
eMOP: A Maven Plugin
for Evolution-Aware Runtime Verification

Ayaka Yorihiro, Pengyue Jiang, Valeria Marqués,
Benjamin Carleton, Owolabi Legunsen

Cornell University, USA
{ay436, pj257, vmm49, bc534, legunsen}@cornell.edu

Abstract. We present eMOP, a tool for incremental runtime verifica-
tion (RV) of test executions during software evolution. We previously
used RV to find hundreds of bugs in open-source projects by monitoring
passing tests against formal specifications of Java APIs. We also proposed
evolution-aware techniques to reduce RV’s runtime overhead and human
time to inspect specification violations. eMOP brings these benefits to
developers in a tool that seamlessly integrates with the Maven build sys-
tem. We describe eMOP’s design, implementation, and usage. We eval-
uate eMOP on 676 versions of 21 projects, including those from our ear-
lier prototypes’ evaluation. eMOP is up to 8.4× faster and shows up to
31.3× fewer violations, compared to running RV from scratch after each
code change. eMOP also does not miss new violations in our evaluation,
and it is open-sourced at https://github.com/SoftEngResearch/emop.

1 Introduction

The prevalence of costly and harmful bugs in deployed software underscores the
need for techniques to help find more bugs during testing. Runtime verification
(RV) [3, 13, 14, 26, 30, 38, 44] is such a technique; it monitors executions against
formal specifications and produces violations if a specification is not satisfied.

We previously used RV to amplify the bug-finding ability of tests [32,34,40].
We found hundreds of bugs by monitoring passing tests in hundreds of open-
source projects against Java API behavioral specifications [31]. Such specifi-
cations should not change as client programs evolve. For example, monitoring
the Collections_SynchronizedCollection specification [7] revealed several bugs,
e.g., [8, 9]: possible “non-deterministic behavior” caused by not synchronizing
on iterators over Collection.synchronizedCollection()’s output [27]. Develop-
ers confirmed and fixed these and many other bugs that RV helped us find.

We also found that RV incurs runtime overhead and requires a lot of human
time to inspect violations. To reduce RV costs, we proposed three evolution-aware
techniques that focus RV and its users on code affected by changes [35,37]:

(1) Regression Property Selection (RPS) re-checks, in a new code version,
a subset of specifications that may be violated in code affected by changes.

(2) Violation Message Suppression (VMS) displays new violations—users
are more likely to deal with violations that are related to their changes [41].

(3) Regression Property Prioritization (RPP) monitors important specifi-
cations on developers’ critical path; others are monitored in the background.

https://github.com/SoftEngResearch/emop


2 Yorihiro et al.

These evolution-aware techniques reduce RV costs, but our proof-of-concept pro-
totypes are hard to integrate with open-source projects. Also, these techniques
can be used together but our prototypes do not allow users to easily do so.

We present eMOP, a Maven plugin for incremental RV of tests during soft-
ware evolution. Maven is a popular build system, so eMOP can bring the ben-
efits of RV to a wider audience of developers. eMOP improves RPS and RPP,
re-implements VMS, and allows users to easily combine RPS, VMS, or RPP.

Components in eMOP’s architecture (1) extend Maven’s surefire plugin [48]
to perform analysis before and after monitoring tests; (2) use STARTS [36] to
reason about code changes and find classes affected by changes; (3) re-configure
a JavaMOP [29] Java agent on the fly to select which specifications to monitor
and where to instrument them; and (4) get fine-grained change information from
Git for computing new violations. Once installed, users only need to change few
Maven configuration lines to start using RPS, VMS, RPP, or their combination.

We evaluate eMOP on 676 versions of 21 projects. On the subset of projects
and their versions that we previously used to evaluate our prototypes, eMOP
produces similar results. Overall, on average, eMOP is up to 8.4× faster (aver-
age: 4.0×) and shows up to 31.3× fewer violations (average: 11.8×), compared
to using JavaMOP to perform RV from scratch after each code change.

We defined an evolution-aware RV technique as safe if it finds all new vio-
lations after a change, and precise if it finds only new violations [37]. Also, we
proposed two sets of RPS variants: two variants that are theoretically safe and
ten variants that are not, under the assumptions that we make.

Our prior evaluation [37] showed that all RPS variants (including theoreti-
cally unsafe ones) were empirically safe. But, on projects that we did not pre-
viously evaluate, we initially find that our theoretically unsafe RPS variants are
not empirically safe if 3rd-party libraries change. So, to improve RPS safety, we
rerun RV from scratch when libraries change. We find that RPS with eMOP is
empirically safe in all projects and versions that we evaluate in this paper.

Table 1: eMOP vs. our early prototypes [37].
Feature Prototype eMOP

Maven integration ✗ ✓

Single-module projects ✓ ✓

Multi-module projects ✗ ✓/✗

RPS ✓ ✓

VMS ✓ ✓

RPP ✓ ✓

RPS + VMS ✗ ✓

RPP + VMS ✗ ✓

RPS + RPP 6 variants 12 variants
RPS + RPP + VMS ✗ ✓

Safe w.r.t. CUT ✓ ✓

Safe w.r.t. 3rd-party lib ✗ ✓

Version comparison jDiff jGit
Ease of configuration low high

Comparison with our previ-
ous prototypes. Table 1 com-
pares eMOP with our origi-
nal prototypes [37]. ✓ means
“supported”; ✗ means “not sup-
ported”, and ✓/✗ means “par-
tially supported”. Unlike eMOP,
our prototypes (1) do not inte-
grate with Maven or work on
multi-module projects; (2) par-
tially support combining RPS
and RPP, but do not combine
RPS or RPP with VMS; (3) are
less safe when 3rd-party libraries
change; (4) use an external tool
to re-obtain change information



eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 3

that is already in Git; and (5) are hard to configure. eMOP will aid future
evolution-aware RV research; it is on GitHub [12], as are our artifacts [11].

2 eMOP
We summarize evolution-aware RV, and our eMOP implementation. Our origi-
nal paper [37] has theoretical background, examples, definitions, diagrams, etc.

2.1 Evolution-Aware RV Techniques

Regression Property Selection (RPS). The inputs to RPS are the old and
new program versions, and the set of Java API specifications. The outputs are
affected specifications that may be violated in code affected by changes. RPS
uses class-level static change-impact analysis [36] to find impacted classes that
transitively depend on changed code. Then, RPS analyzes impacted classes to-
gether with all available specifications, and outputs specifications involving API
methods that are called in impacted classes.

There are 12 RPS variants that differ in how impacted classes are computed
(three options), and where affected specifications are instrumented (four op-
tions) [37]. Let ∆ be the set of changed classes. Impacted classes are computed
in three ways—(a) ps3: ∆ and its dependents—classes that use or extend those in
∆; (b) ps2: classes in (a) plus dependees—classes that those in ∆ use or extend;
and (c) ps1: classes in (b) plus dependees of ∆’s dependents. Impacted classes
are always instrumented, but there are two Boolean options (and four ways to
combine them) for whether to instrument unimpacted classes or 3rd-party li-
braries. Theoretically, these variants differ in how much safety they trade off for
efficiency. But, all variants were empirically safe in our original evaluation [37].
Violation Message Suppression (VMS). To reduce human time for inspect-
ing specification violations, VMS aims to show only new violations after code
changes. VMS does not reduce RV runtime overhead. The rationale behind VMS
is that developers are more likely to look at and debug new violations, compared
to looking at all old and new violations at the same time [41]. VMS takes the set
of all violations in the new version, filters out those for which there is evidence
that they are old violations, and presents the rest to the user as new violations.
Regression Property Prioritization (RPP). The goal is to reduce the time
to see important violations, so users may react faster. RPP splits RV into two
phases. Important specifications, defined by the user, are monitored in the critical
phase and any violations of those specifications are reported immediately. The
other specifications are monitored in a background phase that users do not have
to wait for. Users can decide when and how violations from the background
phase are presented or when specifications should be automatically promoted
(demoted) from (to) the background phase.

2.2 Implementation

We implement 12 RPS variants, VMS, and RPP in our eMOP Maven plugin. We
choose Maven (1) so users can more easily integrate evolution-aware RV, (2) to



4 Yorihiro et al.

.git

Old metadata

Code + tests in
new version

All available
specifications

New metadata

New violations

All violations

VMS

JavaMOP

mvn emop:vms

CIA

Impacted
classes

Affected
specifications RPP

Important
specifications

Background
specifications

mvn emop:rppmvn emop:affected-specsmvn emop:rps

mvn emop:impacted

RPS

Fig. 1: eMOP’s architecture.

ease evolution-aware RV usage during testing, and (3) because we built Maven
plugins before [21,36]. Future work can add eMOP to other build systems.

Figure 1 shows eMOP’s architecture, and how components map to some
available user commands (see §3). There, ovals show processes and rectangles
show data. “Old Metadata” and “New Metadata” contain a per-class mapping
from non-debug related bytecode to checksums computed from the old and new
code versions, respectively, the classpath, and checksums for the jars on the
classpath. eMOP uses STARTS [36] to compute these mappings and classpath
information is used to detect changes in 3rd-party libraries. Also “.git” is Git’s
internal database of changes, which eMOP uses to find which violations are
likely new. “CIA” represents our modified change impact analysis in STARTS;
eMOP uses “CIA” to compute impacted classes in three ways (§2.1). Lastly,
eMOP invokes “JavaMOP” to monitor test executions.
RPS. We invoke the AspectJ compiler, ajc [1], to statically analyze which spec-
ifications are related to impacted classes. JavaMOP specifications are written in
an AspectJ dialect, so our static analysis outputs, as affected, specifications that
ajc compiles into any impacted class. To reduce analysis cost, eMOP invokes
ajc on stripped-down specifications that contain only method-related informa-
tion. Finally, based on ajc’s output, eMOP modifies a JavaMOP agent on the
fly to only monitor affected specifications and instrument them in locations re-
quired by the RPS variant.
VMS. We re-implement VMS on top of JGit [28] (instead of jDiff). JGit provides
an API for extracting fine-grained information from “.git”. By default, eMOP
takes the most recent Git commit as the old version and the current working
tree as the new version. So, VMS users can check if code changes introduce
new violations before making a commit. Users can also specify what commit to
compare the working tree against, or the ID of any two commits.

In the first VMS run, all violations are new. Subsequently, VMS analyzes
all violations from the old version against the code change. If a specification is
violated in the same class and on a line that is mapped to the same location in



eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 5

both versions, VMS filters it out as old; the rest are presented as new violations.
VMS users can choose to write new or old violations to the console, a file on
disk, or both.
RPP. Users can provide a file containing important specifications for RPP to
monitor in the critical phase; the rest are monitored in the background. Users
can also provide a file containing important specifications and a file containing
a disjoint set of specifications to be monitored in the background phase. If users
do not provide a file, RPP uses the following default scheme. The first time,
RPP monitors all specifications in the critical phase. Only specifications that
are violated in the first run are monitored in the critical phase in the second
run; the rest are monitored in the background. Subsequently, a specification
that is violated in the background phase is promoted to the critical phase in
the next run. Users can manually demote specifications from the critical phase.
Future work can add options to let users specify when a specification should be
automatically promoted to or demoted from the critical phase. RPP currently
does not support multi-module projects.
Combinations. eMOP users can combine RPS, VMS, and RPP. When using
all three together, RPS first finds affected specifications, then RPP splits the
monitoring of affected specifications into critical and background phases before
VMS shows new violations from RPP’s critical phase. When using VMS with
RPS or RPP, the other techniques are run first, then VMS shows new violations.
Running RPS with RPP works in the same order as when combining all three.

3 Installation and Usage

Installing eMOP. eMOP can be installed by following the directions in the
“Installation” section of the README.md file on eMOP’s GitHub page [12]. Note
that installing eMOP from sources requires satisfying all prerequisites that are
listed on that GitHub page.
Integrating eMOP. To use eMOP in a Maven project, modify that project’s
configuration file—typically called pom.xml—to add the latest version of eMOP
and the JavaMOP agent argument to the configuration of the Maven surefire
plugin (which runs tests) file. The current way to add the eMOP to a project
is to modify the pom.xml file like so:
1 <build><plugins>
2 ...
3 <plugin>
4 <groupId>org.apache.maven.plugins</groupId>
5 <artifactId>maven−surefire−plugin</artifactId>
6 <version>2.20−or−greater</version>
7 <configuration> <argLine>−javaagent:${JavaMOPAgent.jar}</argLine>
8 </configuration>
9 </plugin>

10 <plugin>
11 <groupId>edu.cornell</groupId>
12 <artifactId>emop−maven−plugin</artifactId>
13 <version>${latest_eMOP_version}</version>
14 </plugin>
15 ...
16 </plugins></build>



6 Yorihiro et al.

Using eMOP. These commands allow users to: (1) list impacted classes or
affected specifications, or (2) run RPS, VMS, RPP, and their combinations:

1 $ mvn emop:help # list all goals (commands)
2 $ mvn emop:impacted # list impacted classes
3 $ mvn emop:affected−specs # list affected specifications
4 $ mvn emop:rps # run RPS
5 $ mvn emop:rpp # run RPP
6 $ mvn emop:vms # run VMS
7 $ mvn emop:rps−rpp # run RPS+RPP
8 $ mvn emop:rpp−vms # run RPP+VMS
9 $ mvn emop:rps−vms # run RPS+VMS

10 $ mvn emop:rps−rpp−vms # run RPS+RPP+VMS
11 $ mvn emop:clean # delete all metadata

The emop:help command lists all eMOP commands and what they do; the others
are related to evolution-aware RV. Next, we describe some configuration options.
Running RPS. Three flags choose among RPS variants: (1) closureOption
specifies how to compute impacted classes: PS1, PS2, or PS3 (the default: PS3);
(2) includeLibraries controls whether to instrument 3rd-party libraries (de-
fault: true); and (3) includeNonAffected controls whether non-impacted classes
are instrumented (default: true). For example, this command runs RPS and
instruments neither classes that are not impacted nor 3rd-party libraries:

1 $ mvn emop:rps −DincludeLibraries=false −DincludeNonAffected=false

Running VMS. Users can see violations on the console or in a violation-counts
file. By default, only new violations are shown. But, users can view all violations
in the console or in the file via Boolean showAllInConsole and showAllInFile op-
tions, respectively (default: false). Users can specify commit IDs using lastSha
and newSha. For example, this command shows new violations relative to commit
ID abc123 in the console but it still outputs all violations to file:

1 $ mvn emop:vms −DlastSha=abc123 −DshowAllInFile=true

Running RPP. Users can provide specifications to RPP using two options
named criticalSpecsFile and backgroundSpecsFile. If only criticalSpecsFile
is provided, then all other specifications will be monitored in the background. By
default, RPP tracks metadata for critical and background phase specifications
as described in §2.1. But RPP also has a demoteCritical option (default: false)
for demoting previously important specifications that are not violated in the
critical phase of the current run to the background phase for the next run. For
example, this command monitors specifications in critical.txt (respectively,
background.txt) in the critical (respectively, background) phase:

1 $ mvn emop:rpp −DcriticalSpecsFile=critical.txt −DbackgroundSpecsFile=background.txt

Running Combinations. Options in the union of those from combined tech-
niques can be used, e.g., this command runs RPS+RPP using the RPS variant
that instruments neither classes that are not impacted nor 3rd-party libraries,
while also demoting specifications during RPP:

1 $ mvn emop:rps−rpp −DincludeLibraries=false −DincludeNonAffected=false −DdemoteCritical=true



eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 7

4 Evaluation

Setup. We evaluate eMOP on 21 Maven projects from our previous and ongoing
work on RV and regression testing. They are all single-module Maven projects
(RPP does not yet support multi-module projects). We use between 11 and 50
versions per project, for a total of 676 versions. Table 2 shows project names
(click or hover to see GitHub URL), number of versions that we evaluate (sha#),
sizes (KLOC), number of test classes in the first version (TC), average test time
(test[s]), and average JavaMOP overhead for these versions (mop).

Table 2: Projects that we evaluate.
Project sha# KLOC TC test[s] mop
jgroups-aws 11 0.3 1 3.3 12.5
Yank 17 0.6 18 3.1 7.2
java-configuration-impl 24 1.7 5 3.9 7.0
embedded-jmxtrans 50 3.1 15 4.1 12.3
jbehave-junit-runner 50 1.5 17 4.7 15.2
compile-testing 50 7.0 25 6.2 6.0
javapoet 20 8.1 18 9.1 6.6
exp4j 50 3.5 5 9.3 3.8
joda-time 50 93.3 158 10.8 3.9
jnr-posix 50 11.8 24 11.9 11.9
imglib2 20 33.0 81 13.0 2.5
HTTP-Proxy-Servlet 50 1.0 1 13.3 3.2
smartsheet-java-sdk 21 7.9 51 13.5 4.5
zt-exec 15 2.6 24 14.6 1.9
commons-imaging 20 44.5 107 18.4 4.9
jscep 50 3.2 50 18.9 3.7
commons-lang 20 80.7 172 21.5 3.1
datasketches-java 48 41.9 178 35.8 2.3
commons-dbcp 20 11.4 43 53.0 1.8
stream-lib 20 4.7 28 91.0 6.9
commons-io 20 32.7 114 102.1 4.1

We use the same versions for
projects that we evaluated in our
original paper [37]. To choose ver-
sions for the other projects, we it-
erate over the 500 most recent ver-
sions in each project (most recent
first) and terminate when we have
tried all 500 or found 50 versions
that change at least one Java file,
compile, tests pass, JavaMOP does
not fail, and JavaMOP time is at
least 20 seconds. The versions that
we evaluate per project are in our
artifact repository [11].

For RPS, we measure the time
and the number of unique viola-
tions per variant. For VMS, we
measure the number of new and to-

tal violations per version. For RPP, we measure the critical and background
phase times. All overheads for RPS are computed from end-to-end times includ-
ing time for compilation, analysis, running tests, and monitoring. RPP overhead
is only for the critical phase. We run eMOP on 193 revisions (7 no longer com-
pile) of 10 projects from our original paper [37], using the same experimental
settings as before. We also run all eMOP variants on all 21 projects using Ama-
zon EC2 C5.4xlarge instances.
Results: comparing with prior evaluation. Solid bars in Figure 2 show
average overheads of JavaMOP and RPS variants for the 10 projects in our
prior evaluation [37]. RV overhead is trv/ttest; trv and ttest are times with and
without JavaMOP, respectively. §2 describes ps1, ps2, and ps3; “ℓ” and “c” mean
3rd-party libraries and non-impacted classes, respectively, are not instrumented.

In Figure 2, all RPS variants reduce the average JavaMOP overhead, which
is 7.2× when our evolution-aware techniques are not applied. As expected, based
on how we designed these variants, ps1 incurs the most RPS overhead (5.7×),
while pscℓ3 incurs the least overhead (1.8×).

In general, excluding 3rd-party libraries has a significant effect on reducing
RPS overhead, as seen for example in the difference between ps1 (5.7×) and psℓ1
(3.6×) in Figure 2. For libraries that do not depend on 3rd-party libraries, or

https://github.com/meltmedia/jgroups-aws
https://github.com/timmolter/Yank
https://github.com/microfocus-idol/java-configuration-impl
https://github.com/jmxtrans/embedded-jmxtrans
https://github.com/valfirst/jbehave-junit-runner
https://github.com/google/compile-testing
https://github.com/square/javapoet
https://github.com/fasseg/exp4j
https://github.com/JodaOrg/joda-time
https://github.com/jnr/jnr-posix
https://github.com/imglib/imglib2
https://github.com/mitre/HTTP-Proxy-Servlet
https://github.com/smartsheet-platform/smartsheet-java-sdk
https://github.com/zeroturnaround/zt-exec
https://github.com/apache/commons-imaging
https://github.com/jscep/jscep
https://github.com/apache/commons-lang
https://github.com/apache/datasketches-java
https://github.com/apache/commons-dbcp
https://github.com/addthis/stream-lib
https://github.com/apache/commons-io


8 Yorihiro et al.

Fig. 2: Runtime overheads of, and violations from, JavaMOP and RPS variants
in eMOP for projects and versions in our original evolution-aware RV paper [37].

those that depend on libraries that do not use API methods related to monitored
specifications, library exclusion has negligible effect.

Striped bars in Figure 2 show average numbers of unique violations per ver-
sion across these projects. RPS reduces the number of violations reported, but in
the best case (pscℓ3 ) it still shows an average of 23.4 violations—most of which are
old—after every code change. So, a technique like VMS is needed that reports
only the few new violations. The overheads and violations in Figures 2 follow
the same trends across RPS variants as in our original paper [37]. So, we are
more confident in how we implemented evolution-aware RV in eMOP. Tooling
and Maven overheads likely explain any differences with our old results.
Results on more subjects and versions than prior work. We discuss
details about how eMOP performs when all three evolution-aware RV techniques
are combined, and then discuss the contribution of each technique.

Striped bars in Figure 3 show average overheads per project when all RPS
variants are combined with RPP and VMS. The projects in Figure 3 include some
that were not in Figure 2, and some in Figure 2 are not in the figure because of
dependency issues when we moved experiments to the cloud. We show the RPS
variants in Figure 3 in decreasing order of average overheads.

In terms of total time incurred (not shown in Figure 3), the best-performing
variant in RPS+RPP+VMS is pscℓ3 (it does not instrument 3rd-party libraries
or classes that are not impacted by changes). Comparing the striped mop and
pscℓ3 bars shows that, on average across these projects and versions, pscℓ3 reduces
RV overhead by roughly 4.0× (a very rough estimate, since we take a mean of
means). The project with the biggest speedup saw a 8.4× reduction in overhead,
from 15.2× with JavaMOP to 1.8× with pscℓ3 .
RPP Contributions to the Combination. Solid bars in Figure 3 show how
well RPS performs on its own. Comparing the mop and pscℓ3 bars shows that RPS
reduces RV overhead by 2.4× when used alone. We elide per-project details for



eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 9

Fig. 3: Average runtime overheads of all RPS variants in eMOP when run alone,
and when each RPS variant is combined with RPP and VMS.

lack of space, but we discuss two observations. First, the project that benefits the
most from using only RPS had a 4.9× overhead reduction (from 6.9× to 1.4×).

Table 3: Unique violations from JavaMOP
(not evolution-aware), and VMS.
Project sha# mop VMS mop VMS

(sum) (sum) (avg) (avg)
jgroups-aws 11 12 12 1.1 1.1
Yank 17 22 8 1.3 0.5
java-configuration 24 68 8 2.8 0.3
embedded-jmxtrans 50 627 19 12.5 0.4
jbehave-junit-runner 50 248 9 5.0 0.1
compile-testing 50 541 48 10.8 1
javapoet 20 180 9 9 0.5
exp4j 50 0 0 0 0
joda-time 50 1100 43 22 0.9
jnr-posix 50 1659 72 33.2 1.4
imglib2 20 1540 78 77 3.9
HTTP-Proxy-Servlet 50 929 66 11.6 1.3
smartsheet-java-sdk 21 598 300 28.5 14.3
zt-exec 15 15 2 1 0.1
commons-imaging 20 1064 57 53.2 2.9
jscep 50 1706 213 34.1 4.3
commons-lang 20 1220 61 61.0 3.0
datasketches-java 48 96 34 2 0.7
commons-dbcp 20 40 2 2 0.1
stream-lib 20 300 16 15 0.8
commons-io 20 1795 94 89.8 4.7
Across projects 676 13760 1151 20.2 1.7

Second, the further reduction
of average RV overhead resulting
from combining RPP with RPS
can be seen by comparing the
solid and striped bars in Figure 3.
Doing so shows that RPP’s crit-
ical phase, plus RPS incurs less
overhead than using RPS alone.

VMS Results. Table 3 shows
VMS results; “sha#” is the num-
ber of versions that we evalu-
ate per project, the “mop” and
“VMS” columns show the sum
and average of violations found
per version. Recall that VMS
does not reduce RV runtime over-
head; rather, it aims to show only
new violations. We find that us-
ing VMS shows much fewer vi-
olations than RPS or JavaMOP.

Specifically, across all evaluated projects (see “Across projects” row), VMS shows
only 1.7 violations per version, compared to 20.2 violations with JavaMOP—
an average reduction of 11.8×. The project with the most average reduction—
31.3×—is embedded-jmxtrans. Fractional values that are less than 1.0 in the per
project average rows show the number of violations shown every ten versions, on



10 Yorihiro et al.

average. For example, in jbehave-junit-runner, VMS shows an average of one
violation in every ten versions, but JavaMOP shows five violations per version.

Our manual analysis shows that all RPS variants are safe—they do not miss
any new violation that VMS reports. (Like in our original paper, we assume that
VMS reports all new violations.) These results on VMS and safety are in line
with findings from our original paper. So, users will likely feel less swamped by
a deluge of violations that RV shows if run from scratch after every change.
Limitations. eMOP only supports JUnit; it does not yet work for other testing
frameworks, e.g., TestNG. eMOP’s bytecode instrumentation sometimes clashes
with the instrumentation that open-source projects already use for non-RV rea-
sons. Non-trivial engineering is needed to make instrumentation compatible. We
evaluated eMOP on 161 Java API specifications that are commonly used in
RV research. As more specifications are added, more optimizations will likely be
needed. eMOP uses JGit to map lines from old to new versions, so a few old vio-
lations can still be presented as new. More precise change-impact analyses, such
as semantic differencing [20] can be investigated and added as an option in the
future. eMOP’s use of a static change-impact analysis leads to two limitations.
First, eMOP may be unsafe if it does not find classes that are impacted by the
changes due to the use of dynamic features like reflection. Second, it is possible
that the set of impacted classes would be more precise if analysis is done at the
method-level instead. eMOP may not work as-is for other kinds of specifications
than the kinds of API-level specifications that we check. Lastly, eMOP does not
yet control for test flakiness [5, 42,45,47] or non-determinism.
Related Work. Researchers proposed many other RV tools other than Java-
MOP, e.g., [10, 22–25, 43]. eMOP is the first to integrate evolution-aware RV
techniques into a popular build system. Evolution-awareness is not unique to
JavaMOP; future work can make other tools evolution aware. Tools for offline
RV exist, e.g., [4]. It is not yet clear how to make offline RV evolution aware. Plu-
gins helped make non-RV techniques easier to use. For example, Evosuite [15,16]
is a test generation technique that seemed to gain more popularity after plug-
ins for Maven, Eclipse, and IntelliJ were developed [2]. Also, after decades of
research on regression test selection (RTS) [6,18,19,33,39,46], RTS plugins that
are integrated with Maven or Ant [17, 36] led to recent adoption of RTS tools
among developers and renaissance in RTS research.

5 Conclusions and Future Work
eMOP brings the benefits of evolution-aware RV to Maven. We find that eMOP
reduces RV costs and makes it easier to use RV during regression testing. We
plan to evaluate eMOP on more projects, address some of its limitations, and
implement more features. eMOP is open-sourced; we hope that it will provide
a platform for advancing the research on integrating software testing and RV.
Acknowledgements. We thank the anonymous reviewers for their comments on
an earlier draft of this paper. This work was partially supported by funds from
the Google Cyber NYC Institutional Research Program and the US National
Science Foundation under Grant Nos. 2019277 and 2045596.



eMOP: A Maven Plugin for Evolution-Aware Runtime Verification 11

References

1. ajc. https://www.eclipse.org/aspectj/doc/next/devguide/ajc-ref.html.
2. A. Arcuri, J. Campos, and G. Fraser. Unit test generation during software develop-

ment: Evosuite plugins for Maven, IntelliJ, and Jenkins. In ICST, pages 401–408,
2016.

3. E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger. Introduction to runtime
verification. In Lectures on Runtime Verification: Introductory and Advanced Top-
ics, pages 1–33. 2018.

4. D. Basin, M. Harvan, F. Klaedtke, and E. Zălinescu. MONPOLY: Monitoring
usage-control policies. In RV, pages 360–364, 2012.

5. J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov. DeFlaker:
Automatically detecting flaky tests. In ICSE, pages 433–444, 2018.

6. S. Biswas, R. Mall, M. Satpathy, and S. Sukumaran. Regression test selection
techniques: A survey. Informatica, 35(3):289–321, 2011.

7. Collections_SynchronizedCollection Specification. https://github.com/
owolabileg/property-db/blob/master/annotated-java-api/java/util/
Collections_SynchronizedCollection.mop.

8. SuiteHTMLReporter does not synchronize iteration on a synchronized list. https:
//github.com/testng-team/testng/pull/931.

9. JUnitXMLReporter does not synchronize the two synchronized collections when
iterating. https://github.com/testng-team/testng/pull/830.

10. J. Ellul and G. J. Pace. Runtime verification of ethereum smart contracts. In
EDCC, pages 158–163, 2018.

11. eMOP Artifacts. https://github.com/SoftEngResearch/emop-artifacts.
12. eMOP GitHub Page. https://github.com/SoftEngResearch/emop.
13. Y. Falcone, K. Havelund, and G. Reger. A tutorial on runtime verification. In

EDSS, pages 141–175. 2013.
14. Y. Falcone, S. Krstić, G. Reger, and D. Traytel. A taxonomy for classifying runtime

verification tools. In Runtime Verification, pages 241–262, 2018.
15. G. Fraser and A. Arcuri. Evosuite: Automatic test suite generation for object-

oriented software. In FSE, pages 416–419, 2011.
16. G. Fraser and A. Arcuri. A large-scale evaluation of automated unit test generation

using Evosuite. TOSEM, 24(2):1–42, 2014.
17. M. Gligoric, L. Eloussi, and D. Marinov. Ekstazi: Lightweight test selection. In

ICSE Demo, pages 713–716, 2015.
18. M. Gligoric, L. Eloussi, and D. Marinov. Practical regression test selection with

dynamic file dependencies. In ISSTA, pages 211–222, 2015.
19. T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel. An empirical

study of regression test selection techniques. TOSEM, 10(2):184–208, 2001.
20. A. Gyori, S. K. Lahiri, and N. Partush. Refining interprocedural change-impact

analysis using equivalence relations. In ISSTA, pages 318–328, 2017.
21. A. Gyori, B. Lambeth, A. Shi, O. Legunsen, and D. Marinov. NonDex: a tool for

detecting and debugging wrong assumptions on Java API specifications. In FSE
Demo, pages 993–997, 2016.

22. S. Hallé and R. Khoury. Event stream processing with BeepBeep 3. In RV-CuBES,
pages 81–88, 2017.

23. K. Havelund. Rule-based runtime verification revisited. STTT, 17:143–170, 2015.
24. K. Havelund and D. Peled. Efficient runtime verification of first-order temporal

properties. In SPIN, pages 26–47, 2018.

https://www.eclipse.org/aspectj/doc/next/devguide/ajc-ref.html
https://github.com/owolabileg/property-db/blob/master/annotated-java-api/java/util/Collections_SynchronizedCollection.mop
https://github.com/owolabileg/property-db/blob/master/annotated-java-api/java/util/Collections_SynchronizedCollection.mop
https://github.com/owolabileg/property-db/blob/master/annotated-java-api/java/util/Collections_SynchronizedCollection.mop
https://github.com/testng-team/testng/pull/931
https://github.com/testng-team/testng/pull/931
https://github.com/testng-team/testng/pull/830
https://github.com/SoftEngResearch/emop-artifacts
https://github.com/SoftEngResearch/emop


12 Yorihiro et al.

25. K. Havelund, D. Peled, and D. Ulus. First-order temporal logic monitoring with
BDDs. FMSD, 56(1-3):1–21, 2020.

26. K. Havelund and G. Roşu. Monitoring programs using rewriting. In ASE, pages
135–143, 2001.

27. java.util.Collections. https://docs.oracle.com/javase/8/docs/api/java/util/
Collections.html.

28. JGit. http://www.eclipse.org/jgit.
29. D. Jin, P. O. Meredith, C. Lee, and G. Roşu. JavaMOP: Efficient parametric

runtime monitoring framework. In ICSE Demo, pages 1427–1430, 2012.
30. M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: A

run-time assurance tool for Java programs. In RV, pages 218–235, 2001.
31. C. Lee, D. Jin, P. O. Meredith, and G. Roşu. Towards categorizing and formalizing

the JDK API. Technical report, Computer Science Dept., UIUC, 2012.
32. O. Legunsen, N. Al Awar, X. Xu, W. U. Hassan, G. Roşu, and D. Marinov. How

effective are existing Java API specifications for finding bugs during runtime veri-
fication? ASEJ, 26(4):795–837, 2019.

33. O. Legunsen, F. Hariri, A. Shi, Y. Lu, L. Zhang, and D. Marinov. An extensive
study of static regression test selection in modern software evolution. In FSE,
pages 583–594, 2016.

34. O. Legunsen, W. U. Hassan, X. Xu, G. Roşu, and D. Marinov. How good are the
specs? A study of the bug-finding effectiveness of existing Java API specifications.
In ASE, pages 602–613, 2016.

35. O. Legunsen, D. Marinov, and G. Rosu. Evolution-aware monitoring-oriented pro-
gramming. In ICSE NIER, pages 615–618, 2015.

36. O. Legunsen, A. Shi, and D. Marinov. STARTS: STAtic Regression Test Selection.
In ASE Demo, pages 949–954, 2017.

37. O. Legunsen, Y. Zhang, M. Hadzi-Tanovic, G. Rosu, and D. Marinov. Techniques
for evolution-aware runtime verification. In ICST, pages 300–311, 2019.

38. M. Leucker and C. Schallhart. A brief account of runtime verification. In Formal
Languages and Analysis of Contract-Oriented Software, pages 293–303, 2007.

39. Y. Liu, J. Zhang, P. Nie, M. Gligoric, and O. Legunsen. More precise regression
test selection via reasoning about semantics-modifying changes. In ISSTA, pages
664–676, 2023.

40. B. Miranda, I. Lima, O. Legunsen, and M. d’Amorim. Prioritizing runtime verifi-
cation violations. In ICST, pages 297–308, 2020.

41. P. W. O’Hearn. Continuous reasoning: Scaling the impact of formal methods. In
LICS, pages 13–25, 2018.

42. F. Palomba and A. Zaidman. Does refactoring of test smells induce fixing flaky
tests? In ICSME, pages 1–12, 2017.

43. G. Reger, H. C. Cruz, and D. Rydeheard. MarQ: monitoring at runtime with QEA.
In TACAS, pages 596–610, 2015.

44. F. B. Schneider. Enforceable security policies. TISSEC, 3(1):30–50, 2000.
45. A. Shi, A. Gyori, O. Legunsen, and D. Marinov. Detecting assumptions on de-

terministic implementations of non-deterministic specifications. In ICST, pages
80–90, 2016.

46. A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and O. Legunsen. Reflection-
aware static regression test selection. PACML, 3(OOPSLA):1–29, 2019.

47. A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov. iFixFlakies: A framework for
automatically fixing order-dependent flaky tests. In FSE, pages 545–555, 2019.

48. About surefire. https://maven.apache.org/surefire.

https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
https://docs.oracle.com/javase/8/docs/api/java/util/Collections.html
http://www.eclipse.org/jgit
https://maven.apache.org/surefire

	eMOP:AMavenPluginforEvolution-AwareRuntimeVerification-15pt

