67 spark.sql.codegen.cache.maxEntries The cache size does not work for online stream processing (Spark-24727)

Reliability 28 37 spark.sql.broadcastExchange.maxThreadThreshold Out of memory if thread-object garbage collection is too slow (Spark-26601)

Manageability 20 20 dfs.federation.router.default.nameservice.enable Enable the default name service to store files (HDFS-13857)

Debugging 8 9 spark.kubernetes.deleteExecutors Disable auto-deletion of pods for debugging and diagnosis (Spark-25515)

Environment 8 13 dfs.cblock.iscsi.advertised.ip Allows server and target addresses to be different (HDFS-13018)

Compatibility 13 13 spark.network.remoteReadNioBufferConversion Add the parameter to fall back to an old code path (Spark-24307)

Testability 3 4 spark.security.credentials.renewalRatio May not need to be set in production but can make testing easier (Spark-23361)

Security 4 4 spark.sql.redaction.string.regex The output of query explanation can contain sensitive information (Spark-22791)

TABLE VII: Use-case description of parameterization changes.

LEVEL EXAMPLE

Concrete “Volume creation times out while creating 3TB volume” (HDFS-12210).

Vague “If many regions on a RegionServer, the default will be not enough” (HBase-21764).

No Info “It would be better if the user has the option instead of a constant” (Spark-25233).

Describing use cases that prompt parameterization. Use
cases where constants were deficient should be described fully
to help users set correct values. But, developers described
the concrete use cases that prompt parameterization for only
37.9% (64/169) parameters. Others discussed use cases either
vaguely (45.0% or 76/169 parameters) or provided no informa-
tion (17.1% or 29/169 parameters). Table VII shows examples.

DISCUSSION: Future work should identify and docu-
ment use cases and workloads, including which param-
eters can be tuned, and suggest beneficial configuration
values that are designed for concrete use cases.

Balancing flexibility and simplicity Configuration interface
design must balance flexibility (i.e., configurability) with
simplicity [12]. New parameters increase flexibility (by han-
dling additional use cases), but increase interface complexity
(thus reducing usability). 16.2% (23/142) of parameterization
commits contained developer discussions on the flexibility-
simplicity tradeoff. Most discussed estimated prevalence of use
cases for parameterization—it is not worth increasing interface
complexity for rare use cases—and typically involve advanced
users, e.g., “admittedly, this...is an expert-level setting, useful
in some cases” (Cassandra-14580). We also found developers’
debates on whether to parameterize (Cassandra-12526, HDFS-
12496, Spark-26118).

A middle-ground solution is to parameterize without docu-
menting or exposing the parameter, e.g., “although...not widely
used, I could see allowing control...via an undocumented
parameter” (Spark-23820). With this practice, not all but the
most advanced users know of such parameters. We found
that 58.0% (98/169) of the newly added parameters were not
documented in the parameterization commit, indicating that
these parameters were first added as middle-ground solutions.

DISCUSSION: Further studies are needed on 1) if and
why undocumented parameters are eventually docu-
mented, and 2) how often and why (expert) users
modify un-exposed parameters, in order to understand
the intent and utility of such parameters.

Specifically, visibility conditions from variability model-
ing [49], [50], [71] can be extended to manage the tradeoff
of flexibility versus simplicity, which can benefit navigation
support and user guidance [72]–[75]. Currently, visibility
conditions are mainly designed for Boolean feature flags based
on dependency specifications (e.g., in CDL and KConfig);
complexity metrics and variability analysis for other parameter
types (e.g., numeric and strings) are needed.

2) Removing Parameters: Understanding parameter re-
moval can yield insights on reducing configuration interface
complexity [12], [35]. We examined all 17 configuration-
related commits that removed a parameter (not co-removal
with code). All 17 removed parameters were converted to
constants or code logic was added that obviated them. 14
removed parameters were converted to constants: 11 to their
default values and 3 to safe values. Developers mentioned that
8 of the 17 parameters had no clear use case (e.g., HBase-8518,
HBase-18786), or required users to understand implementation
details (e.g., Cassandra-14108). Three parameters confused
users or might lead to severe errors (e.g., Spark-26362).

Three of 17 removed parameters were obviated by new
automation logic. For example, in HBase-21228, hbase.r
egionserver.handler.count which specified the number
of concurrently updating threads to be garbage collected in
a Java ConcurrentHashMap, was removed after developers
switched to ThreadLocal<SyncFuture> which automatically
garbage collects terminated threads. This example shows how
implementation choices could affect configuration complexity.

DISCUSSION: Future studies can evaluate the utility
and impact of each parameter (e.g., by analyzing if
and how often deployed values are equal or similar to
the default values). Configurations with low utility can
be replaced with constants (e.g., default values).
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B. Evolution of Default Values

Parameter default values are important to the usability of
configurable systems; they provide users with good starting
points for setting parameters without needing to understand
the entire configuration space. Thus, developers usually choose
default values that satisfy common use cases. Ideally, a de-
fault value applies under most common workloads, without
causing failures (HBase-16417, HBase-20390, HDFS-11998).
The “ModDefaultValue” row in Table V shows 56 commits that
changed 81 default values. We discuss why default values
changed and how new default values were chosen.

Reasons for changing default values. We observe proactive
and reactive default value changes. 38.3% (31/81) default-
value changes were proactive, including 1) enabling a pre-
viously disabled feature flag (32.3% (10/31)), e.g., “running
the feature in production for a while with no issues, so
enabled the feature by default” (HDFS-7964), 2) performance
reasons (35.4%, 11/31), e.g., “sets properties at values yielding
optimal performance” (HBase-16417), and 3) supporting new
use cases (32.3%, 10/31), e.g., “it may be a common use case
to ...list queries on these values” (Cassandra-14498).

The remaining 61.7% (50/81) of default value changes
were reactive to user-reported issues, including 1) system
failures and performance anomalies due to not supporting new
workloads, deployment scale, hardware, etc (50.0%, 25/50),
2) inconsistencies with user manual (38.0%, 19/50), and 3)
working around software bugs (12.0%, 6/50), e.g., “we set
the parameter to false by default for Spark 2.3 and re-enable
it after addressing the lock congestion issue” (Spark-23310).

Choosing new values. It is straightforward to change new
default values for Boolean and enumerative parameters, given
their small value ranges. So, we describe how new default
values of 32 numeric parameters were chosen (excluding those
that fix default value inconsistency (e.g., HBase-18662). Only
28.1% (9/32) numeric parameters had systematic performance
testing and benchmarking mentioned in the JIRA/GitHub
issues. Later commits reset these new default values, despite
the initial testing and benchmarking. For example, HBase
developers performed “write-only workload evaluation...read
performance in read-write workloads. We investigate several
settings...” (HBase-16417). Yet, we found three later commits
that changed the default value of the same parameter to differ-
ent numbers. For 31.3% (10/32) of numeric parameters, new
default values were chosen by adjusting the previous default
values to resolve production failures. In many of these cases,
usually without high confidence in the new default values,
developers simply chose values that resolve the problem(s).
Examples: “It probably makes sense to set it to something
lower” (Spark-24297), or “I’m thinking something like 3000
or 5000 would be safer” (HBase-18023). We found no infor-
mation on the remaining 40.6% (13/32) numeric parameters.

We observe that backward compatibility and safety are
common considerations in selecting new default values. New
default values that radically change system behavior are often
considered inappropriate (e.g., HBase-18662).

TABLE VIII: Statistics on configuration usage evolution.

HDFS HBASE SPARK CASSANDRA TOTAL

Parse 5 14 59 7 85

Check 7 20 29 11 67

Handle 12 18 20 2 52
HandleAction 8 6 4 1 19
HandleMessage 4 12 16 1 33

Use 34 35 74 12 155
UseChange 7 10 25 3 45
UseAdd 27 25 49 9 110

DISCUSSION: Default value changes are often reactive
to the reported issues, without systematic assessment.
Systematic testing and evaluation of new (and existing)
default values are needed.

Dynamic workloads and heterogenous deployments neces-
sitate continuous and incremental changes to default values.
Future work could maintain a set of default values (instead of
one) for typical workloads, hardware, and scale.

C. Summary

There is an unmet need for practical configuration automa-
tion techniques and tools for choosing and testing parameter
values—why do cloud system developers still change param-
eter values statically rather than using parameter automation?
There is also need for automatic ways of identifying workloads
or use cases for which default values (and even constants) are
ill-suited. Such automatic workload identification approaches
can help developers to better 1) decide which constant values
need to be parameterized, 2) understand when their current
default values will lead to system failures, and 3) come up
with better tests and benchmarks for default values.

V. CONFIGURATION USAGE EVOLUTION

We present results on configuration usage evolution (recall
the configuration usage model described in Fig. 1 and Sec-
tion II). Across the four cloud systems, 26.2%–36.8% of
commits changed parameter usage (Table VIII). We describe
changes to checking, error handing, and use of parameters. We
omit changes to parsing APIs (e.g., Spark-23207).

A. Evolution of Parameter Checking Code

Proactively checking parameter values is key to preventing
misconfigurations [16]. However, we find that many parame-
ters had no checking code when they were introduced. Check-
ing code was added reactively: 1) 74.6% (50/67) of commits
that changed checking code occurred after users reported
runtime failures, service unavailability, incorrect/unexpected
results, startup failures, etc. (Table IX shows examples).
2) In 14.9% (10/67) commits, developers proactively added
or improved the checking code; 2 of them applied reactively-
added checking code to other parameters with similar types
(e.g., Cassandra-13622). 3) We did not find sufficient infor-
mation of the other 7 commits.
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TABLE IX: Examples of consequences that can be prevented by adding configuration checking code.

CONSEQUENCE EXAMPLE PARAMETER DESCRIPTION

Runtime Error hbase.bucketcache.bucket.sizes If value is not aligned with 256, instantiating a bucket cache throws IOException (HBase-16993)

Early Termination commitlog_segment_size_in_mb If value ≥ 2048, Cassandra throws an exception when creating commit logs (Cassandra-13565)

Service unavailability spark.dynamicAllocation.enabled Running barrier stage with dynamic resource allocation may cause deadlocks (Spark-24954)

Unexpected Results spark.sql.shuffle.partitions If the value is 0, the result of a table join will be an empty table (Spark-24783)

1 + if (writeTables ==null || writeTables.isEmpty ()) {
2 + throw new IllegalArgumentException(
3 + "Configurtion parameter" +
4 + OUTPUT_TABLE_NAME_CONF_KEY + "cannot be empty")}

(a) Add a NOT-NULL check (HBase-18161)

1 + if (bucketSize % 256 != 0) {
2 + throw new IllegalArgumentException(
3 + "Illegal value:" + bucketSize +
4 + "configured for" + BUCKET_CACHE_BUCKETS_KEY +
5 + "All bucket sizes to be multiples of 256")}

(b) Add a semantic check (HBase-16993)

1 + require(conf.getOption(authKey).isEmpty ()
2 + || !restServerEnabled ,
3 + s"The RestSubmissionServer does not " +
4 + "support authentication via ${authKey }." +
5 + "Either turn off spark.master.rest.enabled " +
6 + "or do not use authentication.")

(c) Add a check for parameters dependency (Spark-25088)

1 + if (rdd.isBarrier () &&
2 + Utils.isDynamicAllocationEnabled(sc.getConf)) {
3 + throw new SparkException(
4 + "Barrier execution mode does not support"
5 + "dynamic resource allocation for now. You can"
6 + "disable dynamic resource allocation: setting"
7 + "spark.dynamicAllocation.enabled to false")}

(d) Add a check for execution context (Spark-24954)

Fig. 2: Examples of configuration checking code.

1) Adding new checking code: 79 new checks were added
in 83.6% (56/67) of checking-code related commits. 87.3%
(69/79) of these new checks were for specific parameters,
while the others were applied to groups of configuration pa-
rameters (e.g., read-only parameters). Surprisingly, for specific
parameter checks (69 checks in 46 commits), 58.0% (40/69)
were basic checks: NOT-NULL (20/69), value range (15/69) and
deprecation checks (5/69). An example is in Fig. 2(a). Majority
of new checking code were added reactively, corroborating
that simple checks can prevent many severe failures [16],
[76]. More of such checks could be automatically added and
invoked at system startup. The other 29 checks were more
complex: 9 value semantic checks (e.g., file/URI properties
and data alignment, Fig. 2(b)), 2) 13 checks for parameter
dependencies (e.g., Fig. 2(c)), and 3) 7 checks for execution
context (e.g., Fig. 2(d)).

2) Improving existing checking code: 11 commits improved
existing checking code: eight made checks more strict, e.g., a
NOT-NULL check was improved to “only allow table replication
for sync replication” (HBase-19935), and three moved check-
ing code to be invoked earlier instead of during subsequent

execution, e.g., “when starting task scheduler, spark.task.cpus
should be checked” (Spark-27192).

DISCUSSION: Checks for parameter values are often
added as afterthoughts. Proactively generating check-
ing code can help prevent failures due to misconfigu-
rations.

Two possible directions are automatically learning checking
code (we find that newly-added checking code is often simple)
and automatically applying checking code for one parame-
ter to other parameters both in the same software (which
developers are already doing manually) and across software
projects. A direction is to co-learning checking code and
usage code. Techniques for extracting complex constraints and
specifications can reduce manual effort for reasoning about
and implementing checking code. A few recent works show
promise for inferring parameter constraints through analysis of
source code and documentation [13], [77]–[79]. Techniques for
extracting feature constraints could be extended and applied
to runtime configurations [80]–[83].

B. Evolution of Error-Handling Code

We discuss changes to misconfiguration-related exception-
handling code and to messages that provide user feedback.

1) Changes to configuration error handling: 19 commits
dealt with error handling: 10 added new handling code
to try-catch blocks or throw new exceptions; 9 commits
changed handling code. Among the 9 commits, (1) four
changed misconfiguration-correction code: three of these
added logic to handle a misconfiguration, e.g. “if secret file
specified in httpfs.authentication.signature.secret.file does not
exist, random secret is generated” (HDFS-13654) and one
changed buggy misconfiguration-correction code to simply log
errors (HDFS-14193) (showing that auto-correcting misconfig-
urations is not always easy), (2) three changed the exception
type as it was “dangerous to throw statements whose exception
class does not accurately describe why they are thrown...since
it makes correctly handling them challenging” (HDFS-14486),
and (3) two replaced exception throwing with logging the
errors and resuming the execution.

We also studied the newly added handling code in the 79
commits that added new checking code in Section V-A1. In
73.4% (58/79) of the cases, the handling code threw runtime
exceptions or logged error messages. The expectation is that
users should handle the errors. In the remaining 26.6% (21/79)
cases, developers attempted to correct the misconfigurations,
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TABLE X: Four levels of message feedback quality in commits that changed exception or logging messages.

LEVEL DESCRIPTION EXAMPLE

L4 Contain parameter names and “Barrier execution mode does not support dynamic resource allocation... You can disable dynamic
provide guidance for fixing resource allocation by setting...spark.dynamicAllocation.enabled to false.” (Spark-24954)

L3 Contain parameter names “Failed to create SSL context using server_encryption_options.” (Cassandra-14991)

L2 Do not contain parameter names “This is commonly a result of insufficient YARN configuration.” (HBase-18679)

L1 No mention of configuration “Could not modify concurrent moves thread count.” (HDFS-14258)

e.g., “it’s developers’ responsibility to make sure the configu-
ration don’t break code.” (Spark-24610). Developers corrected
misconfigurations by changing to the closest value in the valid
range (11/21), reverting to the default value (3/21), and using
the value of another parameter with similar semantics (7/21).

DISCUSSION: Developers want to make code more
robust in the presence of misconfigurations, but their
manual efforts are often ad hoc. There is need for new
techniques for generating misconfiguration correction
code and improving existing handling code.

Techniques for fixing compile-time configuration errors,
such as range fixes [84], [85], may be applicable for generating
correction strategies for some types of runtime parameters. A
key challenge is to attribute runtime errors (e.g., exceptions)
to misconfigurations and to rerun the related execution with
the corrected configurations.

2) Changes to feedback messages: Feedback (error log
or exception) messages are important for users to diagnose
and repair misconfigurations. We investigated commits that
modified feedback messages and categorize the level of feed-
back that they provided in Table X, where L4 messages
provide the highest-quality feedback and L1 messages pro-
vide the lowest-quality feedback. Among 33 commits that
modified messages, 18 enhanced feedback quality by adding
configuration-specific information. After enhancement, 8 mes-
sages became L3, and 7 became L4. Changes in the other
15 commits improved 1) correctness (9/15)—half changed
imprecise parameter boundary values, e.g., from “no less” to
“greater” (Spark-26564), 2) readability (3/15), such as fixing
typographic errors, 3) the log level (2/15), and 4) security
(1/15), i.e., removing potentially sensitive value.

DISCUSSION: Future work could study the feedback
level in all messages related to misconfiguration han-
dling code. If most messages are not L4, then future
work should automatically detect deficient messages
and automatically enhance them to L4.

Moreover, configuration-related logging is not as mature
as logging for debugging [86]–[91]. Improving configuration-
related logging requires logging related parameters, erroneous
values, and, where feasible, possible fixes. Poor-quality feed-
back from tools hinders developers [92] and techniques exist
for dealing with message errors in other domains [93], [94].

C. Evolution of Parameter Value Usage

Software developers change how existing parameters are
used (“UseChange” in Table VIII) and reuse existing parameters
for different purposes (“UseAdd” in Table VIII).

1) Changing how existing parameters are used: 45 com-
mits changed parameter usage for the following reasons:

Fine-grained control. In 12/45 commits, developers pre-
viously used one parameter for multiple purposes, due to
poor design—“e.g., CompactionChecker and PeriodicMem-
StoreFlusher execution period are bound together” (HBase-
22596)—or for reuse—e.g., “arrow.enabled was added... with
PySpark... Later, SparkR... was added... controlled by the same
parameter. Suppose users want to share some JVM between
PySpark and SparkR... They use the optimization for all or
none.” (Spark-27834). Developers resolved both categories by
creating separate parameters for fine-grained control.

Domain/scope. 8/45 commits changed the usage domain
or scope of a parameter. For example, HDFS developers
changed a parameter, which was previously only used in the
decommission phase to also be used in the maintenance phase,
so “lots of code can be shared” (HDFS-9388).

Parameter overriding 9/45 commits changed parameter over-
ride priority, e.g., “We need to support both table-level pa-
rameters. Users might also use session-level parameter... the
precedence would be...” (Spark-21786).

Semantics 6/45 commits changed what a parameter is used
for, e.g., in Spark-21871, developers started using spark.sql.
codegen.hugeMethodLimit as the maximum compiled function
size instead of spark.sql.codegen.maxLinesPerFunction.

Parameter replacement 6/45 commits swapped one parame-
ter for another because the previous one was outdated or wrong
, e.g., in Spark-24367, a use of parquet.enable.summary-me
tadata was replaced with a use of parquet.summary.metada
ta.level because the former was deprecated.

Buggy parameter values 4/45 commits changed parameter
values that were buggy, e.g., the value of a parameter changed
because, “user specified filters are not applied in YARN
mode...we need... user provided filters” (Spark-26255).

2) Reusing existing parameters: To avoid growing the
configuration space unnecessarily, developers sometimes reuse
existing parameters that are similar to their new use case, in-
stead of introducing a new parameter. 110 commits reused 151
existing parameters for different purposes. However, parameter
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1 + String principal = conf.get(
2 + Constants.REST_KERBEROS_PRINCIPAL);
3 + if (principal != null) {...}
4

5 Preconditions.checkArgument(principalConfig != null
6 && !principalConfig.isEmpty (),
7 REST_KERBEROS_PRINCIPAL +
8 " should be set if security is enabled");

(a) Inconsistent checking (HBase-20590)

1 + if(peerConf.get("hbase.security.authentication")
2 + .equals("kerberos")) {...}
3

4 isSecurityEnabled = "kerberos".equalsIgnoreCase(
5 conf.get("hbase.security.authentication"));
6 if (isSecurityEnabled) {...}

(b) Inconsistent parameter usage (HBase-20586)

Fig. 3: Examples of configuration inconsistent reuse.

reuse comes at a cost. We find two main problems. First,
reusing a parameter and code that it controls can result in
subtle inconsistencies that can lead to bugs or user confusion.
19.2% (29/151) parameter reuses had such inconsistencies.
Second, developers often clone existing code to enable reuse.
We focus on inconsistencies. Problems of code cloning are the
subjects of other research.

We manually checked for inconsistencies by comparing the
newly-added code in a target commit with code that used
the parameter in existing code base. We found 29 inconsis-
tencies in HDFS (9/29), HBase (9/29) and Spark (11/29).
Inconsistencies manifest in different ways. We categorized
them based on the sources of inconsistencies during reuse:
1) feedback message (9/29), e.g., Spark-18061; 2) checking
code (4/29) e.g., HBase-20590; 3) new uses of deprecated
parameters (6/29), e.g., HDFS-12895; 4) default values (3/29),
e.g., HBase-21809; and 5) use statements (7/29), e.g., HBase-
20586. Fig. 3 shows examples of inconsistencies in reuse of
checking code and use statements, where added lines start with
+. In Fig. 3(a), the new parameter usage did not check for
parameter value emptiness as the old usage did. In Fig. 3(b),
the new usage of hbase.security.authentication checked
case-insensitive equality; the old usage was case-sensitive.

DISCUSSION: Inconsistencies in parameter usage can
confuse users (the same values are used in different
ways) or lead to bugs. Ideas for detecting bugs as
deviations from similar program behavior [95], [96]
could be starting points for addressing this problem.

D. Summary

We advocate that improving software qualities—resilience,
diagnosability, and consistency—should be first-class princi-
ples in software configuration engineering. We find that even
in mature, production-quality cloud systems, checking, error
handling, feedback, and parameter usage are often not de-
signed or implemented in a principled manner. More research
effort should be put on enhancing these essential qualities of
configurable software to defend against misconfigurations, in

addition to detection and diagnosis tools that are external to
the cloud system [1], [17]–[28], [30].

VI. CONFIGURATION DOCUMENT EVOLUTION

We very briefly discuss configuration document evolution:
114 commits made 149 changes to user manuals or code com-
ments. 100 of these commits changed user manuals and the
rest changed code comments. We discuss why configuration
documents were changed and the changed content.

Reasons for changing configuration documents. The 149
changes to configuration documents resolved five types of
problems: 1) 63 were inadequate for users to understand pa-
rameters or to set values correctly, e.g., “users wondered why
spark.sql.shuffle.partitions...unchanged when they changed the
config...worth to explain it in guide doc” (Spark-25245); 2) 29
were outdated after configuration design and implementation
changed (Section IV and Section V); 3) 21 were incorrect,
e.g., “LazyPersistFileScrubber will be disabled if... configured
to zero. But the document was incorrect” (HDFS-12987);
4) 17 had readability issues, e.g., “Client rpc timeouts are not
easy to understand from documentation” (HBase-21727); and
5) 19 improved content, e.g., “Add thrift scheduling... config
to scheduling docs” (Spark-20220).

DISCUSSION: Document-as-code techniques can be
applied to eliminate inconsistencies between configu-
ration documents and configuration design/implemen-
tation.

Content added to enhance documents. Inadequate infor-
mation was the most common problem resolved by con-
figuration document changes. We put the 63 changes that
enhanced inadequate documents in six categories based
on the content added: 1) 16 changed constraints on pa-
rameter values, e.g., “This should be positive and less
than 2048” (Cassandra-13622); 2) 10 explained depen-
dence on other parameters, e.g., “This property works
with dfs.namenode.invalidate.work.pct.per.iteration” (HDFS-
12079); 3) 6 changed parameter value types and units; 4) 6
changed parameter scope, e.g., “Timeout... is controlled differ-
ently. Use hbase.client.scanner.timeout.period property to set
this timeout” (HBase-21727), 5) 22 provided use cases and
guidance, e.g., “enabling this will be very helpful if dfs image
is large” (HDFS-13884); and 6) 3 warned about deprecation,
e.g., “this config will be removed in Spark 3.0” (Spark-25384).

DISCUSSION: Ethnographic studies could help un-
derstand the gaps between documented configuration
information and configuration obstacles faced by users.

Summary Correctness and effectiveness of technical doc-
umentation is a long-lasting problem in software engineer-
ing. Configuration documentation is no exception. Special-
ized techniques for maintaining and improving configuration

https://github.com/apache/hbase/commit/7da0015a3b58a28ccbae0b03ba7de9ce62b751e1
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https://issues.apache.org/jira/browse/HDFS-12895
https://issues.apache.org/jira/browse/HBASE-21809
https://issues.apache.org/jira/browse/HBASE-20586
https://issues.apache.org/jira/browse/HBASE-20586
https://issues.apache.org/jira/browse/SPARK-25245
https://issues.apache.org/jira/browse/HDFS-12987
https://issues.apache.org/jira/browse/HBASE-21727
https://issues.apache.org/jira/browse/SPARK-20220
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https://github.com/apache/hbase/commit/51c58e083ca89a33de79c8531a16f7072c488d6d
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documentation are needed. For example, checking for incon-
sistencies between documents and source code [97]–[100]
could help detect defects in configuration-related code or
documents. Also, techniques for auto-generating documents,
especially using structured data, can be applied to generating
per-parameter comments and manual entries [101]–[103].

VII. THREATS TO VALIDITY

We studied cloud systems. Some of our findings may not
generalize to other kinds of software. We chose these projects
because they are widely used, highly configurable with lots
of parameters, mature, and well maintained. They also have
issue-tracking systems that help us understand the context of
configuration-related commits.

Though we selected candidate commits from version con-
trol history, we may have missed some configuration-related
commits due to two limitations. First, our regular expressions
assume standard coding conventions and will not match if de-
velopers do not follow these conventions. Second, our simple,
text-based tainting may miss some changes to the data flow
of variables that store parameter values. However, as we men-
tioned in Section III, precise pairwise tainting does not scale
to all the commits in the range that we studied—we traded off
precision for scalability. All commits selected were manually
inspected and categorized through a rigorous quality-assurance
process (Section III-B3). False positives came mainly from
commits that touched lines containing configuration-related
variables but did not change the configuration.

VIII. RELATED WORK

A prior study [36] found that software evolution necessi-
tates resetting parameter values and built ConfigSuggester
to identify parameters whose values need to be changed
after a software updates. We study how the configuration
interface and parameter usage change across (a portion of)
version control history to draw insights for better configuration
design and implementation. Sayagh et al. [34] studied software
configuration engineering in practice using interviews, user
surveys, and a literature review. Our work is complementary:
we perform a code-level study of configuration evolution,
which yields new insights.

There have been many studies on misconfigurations in a
wide variety of software systems [1], [2], [4]–[11]. Our work
does not focus on detecting misconfigurations or diagnosing
failures caused by misconfigurations. We focus on current con-
figuration engineering practices, with the goal to understand
how to improve configuration design and implementation.

Recently, a few studies investigated automated techniques
or engineering practices to enhance configuration checking
code [16], diagnosability [104], interface [45], security [14],
[105], [106], configuration data analysis [107], configuration
libraries [108], [109], and correlations or coupling in con-
figuration and code [110]–[112]. Our work corroborates and
complements the aforementioned work from the perspective of
software evolution. Specifically, our work studies the practices

of software developers and reveals how software configuration
design and implementation are revised and evolved.

Despite the differences (Appendix A), runtime configura-
tions share commonalities with compile-time configurations or
SPL configurations, such as #ifdef-based feature flags [35].
It is possible that techniques and methodologies designed for
compile-time configurations, especially feature and variability
modeling [47], [49]–[51], [71], [113], could be adapted for use
with runtime configurations. Such adaptation needs to address
unique challenges of runtime configuration parameters, such
as dependencies on deployment environments, as well as their
complex data types and misconfiguration patterns.

Configuration design and implementation have significant
implications on software testing and debugging [114]–[119].
For example, introducing new parameters enlarges the configu-
ration space and thus makes it more costly to comprehensively
test software. In this paper, we focus on understanding how
to improve configuration design and implementation so that
fewer misconfigurations occur, and not on software bugs that
can occur under different parameter value combinations.

IX. CONCLUSIONS

We presented present an evolutionary study of configuration
design and implementation in cloud systems. To the best
of our knowledge, ours is the first evolutionary study on
code-level runtime configuration design and implementation
in these systems. We analyze rationales and practices for
revising configuration design and implementation decisions,
especially in response to consequences of misconfigurations.
Our study yields several new insights into the configuration
engineering process, and research opportunities for reducing
misconfigurations. Our hope is to inspire researchers and
developers to treat configuration engineering as a first-class
software engineering endeavor.

APPENDIX A: RUNTIME VERSUS SPL CONFIGURATION

A very frequent request is to compare runtime configuration
(the type of configuration studied in this paper) with software
product lines (SPL) configuration (often referred to as “feature
flags” or “feature toggles”) and to position the work in the area
of SPL and variability modeling. We explicitly discuss a few
fundamental differences:

First, runtime configurations are changed by software users
(operators/sysadmins in our context); SPL configurations are
managed by developers. Since users are unfamiliar with code,
the configuration specifications become the interfaces (Sec-
tion IV). Moreover, as users are prone to misconfigurations,
checking and providing feedback are critical (Section V).

Second, runtime configurations are implemented differently
than SPL configurations. Runtime configurations are mostly
in the form of configuration parameters that load values from
files or command lines; SPL configurations are typically in the
form of preprocessors that determine modules to be included
in the released binary.

Third, runtime configurations of cloud software are changed
frequently (hundreds to thousands of times a day [1], [9],



[112]); SPL configurations are typically changed with product
release cycles. This higher velocity of runtime configuration
changes increases misconfiguration occurrences and makes
checking, error handling, and logging critical.

Fourth, runtime configurations depend on the deployment
environment, including machine resources (e.g., CPU, mem-
ory, and storage), operating systems (e.g., files, IP addresses,
and ports), and workloads (data size and requests per seconds).
In contrast, SPL configurations are often determined before
software release or system deployment.

Lastly, runtime configurations have more complex data
types (e.g., string and numeric) with different error patterns;
SPL configurations are mostly boolean or enumerative types.

Certainly, ideas in SPL and variability modeling can be
extended and applied to runtime configuration. We have dis-
cussed them in context of our analysis throughout the paper.

APPENDIX B: REPLICATION PACKAGE

We release our research artifacts of this paper at:

https://github.com/xlab-uiuc/open-cevo

The artifacts include:
• the script code for collecting commits and JIRA issues;
• the annotated dataset of each categories (interface, usage,

and document);
• documents for running the code and navigating the data.
We believe our study can be reproduced by different teams

based on the taxonomy described in Figure 1 and Table II,
together with the methodology described in Section III.

Author experience. All the authors have been working on
software configuration research for several years, ranging from
two to nine years. The authors have a good understanding
of the four systems under study (HDFS, HBase, Spark, and
Cassandra)—they have used those studied systems as subjects
of evaluation in their prior research.

We expect that a similar level of experiences and expertises
are needed for a team to reproduce the analysis (mainly
categorization), including the understanding of the designs of
the systems under study and the implementations in Java/S-
cala programming languages to understand the evolution. We
believe a fair understanding of software configuration design
and implementation is required, too.

Heuristics for commit identification and analysis. The
heuristics are described in Section III-B2. The script code that
implements the heuristics can be found at:

https://github.com/xlab-uiuc/open-cevo/tree/main/code

We documented how to run the code and the basic regular
expressions used at the README.md file.

Identification/categorization of the rationales for param-
eterization. We identify and categorize the rationales for
parameterization based on the descriptions (from the reporter)
and the discussions (among the developers) documented in the
JIRA issues. We developed our categories bottom-up instead

of imposing a taxonomy ex ante. Specifically, we list all the
rationales/reasons and then summarizing them into categories.
We do not claim completeness of the categories.

We present an example from Spark, in which the commit
(link) changed a constant value 100 to a configuration param-
eter, spark.sql.codegen.cache.maxEntries; the commit
is associated with the JIRA issue, SPARK-24727. Quoting the
JIRA issue description,

“The cache 100 in CodeGenerator is too small
for realtime streaming calculation, although is ok
for offline calculation. Because realtime streaming
calculation is mostly more complex in one driver,
and performance sensitive. I suggest spark sup-
port config for user with default 100, such as
spark.codegen.cache=1000.”

Based on the description, we conclude that the rationale behind
the parameterization is that the constant value cannot meet
the performance requirement of real-time application. So, it is
categorized as “performance” in Table VI.

Identification on how developers find constants to pa-
rameterize. It is straightforward to identify the constants
that were parameterized in a selected commit. The following
commit (link) illustrates this point; the commit comes from
SPARK-20950. We can see that the constant (1024*1024) was
parameterized—the value was replaced by a program variable
diskWriteBufferSize read from a configuration parameter.

1 - int DISK_WRITE_BUFFER_SIZE = 1024 * 1024
2 + int diskWriteBufferSize =
3 + conf.get(package$.MODULE$.
4 + SHUFFLE_DISK_WRITE_BUFFER_SIZE)
5 - byte[] writeBuffer =
6 - new byte[DISK_WRITE_BUFFER_SIZE]
7 + byte[] writeBuffer =
8 + new byte[diskWriteBufferSize]

For each commit that parameterized constants, we identify
the intent of the parameterization, i.e., “how developers find
constants to parameterize.” Similar to the identification/cate-
gorization of the rationales for parameterization, we identify
and categorize the reasons for how developers find constants
to parameterize based on the descriptions (from the reporter)
and the discussions (among the developers) documented in
the JIRA issues. The process is identical—we list all the
rationales/reasons and then summarizing them into categories.
We do not claim completeness of the categories.

We present an example from Spark, in which the commit
(link) parameterized the thread number of broadcast-exchange
thread pool from a constant 128. Based on the associated JIRA
issue, SPARK-26601:

“Currently, thread number of broadcast-exchange
thread pool is fixed and keepAliveSeconds is also
fixed as 60s. But some times, if the thread object do
not GC quickly it may caused server(driver) OOM.
In such case, we need to make this thread pool
configurable.”

Therefore, we conclude that the parameterization is to avoid
OOMs, a type of “failures” (Section IV-A1).

https://github.com/xlab-uiuc/open-cevo
https://github.com/xlab-uiuc/open-cevo/tree/main/code
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https://github.com/apache/spark/commit/565e7a8d
https://issues.apache.org/jira/browse/SPARK-20950
https://github.com/apache/spark/commit/126310ca
https://issues.apache.org/jira/browse/SPARK-26601


Identification/categorization of the reasons for changing
default values. Similar to the identification/categorization of
the rationales for parameterization, we identify and catego-
rize the reasons for changing default values based on the
descriptions (from the reporter) and the discussions (among
the developers) documented in the JIRA issues. The process
is identical—we list all the rationales/reasons and then sum-
marizing them into categories. We do not claim completeness
of the categories.

We present an example from HDFS. The commit
(link) changed the default value of dfs.namenode.edits
.asynclogging from off to on. The commit is associated
with the JIRA issue, HDFS-12603, which in turn was linked
to HDFS-7964. Quoting the discussion:

“It was off by default due to concerns about cor-
rectness. We have been running it in production for
quite a while with no issues so far.”

We conclude that the commit enabled a previously-disabled
feature flag (Section IV-B).

Definitions of four levels of messages and feedback quality.
The definitions are developed based on how the messages are
changed, i.e., how developers improved the original messages.
Specifically, we summarized what additional information is
added to the original message, which can be categorized into
the four levels. The following is a commit (link) that changed
the message which improved the message quality from L3 to
L4 defined in Table X.

1 - resp.getWriter ().write(
2 - "ASYNC_PROFILER_HOME is not set.");
3 + resp.getWriter ().write(
4 + "ASYNC_PROFILER_HOME is not set." +
5 + "Please ensure prerequsites for the Profiler" +
6 + "Servlet have been installed and the" +
7 + "environment is properly configured." +
8 + "For more information please see" +
9 + "http :// hbase.apache.org/book.html#profiler");

Handling commits that change multiple categories. One
commit could revise multiple categories in our taxonomy
(Figure 1 and Table II). In total, there are 26 commits
that revise multiple categories. For those commits, we
study them in each category independently. For example,
the following commit (link) changes the default value of
spark.master.rest.enabled; meanwhile, it also adds the
checking code for SPARK_AUTH_SECRET_CONF.

1 - val restServerEnabled = conf.getBoolean(
2 - "spark.master.rest.enabled", true)
3 + val restServerEnabled = conf.getBoolean(
4 + "spark.master.rest.enabled", false)
5 ...
6

7 + authKey = SecurityManager.SPARK_AUTH_SECRET_CONF
8 + require(conf.getOption(authKey).isEmpty
9 + || !restServerEnabled ,

10 + s"The RestSubmissionServer does" +
11 + "not support authentication.")

Therefore, we study this commit in both ModDefaultValue (Sec-
tion IV-B) and Check (Section V-A).

ACKNOWLEDGEMENT

We thank Xiangbing Huang, Xudong Sun, Sam Cheng, Jack
Chen, and Darko Marinov for discussions. The research was
mainly conducted when Zhang was a visiting student at UIUC,
supported by China Scholarship Council. Zhang, He, Li, and
Dong were supported in part of National Key R&D Program
of China No. 2017YFB1001802; NSFC No. 61872373 and
61872375. Xu was supported in part of NSF 1816615.

REFERENCES

[1] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen,
A. Narayanan, P. Dowell, and R. Karl, “Holistic Configuration Manage-
ment at Facebook,” in SOSP, 2015.

[2] L. A. Barroso, U. Hölzle, and P. Ranganathan, The Datacenter as a
Computer: Designing Warehouse-Scale Machines. 2018.

[3] J. Shieber, “Facebook blames a server configuration change
for yesterday’s outage.” https://techcrunch.com/2019/03/14/
facebook-blames-a-misconfigured-server-for-yesterdays-outage/,
2019.

[4] G. Amvrosiadis and M. Bhadkamkar, “Getting Back Up: Understanding
How Enterprise Data Backups Fail,” in USENIX ATC, 2016.

[5] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasu-
pathy, “An Empirical Study on Configuration Errors in Commercial and
Open Source Systems,” in SOSP, 2011.

[6] S. Kendrick, “What takes us down?,” USENIX ;login:, vol. 37, no. 5,
2012.

[7] A. Rabkin and R. Katz, “How Hadoop Clusters Break,” IEEE Software,
vol. 30, no. 4, 2013.

[8] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria,
J. Adityatama, and K. J. Eliazar, “Why Does the Cloud Stop Computing?
Lessons from Hundreds of Service Outages,” in SoCC, 2016.

[9] B. Maurer, “Fail at Scale: Reliability in the Face of Rapid Change,”
CACM, vol. 58, no. 11, 2015.

[10] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why Do Internet
Services Fail, and What Can Be Done About It?,” in USITS, 2003.

[11] K. Nagaraja, F. Oliveira, R. Bianchini, R. Martin, and T. Nguyen, “Un-
derstanding and dealing with operator mistakes in internet services,” in
OSDI, 2004.

[12] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey,
You Have Given Me Too Many Knobs! Understanding and Dealing with
Over-Designed Configuration in System Software,” in FSE, 2015.

[13] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and
S. Pasupathy, “Do not blame users for misconfigurations,” in SOSP, 2013.

[14] T. Xu, H. M. Naing, L. Lu, and Y. Zhou, “How Do System Administrators
Resolve Access-Denied Issues in the Real World?,” in CHI, 2017.

[15] T. Xu, V. Pandey, and S. Klemmer, “An HCI View of Configuration
Problems,” arXiv:1601.01747, 2016.

[16] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early
detection of configuration errors to reduce failure damage,” in OSDI,
2016.

[17] M. Attariyan and J. Flinn, “Automating Configuration Troubleshooting
with Dynamic Information Flow Analysis,” in OSDI, 2010.

[18] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating root-cause
diagnosis of performance anomalies in production software,” in OSDI,
2012.

[19] M. Attariyan and J. Flinn, “Using Causality to Diagnose Configuration
Bugs,” in USENIX ATC, 2008.

[20] S. Zhang and M. D. Ernst, “Automated Diagnosis of Software Configu-
ration Errors,” in ICSE, 2013.

[21] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and
Y. Zhou, “EnCore: Exploiting System Environment and Correlation
Information for Misconfiguration Detection,” in ASPLOS, 2014.

[22] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic
Misconfiguration Troubleshooting with PeerPressure,” in OSDI, 2004.

[23] Y.-M. Wang, C. Verbowski, J. Dunagan, Y. Chen, H. J. Wang, C. Yuan,
and Z. Zhang, “STRIDER: A Black-box, State-based Approach to
Change and Configuration Management and Support,” in LISA, 2003.

[24] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic Automated Lan-
guage Learning for Configuration Files,” in CAV, 2016.

[25] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac, “Synthe-
sizing configuration file specifications with association rule learning,” in
OOPSLA, 2017.

[26] Z. Dong, A. Andrzejak, and K. Shao, “Practical and Accurate Pinpointing
of Configuration Errors using Static Analysis,” in ICSME, 2015.

https://github.com/apache/hadoop/commit/afb42aeab
https://issues.apache.org/jira/browse/HDFS-12603
https://issues.apache.org/jira/browse/HDFS-7964
https://github.com/apache/hbase/commit/4b84ab32
https://github.com/apache/spark/commit/10248758
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage/
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage/


[27] P. Huang, W. Bolosky, A. Sigh, and Y. Zhou, “ConfValley: A systematic
configuration validation framework for cloud services,” in EuroSys, 2015.

[28] S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, “Usable Declarative
Configuration Specification and Validation for Applications, Systems,
and Cloud,” in Middleware, 2017.

[29] M. Sayagh, N. Kerzazi, and B. Adams, “On Cross-stack Configuration
Errors,” in ICSE, 2017.

[30] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing
Configuration Changes in Context to Prevent Production Failures,” in
OSDI, 2020.

[31] D. Norman, “Design Rules Based on Analyses of Human Error,” CACM,
vol. 26, no. 4, 1983.

[32] D. Norman, “Design principles for human-computer interfaces,” in CHI,
1983.

[33] R. A. Maxion and R. W. Reeder, “Improving User-Interface Dependabil-
ity through Mitigation of Human Error,” JHCS, vol. 63, no. 1-2, 2005.

[34] M. Sayagh, N. Kerzazi, B. Adams, and F. Petrillo, “Software Con-
figuration Engineering in Practice Interviews, Survey, and Systematic
Literature Review,” TSE, vol. 46, no. 6, 2018.

[35] J. Meinicke, C.-P. Wong, B. Vasilescu, and C. Kästner, “Exploring
Differences and Commonalities between Feature Flags and Configuration
Options,” in ICSE SEIP, 2020.

[36] S. Zhang and M. D. Ernst, “Which Configuration Option Should I
Change?,” in ICSE, 2014.

[37] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An Empirical Analysis of
Flaky Tests,” in FSE, 2014.

[38] J. Bernardo, D. da Costa, and U. Kulesza, “Studying the impact of
adopting continuous integration on the delivery time of pull requests,”
in MSR, 2018.

[39] M. Rigger, S. Marr, B. Adams, and H. Mössenböck, “Understanding
GCC Builtins to Develop Better Tools,” in FSE, 2019.

[40] L. P. Hattori and M. Lanza, “On the nature of commits,” in ASE, 2008.
[41] S. Dutta, O. Legunsen, Z. Huang, and S. Misailovic, “Testing Probabilis-

tic Programming Systems,” in FSE, 2018.
[42] A. Rabkin and R. Katz, “Static Extraction of Program Configuration

Options,” in ICSE, 2011.
[43] A. Rabkin and R. Katz, “Precomputing Possible Configuration Error

Diagnosis,” in ASE, 2011.
[44] M. Lillack, C. Kästner, and E. Bodden, “Tracking Load-time Configura-

tion Options,” in ASE, 2014.
[45] T. Xu and Y. Zhou, “Systems Approaches to Tackling Configuration

Errors: A Survey,” ACM Surveys, vol. 47, no. 4, 2015.
[46] F. Behrang, M. B. Cohen, and A. Orso, “Users Beware: Preference

Inconsistencies Ahead,” in FSE, 2015.
[47] R. Lotufo, S. She, T. Berger, K. Czarnecki, and A. Wąsowski, “Evolution
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