
Testing Configuration Changes in Context to Prevent Production Failures

Xudong Sun⇤, Runxiang Cheng⇤, Jianyan Chen, Elaine Ang, Owolabi Legunsen†, Tianyin Xu

University of Illinois at Urbana-Champaign †Cornell University

Abstract
Large-scale cloud services deploy hundreds of configuration
changes to production systems daily. At such velocity, con-
figuration changes have inevitably become prevalent causes
of production failures. Existing misconfiguration detection
and configuration validation techniques only check configu-
ration values. These techniques cannot detect common types
of failure-inducing configuration changes, such as those that
cause code to fail or those that violate hidden constraints.

We present ctests, a new type of tests for detecting failure-
inducing configuration changes to prevent production failures.
The idea behind ctests is simple—connecting production sys-
tem configurations to software tests so that configuration
changes can be tested in the context of code affected by the
changes. So, ctests can detect configuration changes that ex-
pose dormant software bugs and diverse misconfigurations.

We show how to generate ctests by transforming the many
existing tests in mature systems. The key challenge that we
address is the automated identification of test logic and oracles
that can be reused in ctests. We generated thousands of ctests
from the existing tests in five cloud systems.

Our results show that ctests are effective in detecting
failure-inducing configuration changes before deployment.
We evaluate ctests on real-world failure-inducing configura-
tion changes, injected misconfigurations, and deployed con-
figuration files from public Docker images. Ctests effectively
detect real-world failure-inducing configuration changes and
misconfigurations in the deployed files.

1 Introduction
1.1 Motivation
Large-scale cloud and Internet services evolve rapidly and
deploy hundreds to thousands of configuration changes to
production systems daily [35, 38, 53, 55]. For example, at
Facebook, thousands of configuration changes are committed
daily, outpacing the frequency of code changes [55]. Other
cloud services such as Google and Azure also frequently
deploy configuration changes [9, 10, 38].

The high velocity of configuration changes has led to preva-
lent configuration-induced failures. For example, faulty con-

⇤Co-primary authors

figurations are the second largest cause of service disruptions
in a main Google production service [5]. At Facebook, 16%
of service-level incidents, including major outages [54], are
induced by configuration changes [55]. Similar levels of sever-
ity and prevalence of configuration-induced failures occur in
other cloud systems [19, 34, 40, 42, 74].

Based on our experience from analyzing hundreds of
configuration-induced incidents, failure-inducing configura-
tion changes are rarely caused by trivial mistakes (e.g., typos).
This rarity is attributed to the DevOps practices that enforce
change review and validation [6, 27, 55]. As a result, the root
causes of configuration-induced failures are often non-trivial;
they commonly reside in the program and not in the changed
configurations. Failures typically occur when valid configu-
ration changes expose dormant software bugs [55] and when
configuration changes violate undocumented, hidden config-
uration constraints. The root causes of the former are in the
program, while the latter are often due to configuration design
or implementation flaws [69]. Review and validation of con-
figuration changes alone can hardly detect failures resulting
from these root causes.

Researchers have proposed several configuration valida-
tion and misconfiguration detection techniques [70]. These
include new languages and frameworks for implementing
validators [6, 27, 55], detection techniques that use machine
learning and document analysis to infer correctness rules on
configuration values [38, 43, 44, 49, 50, 59, 61, 75, 77], and
type or constraint checkers [48, 67]. These techniques are
successful, but they are limited:

• Existing techniques only check configuration values and
cannot detect configuration changes that cause code to fail.

• Very few existing techniques can detect “legal misconfig-
urations” [71], which have syntactically and semantically
valid values but result in unexpected behavior.

• It is costly and hard for human-written or machine-learned
rules to check the often subtle, version-specific [78], and
inconsistent [69] configuration requirements.

1.2 Contributions
We present ctests, a new type of tests for detecting failure-
inducing configuration changes to prevent production failures.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 735

Ctests take a simple and effective approach—connecting soft-
ware tests with production system configurations. In this way,
ctests can test configuration changes in the context of code
that is affected by the changes. A ctest is parameterized by
a set of system configuration parameters. Running a ctest
instantiates each of its input parameters with a configuration
value from production or a value to be deployed to produc-
tion. Like regular software tests, ctests exercise system code
and assert that program behavior satisfies certain properties
(correctness, performance, security, etc). Ctests can be unit,
integration, or system tests.

Existing software testing techniques do not connect tests
to actual production system configurations. Rather, existing
testing techniques sample possible configurations through
systematic or random exploration of the enormous space
of configuration value combinations [37]. Systematic explo-
ration can be prohibitively expensive due to combinatorial
explosion [39], while random exploration can have a low
probability of covering all offending values that can cause
production failures. Ctests have neither the cost of systematic
exploration nor the low coverage of random exploration. By
connecting tests to production system configurations, ctests
can effectively detect failure-inducing configurations.

Ctests can test entire system configurations or incremental
configuration changes in the form of configuration file “diffs.”
Our ctest infrastructure (see §3) supports selectively running
only the ctests that are relevant to a configuration change,
instead of re-running all ctests. Selectively running ctests
saves testing time—most real-world configuration changes
modify only a few configuration values [55].

We show how to generate ctests by transforming the ex-
isting and abundant tests in mature software projects in an
automated fashion that reuses well-engineered test logic and
oracles. The main challenge that we address is the automated
identification of test logic and oracles that can be transformed
into ctests. Existing test logic may assume specific configu-
ration values. Such assumptions can be implicit (assuming
default values) or explicit (hardcoding certain values). Thus,
naïve parameterization will not always generate valid ctests.

Our transformation identifies and respects the intent of ex-
isting tests that assume specific configuration values. First,
configuration parameters whose values are explicitly re-
assigned in the test code are excluded from the input pa-
rameter set of a ctest. Then, the values of the parameters used
in candidate ctests are varied to observe the corresponding
test output. We exclude parameters whose values are hard-
coded in a test because such tests will fail on different but
valid values. Our tests-to-ctests transformation is mechanized
in a toolchain and we successfully generated 7,974 ctests by
transforming the existing test suites in five cloud systems.

Ctests address the following limitations of existing config-
uration validation and misconfiguration detection techniques:

• Ctests can detect failure-inducing configuration changes
where the root cause of the failure is in the code.

• Ctests can detect legal misconfigurations by capturing the
resulting unexpected system behavior.

• Ctests can be generated from existing tests, without incur-
ring the high cost of learning or codifying rules.

Our results show that ctests can effectively detect failure-
inducing configuration changes before deploying them
to production. We evaluated ctests using 64 real-world
configuration-induced failures, 1,055 diverse misconfigura-
tions generated by error injection rules, and 92 deployed con-
figuration files from publicly-available Docker images.

Ctests detected the failure-inducing configurations in
96.9% of the real-world failures. The ctests that detected
these real-world failures were transformed from the tests in
the older version of the systems on which the failures were
reported. That is, ctests could have detected these failures ear-
lier. Ctests also detected 10 misconfigurations in 7 deployed
files. Additionally, our ctest generation process exposed 14
previously unknown bugs, including a bug that users encoun-
tered after we reported it [24]. Developers confirmed 12 of
these 14 bugs and fixed 10 of them.

In summary, this paper makes the following contributions:

• Ctests enable a simple and effective approach for detecting
failure-inducing configuration changes.

• We present how to generate ctests by transforming the
many existing tests in mature systems.

• We show that ctests can effectively detect real-world
configuration-induced failures early, during testing.

2 Background and Examples
We describe how ctests address the limitations of existing tech-
niques for validating configuration values [6, 27, 48, 55, 67]
and techniques for detecting specific types of misconfigura-
tions [38, 43, 44, 49, 50, 59, 61, 62, 75, 77].

Checking configurations based on program behavior. A
key capability of ctests is to check how actual configuration
values impact program behavior. This capability is essential
for detecting configuration changes that result in code failures
or expose dormant bugs. In our experience, checking program
behavior can be more effective in capturing failure-inducing
configuration changes than checking configuration values
against rules (which are usually incomplete).

Figure 1 uses a real-world issue from HBase [21] to illus-
trate the capability of ctests. There, a ctest detects a miscon-
figuration that degrades performance (“too many handlers
can be counter-productive [56]”). The ctest is generated from
an existing test in the reported HBase version. It asserts on
the computed schedule with the expected behavior that han-
dler counts are not affected by configuration changes. The
offending value is “legal” [71] but the reported version had
no validation code to check the expected behavior.

736 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Configuration Change:
- hbase.ipc.server.callqueue.handler.factor = 0.1
+ hbase.ipc.server.callqueue.handler.factor = 2

public void testRpcScheduler() { ...
RpcScheduler scheduler = new SimpleRpcScheduler(conf);

scheduler.dispatch(...);

assertEquals(...);

}

@Ctest /* Generated from hbase/ipc/TestSimpleRpcScheduler.java */

AssertionError (the assertion is on a
schedule calculated based on the declared
handler count)

Impact: The misconfiguration caused unexpected behavior: the
resulting handler count degraded performance.

...

Initialize an RPC server using conf

...

...

The value range should be in range [0, 1].

Figure 1: A ctest that detects a real-world misconfiguration in
HBase [21] by checking expected system behavior. The ctest is
generated from a test available in the reported HBase version.

Configuration Change:
- hadoop.security.authorization = false
+ hadoop.security.authorization = true

public void testRefreshCallQueueProtocol() { ...
assertTrue(isMethodSupported("refreshCallQueue"));

}

@Ctest /* Generated from hdfs/TestIsMethodSupported.java */

AuthorizationException: Protocol interface
RefreshCallQueueProtocol is not known.

Impact: The configuration change caused a latent failure
manifested only upon callqueue refresh operations at runtime.

...

/* ipc/Server.java */

Root cause: The configuration change drives the execution to
a new branch where an unknown bug is exposed.

public void authorize(...) {
if (authorize) {
...

}
}

authorize = conf.getBoolean(
“hadoop.security.authorization”);

...

Figure 2: A ctest that detects a dormant bug exposed by a con-
figuration change in Hadoop [20]. The ctest is generated from a
test available in the reported Hadoop version.

Detecting dormant bugs exposed by valid configuration
changes. Ctests can detect not only misconfigurations but
also software bugs exposed by valid configuration changes.
Such bugs are common root causes of configuration-related
incidents (§1.1). Existing configuration validation and mis-
configuration detection techniques only check for erroneous
configuration values; they are fundamentally limited to detect-
ing failures with root causes outside the changed configura-
tions. Such software bugs inevitably occur, despite extensive
testing and static analysis. Some bugs can only be exposed
under specific configurations. Figure 2 shows a real-world
failure from Hadoop [20]. A failure-inducing configuration
change caused Hadoop to traverse new execution paths and
exposed a dormant software bug.

Detecting diverse misconfigurations. Many existing tech-
niques focus on detecting specific kinds of misconfigurations.
Ctests are generic. They can detect configuration changes
that lead to any kind of unexpected program behavior. So
ctests can detect misconfigurations that are hard for state-of-

the-art techniques to detect. Such misconfigurations involve
(1) custom regular expressions, user commands, and URIs
(statistical analyses and machine learning can detect outliers
but cannot deal with custom values [67]), (2) invalid content
referred to by path-related configurations (most existing tech-
niques only check metadata), (3) violations of undocumented
constraints that cannot be found by text-based document anal-
ysis [44, 59, 65], and (4) dependencies among multiple con-
figuration parameters [12]. Figures 8 and 9 show examples
of misconfigurations detected by ctests that are hard to detect
using existing techniques.

Incremental pre-deployment testing for every configura-
tion change. Ctests can help prevent failure-inducing config-
uration changes from being deployed to production systems.
The goal of ctests is to test every configuration change early,
during testing. Ctests can be run selectively on configuration
file “diffs” to save testing time (§3.2). Ctests do not suffer
from limitations of post-deployment configuration checking
(e.g., disallowing operations with side effects to avoid cor-
rupting production system states as in PCheck [67]).

3 Ctest Overview
The idea behind ctests is to connect production system con-
figurations to software tests, enabling the checking of config-
uration changes against program properties in the context of
code affected by the configuration changes. Ctests detect both
misconfigurations caused by assigning invalid values to con-
figuration parameters and bugs in the code that are exposed
by changing configuration parameters to new valid values.

3.1 Ctest Definition

A ctest, t̂(P̂), is a test t̂ that is parameterized by a set of system
configuration parameters P̂. Running a ctest instantiates each
parameter p 2 P̂ with a concrete value. In particular, each
p 2 P̂ in a ctest can be instantiated with a value from the
production system configuration or a configuration change
(in the form of a configuration file “diff”) to be deployed.
Note that P̂ is typically only a very small subset of all system
configuration parameters, denoted as P. That is, |P̂|⌧ |P|.

Ctests can be unit, integration, or system tests. Like regular
software tests, a ctest can assert on different kinds of program
properties: correctness, performance, security, etc. Ctests can
be written from scratch by developers, or they can be gen-
erated from existing software tests (see §4). Our generation
procedure reuses test logic and assertions in existing tests
during transformation to ctests.

3.2 Ctest Usage
Ctests can check an entire system configuration, a configura-
tion change, or a configuration file. So, ctests can be used both
as a traditional configuration file checker and as an enabler
of configuration checking during continuous integration and

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 737

deployment [52]. Ctests are complementary to configuration
validation, similar to how software testing complements static
analysis for bug detection.

Ctests for checking entire system configurations. We de-
fine a system configuration as the values of all configuration
parameters in the system denoted as C =

S
i=1..|P|{(pi 7! vi)}

(it assigns a value vi to every parameter pi in P). Running a
ctest, t̂(P̂), instantiates each parameter pi 2 P̂ with its value
in the system configuration vi such that (pi 7! vi) 2 C. To
test the system configuration, C, all available ctests are run. C
passes if all ctests pass and fails if any ctest fails.

Ctests for checking configuration changes. In modern con-
tinuous integration and deployment, a configuration change
has the form of a configuration file “diff”. A diff typically
only changes the values of a small set of configuration pa-
rameters, PD [55]. It updates the system configuration from
C to C0 by changing each pd 2 PD’s value from vd to v0d . For-
mally, we define a configuration diff D = {(pd 7! v0d) | pd 2
PD and (pd 7! vd) 2C and vd 6= v0d}.

For a given diff D, a ctest t̂(P̂) can be used to test D if
at least one configuration parameter in D is in its input pa-
rameter set P̂ (i.e., if PD \ P̂ 6= /0). We use this test selection
criterion to re-run only the subset of ctests whose outcome
could be altered by D, instead of re-running all ctests after
every configuration change.

A selected ctest t̂(P̂) can be run before deploying D to pro-
duction by assigning values in D to the ctest’s parameters that
are in D and assigning values in C to the ctest’s parameters
that are not in D. Precisely, assign v0d to each pd 2 P̂\PD,
where (pd 7! v0d) 2 D; then, assign v to each p 2 P̂ � PD,
where (p 7! v) 2 C. Ctests with P̂\PD = /0 do not need to
be run when testing D. A configuration diff, D, passes if all
selected ctests pass and fails if any selected ctest fails.

Ctests for checking configuration files. A configuration file
typically only assigns values to a subset of P. Parameters
whose values are not assigned in the configuration file receive
their default values. So, ctests treat a configuration file as a
diff which updates the default system configuration with the
configuration values that are set in the file.

Locating offending configuration values. If a ctest is newly
failing on a configuration diff, D, then the offending parame-
ters must be in P̂\PD, unless the tests are flaky [8]. Parame-
ters in D are typically very few, e.g., 49.5% of configuration
changes have two-line revisions [55]. We discuss our experi-
ence on inspecting ctest failures in §7.

3.3 Creating a Ctest Infrastructure
Ctest infrastructure can be built on top of existing software
testing frameworks. Specifically, a ctest can be run in the
same way as a regular software test by instantiating the test’s
input parameters with system configuration values. We built
our current ctest infrastructure on top of the Maven build sys-

tem [36]—all the systems that we study use Maven to compile
and run their test suites (§5.1). It should be straightforward to
extend our infrastructure to support other build systems such
as Gradle [16], Bazel [7], and Buck [11].

Ctests should be run in a hermetic test environment (a com-
mon software testing practice [41]). Ctests are best run in the
same environmental setup as in production because ctests can
capture environment-specific, configuration-induced failures
(e.g., Figure 8). Our current infrastructure supports running
ctests in Linux containers.

Ctest selection. Ctest selection is critical for utilizing ctests
during continuous integration and deployment of configura-
tion diffs. Regression test selection, which reruns tests that
are affected by code changes [17], does not work for configu-
ration changes. We build our ctest selection mechanism using
the test selection criterion described in §3.2; it only runs ctests
that are parameterized by parameters in D.

Configuration versioning. We store the latest version of the
system configuration C to be updated after a configuration
diff passes ctest and is deployed (§3.2). So, our infrastructure
can instantiate ctests with updated parameter values in C.

4 Ctest Generation
Ctests can be generated by transforming existing tests in
mature software projects with reasonable manual effort. The
generated ctests inherit test logic and assertions from the
original tests. The inherited assertions hold for all correct
configuration values.

Ctest generation proceeds in two steps. First, the existing
tests are parameterized by system configuration parameters,
so that they can be run against different system configurations
(§3.2). We describe in §4.1 how to parameterize an existing
test t to obtain t̂(P) (or t̂ in short), where P represents all the
configuration parameters of the target system. Second, the
parameterized tests are transformed into ctests.

A parameterized test t̂ may not be directly usable as a ctest
if the original test t contains test logic or oracles that assume
specific configuration values. The resulting parameterized
test t̂ may fail incorrectly on valid configuration values if the
subsequently resulting ctest is run against new values that
are not the assumed values. So, if t̂ assumes specific values
of a configuration parameter p 2 P, t̂ cannot be a ctest for p.
But t̂ can still be a ctest for another independent parameter,
say q 2 P, if t̂ does not assume a value for q. In short, if t̂
assumes a value for p but not for q, t̂ can result in a ctest for q
but not for p. We address the challenge of identifying, among
all configuration parameters exercised by t̂, those that can be
included in the input parameter set P̂ of the resulting ctest
t̂(P̂). In this example, q 2 P̂ and p /2 P̂. We describe in §4.2
how to identify P̂ from P when generating a ctest t̂(P̂) from t̂.

One can optionally rewrite generated ctests to allow gener-
ated ctests check more configuration parameters or to generate

738 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 static {
2 ...
3 addDefaultResource("core-default.xml");
4 addDefaultResource("core-site.xml");
5 + addDefaultResource("core-ctest.xml");
6 }
7 /* conf/Configuration.java */

Figure 3: Parameterization by intercepting the configuration
APIs of Hadoop. After the interception, test code reads configu-
ration values from core-ctest.xml which is managed by our ctest
infrastructure. In this way, the test code can be instantiated with
values in core-ctest.xml.

new ctests. §4.3 presents two simple rewriting rules for deal-
ing with hardcoded parameter values and assertions.

In summary, given tests T = {ti | i = 1,2, ...,N f}, we gen-
erate a set of ctests T̂ = {t̂i(P̂i)}, where |T̂ | |T |. For each
ctest t̂i(P̂i), t̂i is the parameterized test and P̂i is the set of
configuration parameters that can be tested by the ctest. Each
ctest is generated from an existing test and checks one or
more parameters. To test to-be-deployed configurations, a
ctest instantiates all its input parameters.

Developer effort. To generate ctests from existing tests, de-
velopers need to instrument the configuration APIs of the
system. We discuss instrumentation in §4.1 and §4.2.1. After
instrumentation, ctest generation is mechanized.

4.1 Parameterization
The first step in generating ctests is to parameterize an existing
test t into t̂. so that t can be run by instantiating the parameters
with actual system configuration values. Parameterization
requires changing test code to read configuration values at
runtime, as provided by ctest infrastructure (§3.3), instead of
from default configuration files or other test files. To generate
large numbers of ctests, parameterization is automated.

We find that systematic parameterization can be done by
intercepting the configuration APIs that existing tests use
for reading configuration values. Figure 3 exemplifies our
interception of Hadoop’s configuration API. The idea is to
overwrite configuration values as the final step of configura-
tion loading. Thus, when the test code reads configuration
values from configuration APIs, the values come from the con-
figurations maintained by the ctest infrastructure (§3.3). Our
parameterization approach minimizes the changes needed and
avoids changing individual tests. Our approach is applicable
to many (if not all) modern cloud systems, but its implemen-
tation is project-specific. We implemented parameterization
for five cloud systems (§5.1) and validated its applicability to
other systems including Spark and OpenStack.

The parameterization step produces a parameterized test,
t̂(P), for each test t, where P is the set of all system config-
uration parameters. Parameterization is oblivious of the set
of configuration parameters exercised by each t̂; these are
automatically identified in §4.2.1.

4.2 Transformation
A parameterized test t̂(P) may not be a valid ctest—a ctest’s
parameter set P̂ should include only configuration parameters
that can be checked by the ctest—the test logic and oracles
should not assume specific parameter values.

Transforming a parameterized test into a ctest consists of
(1) identifying the set of configuration parameters that are
exercised by each test t, denoted as P (§4.2.1), and (2) for
each p 2 P, determining whether the test logic and oracle of t
assume any specific value of p; if so, p /2 P̂ (§4.2.2). Figure 4
shows ctest generation process that transforms from t to t̂(P̂).

t

Original Test

t̂(P) t̂(P) t̂(P̂)

Ctest

Parameterization
(§4.1)

Parameter Identification
(§4.2.1)

Ctest Generation
(§4.2.2)

Figure 4: Steps in the ctest generation process.

4.2.1 Identifying Parameters Exercised in Tests
Static or dynamic analysis can be used to identify P for each
test t. We implemented and experimented with both. Our static
analysis taints the statements that can be reached by t and
searches for configuration API usage (§4.1) among the tainted
statements. It was straightforward to identify configuration
API usages in test code. But, since test code commonly passes
configuration values to system code initialization, it is hard to
precisely collect the exact configuration API usage in system
code that may be reachable from tests. So, static analysis
often imprecisely produces a parameter set larger than P.

We chose dynamic analysis under the assumption that most
test cases are relatively deterministic [15]. Our dynamic anal-
ysis requires developers to instrument configuration GET and
SET APIs for reading and writing configuration values in the
target system, respectively.1 Our instrumentation inserts code
to log the stack trace of each API invocation and the config-
uration parameter involved. Figure 5 is an example of our
instrumentation for Hadoop. With instrumentation in place,
our dynamic analysis runs all existing tests and post-processes
the log for each test t to automatically identify (1) the set of
configuration parameters P exercised by t, and (2) parameters
written (via the SET API) in t (needed in §4.2.2).

Log processing is automated, as our instrumentation pro-
duces easily-parsed output. Our dynamic approach is simple,

1The GET and SET APIs are common configuration abstractions used
in cloud systems written in Java and Python [33, 48, 67, 69]. GET APIs are
of the form, “<T> get(Class<T> class, String parameter)”; they
take a parameter name and return a value. SET APIs are of the form, “void
set(Class<T> class, String parameter, <T> value)”; they reset
the original value of the given parameter with the input value. Typically, get
and set are declared in wrapper classes such as java.util.Properties
for Java and configparser for Python projects.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 739

1 public String get(String name) {
2 + String ctestParam = name;
3 String[] names = handleDeprecation(
4 deprecationContext.get(), name);
5 String value = null;
6 for(String n : names) {
7 + ctestParam = n;
8 value = substituteVars(
9 getProps().getProperty(n));

10 }
11 + LOG.warn("[CTEST][GET-API] " + ctestParam);
12 + CTestUtils.printStackTrace(ctestParam);
13 return value;
14 }
15 /* conf/Configuration.java */

Figure 5: Example Instrumentation for a GET API in HCom-
mon. The get method is the lowest level API used by high-level
GET APIs, e.g., getInt and getBool. handleDeprecation han-
dles deprecated parameters. SET APIs are instrumented similarly.

general, and reliable, requiring modest instrumentation effort
(§5.1). Instrumentation of configuration APIs is performed
during ctest generation. Instrumentation is neither performed
when running ctests nor added to the production system.

For completeness, we consider a test to exercise a parameter
if the test uses the parameter’s value as it executes. We do not
exclude tests based on potential effectiveness for exposing
misconfigurations or bugs. In general, such effectiveness is
hard to define or model. Our decision is also justified because
GETAPI invocations alone can expose misconfigurations (e.g.,
those due to type-casting errors [26]) or bugs (e.g., those
caused by failing to trim white space [25]).

4.2.2 Generating Parameter Sets for Ctests
For each test t̂(P) that is parameterized after the steps in §4.1
and §4.2.1, our toolchain automatically generates the ctest
t̂(P̂) by filtering out configuration parameters in P� P̂:

Respecting intended configuration resets. If a test explic-
itly resets a configuration parameter to a specific value, then
the test logic or its oracle depends on the new value. So, the
test cannot be applied to other valid values of the configuration
parameter. Our tool automatically identifies all configuration
parameters whose values are reset in a test t. It does so by
parsing the logs generated by instrumented SET APIs (§4.2.1)
and excluding parameters that are reset from P. Note that
we do not exclude configuration parameters from P that are
reset in the system (not test) code. System code can reset
configuration values in ways that should not impact ctests,
e.g., during dynamic configuration tuning.

Detecting implicit assumptions on configuration values.
In practice, not all parameter resets are performed using SET
APIs. Some tests implicitly assume specific parameter values.
Most tests with such implicit assumptions expect default pa-
rameter values and do not set them explicitly. If the default
value is unchanged, then the tests pass. Although such assump-

tions constitute bad software engineering practice (“brittle
assertions” in the literature [28]), we observe many such cases
in the existing test code. Therefore, we automatically iden-
tify and exclude from P̂ the parameters on which tests have
implicit assumptions.

Our intuition is that, if a test assumes specific values, then
it will fail on different but valid values. That is, if p 2 P̂, then
t̂ should pass on all valid values of p. So, a configuration pa-
rameter on which a test makes an implicit assumption can be
identified by assigning a different valid value to the parameter
and observing the outcome of the existing test.

Our implementation validates whether t̂ makes implicit
assumptions on each p 2 P by running t̂ with p instantiated
with a few valid values. If t̂ fails on a valid value, then t̂ makes
an assumption on the value of p, i.e., p /2 P̂. In our experience
in generating thousands of ctests (§5), using up to three values
for validation is sufficient to identify configuration parameters
on which tests make implicit assumptions.

We use heuristics to automatically generate values for vali-
dation from the default value of each configuration parameter,
based on the parameter types. For numeric types, we halve
and double the original value. For Boolean values, we use the
negation. For environment-related values (e.g., path, address,
and port), we generate a similar but different value (e.g., a dif-
ferent port number). We use the regular expression described
in [77] to infer parameter value types.

These heuristics are not sound; they do not guarantee the
validity of generated values. However, the heuristics are sim-
ple and practical—only 1.6% of the generated values were
invalid due to hidden constraints (§5.3). Our heuristics could
not generate valid values for about 16% of parameters: enum
options, class names, and commands. We manually selected
valid values in these cases. Our future work includes integrat-
ing advanced inference tools [44, 47, 69] to infer valid values
for these parameter types.

The validation yields P̂ for each parameterized t̂ trans-
formed from t. If P̂ 6= /0, t̂(P̂) is a ctest for all p 2 P̂.

4.3 Rewriting
In addition to the generated ctests, one can optionally manu-
ally rewrite an existing test to create a new ctest or rewrite a
generated ctest to check more configuration parameters. We
find two common patterns for rewriting, exemplified in Fig-
ure 6. First, many configuration resets in test code are used for
setting up the test environment, e.g., a test file, address, port,
etc. Those resets are not needed in ctests which are run with
actual environment variables. Figure 6a shows this rewriting
pattern. There, by simply removing the reset, the ctest can
check alluxio.master.rpc.port’s values. Note that remov-
ing hardcoded resets may require changing how the test reads
the configuration values, if the test code does not use stan-
dard APIs (discussed in §5.4). Second, some assertions in
the test code assume the default configuration values (§4.2.2)
which can be safely removed or rewritten to the actual values

740 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

1 @Ctest
2 void testStartStopPrimary() {
3 - conf.set("alluxio.master.rpc.port",
4 - TEST_PORT);
5 master = new AlluxioMasterProcess(conf);
6 master.start();
7 ...
8 }
9 /* master/AlluxioMasterProcessTest.java */

(a) Removing hardcoded resets. After removing the
conf.set() call, the alluxio.master.rpc.port parame-
ter’s value comes from system configuration. The rewritten ctest
can then test alluxio.master.rpc.port.

1 @Ctest
2 void testNameNodeXFrameOptionsEnabled() {
3 ...
4 header = conn.getHeaderField(
5 "X-FRAME-OPTIONS");
6 ...
7 assertTrue(header.endsWith(
8 - HttpServer.XFrameOption.SAMEORIGIN));
9 + conf.getTrimmed("dfs.xframe.value")));

10 }
11 /* namenode/TestNameNodeHttpServerXFrame.java */

(b) Rewriting hardcoded assertions. The rewritten ctest asserts
on the actual value of the dfs.xframe.value parameter not its
default value (SAMEORIGIN).

Figure 6: Two common patterns of test rewrites (§4.3).

being tested, as shown in Figure 6b. For both patterns, test
code is rewritten to read values from the system configuration
without changing the test logic.

5 Generating Thousands of Ctests
We share our experience in generating over 7900 ctests by
transforming existing tests in five mature and widely-used
open-source cloud systems: HCommon (Hadoop runtime and
core utilities), HDFS, HBase, ZooKeeper, and Alluxio. We
chose these projects for our evaluation (§6) because they are
widely studied, their configuration APIs represent the state-
of-the-art in modern cloud systems, and they expose many
configuration parameters (Table 1). We discuss the feasibility
of, and opportunities for, generating ctests in practice.

5.1 Evaluated Systems and their Test Suites
Table 1 shows the characteristics of the cloud systems that
we studied: tests, configuration parameters, and how much
instrumentation we performed.

Instrumentation effort. Our system-specific instrumentation
is modest because each system uses a few classes to imple-
ment the configuration APIs. In the worst case, we changed
only three classes each in ZooKeeper and Alluxio (“# Class”
column in Table 1). It takes more lines of instrumentation for
ZooKeeper than the others, because the GET and SET APIs

Software Test Coverage # Config. Instrum.
Stmt Cov. Meth Cov. Params LoC # Class

HCommon (2.8.5) 73.1% 74.0% 269 24 1
HDFS (2.8.5) 80.3% 79.6% 296 24 2
HBase (2.2.2) 69.5% 80.1% 205 29 2
ZooKeeper (3.5.6) 75.8% 84.3% 32 130 3
Alluxio (2.1.0) 70.8% 72.6% 515 34 3

Table 1: Characteristics of studied systems (test suites, configu-
ration parameters, and instrumentation efforts). The instrumen-
tation includes both parameterization (§4.1) and logging (§4.2.1).

Software Module # Tests # Config. Param.
Total Using Config. Total Used in Tests

HCommon hadoop-common 3268 1923 (58.8%) 269 232 (86.2%)
HDFS hadoop-hdfs 3957 3293 (83.2%) 296 284 (95.9%)
HBase hbase-server 2630 2035 (77.4%) 205 169 (82.4%)
ZooKeeper zookeeper-server 881 180 (20.4%) 32 32 (100.0%)
Alluxio core 1648 1117 (67.8%) 515 423 (82.1%)

Table 2: Characteristics of configuration parameters exercised
in software tests of the studied systems.

are implemented per configuration parameter;2 the other four
systems implement generic APIs as exemplified in Figure 5.

Test suites. The studied systems all have a good number of
tests, mostly at the unit- and integration-test levels. System-
level tests are rare, reflecting a common testing practice in
modern systems engineering [60]. Further, all five projects
enforce rigorous code commit policies that require every code
change to be covered by a test. Code coverage is high (“Test
Coverage” in Table 1), with at least 70% statement coverage.
Proprietary systems report even higher test coverage [29, 51].

We focus on the core modules of the studied systems
(“Module” in Table 2), which are likely to be used in pro-
duction. In the rest of this paper, we only use the tests in the
studied modules, even though tests in the other modules can
also be leveraged during ctest generation.

Table 2 shows the percentage of existing tests per mod-
ule that exercise configuration values (“Using Config.”) and
the percentage of configuration parameters exercised by tests
(“Used in Tests”). We collected these percentages from instru-
mented configuration API logs (see §4.2.1). Clearly, many
tests exercise configuration values and are candidates that
can be transformed into ctests. Furthermore, 82.1%–100.0%
of configuration parameters across the studied systems are
exercised by existing tests. So, most configuration parameters
have a chance of being checked by a generated ctest (§5.2).

5.2 Ctest Generation Results
We apply the automated approach in §4.2 to generate ctests
from the existing tests in the evaluated systems. We select
all 32 configuration parameters in ZooKeeper. For the other

2We are helping ZooKeeper to improve their APIs (e.g., [81]); using
ZooKeeper shows applicability of ctests across configuration APIs.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 741

Software Existing Tests Generated Ctests
Param. Tests ! Ctests #Param. (Cov.)

HCommon 90 1870 ! 1846 (98.7%) 90 (100.0%)
HDFS 90 3191 ! 3148 (98.7%) 90 (100.0%)
HBase 90 1909 ! 1687 (88.4%) 90 (100.0%)
ZooKeeper 32 180 ! 176 (97.8%) 32 (100.0%)
Alluxio 90 1117 ! 1117 (100.0%) 90 (100.0%)

Table 3: Ctest generation results. The results include only gener-
ated ctests (§4.2). The generated ctests have 100% coverage of the
configuration parameters.

systems, we randomly select 90 configuration parameters
that are exercised by the tests (“Used in Tests” in Table 2).
Note that we sampled 90 parameters mainly to bound our
manual inspection effort for analyzing effectiveness and false
negatives (Tables 8 and 9). The generation process is mostly
automated after API instrumentation.

Table 3 shows ctest generation results. Overall, 88.4%–
100% of existing tests that exercise the selected configuration
parameters were successfully transformed into ctests. Fur-
thermore, the generated ctests cover 100% of the selected
parameters, i.e., each parameter is checked by at least one
ctest. The small percentage of tests that could not be trans-
formed as ctests were hardcoded to specific values of all the
parameters that they exercise—a ctest is generated as long
as it can check at least one configuration parameter. Sec-
tion 6 discusses the effectiveness of the generated ctests for
detecting failure-inducing configurations in different settings.

5.3 Detecting Bugs and Hidden Constraints
Some valid configuration values caused ctests (§4.2.2) to un-
expectedly throw runtime exceptions instead of the failed
assertions that are typical manifestations of hardcoded tests.
We analyze these exceptions and find, surprisingly, that most
are caused by (1) previously unknown bugs in the code ex-
posed by configuration changes, or (2) hidden constraints
which made seemingly valid configuration values erroneous.
We include these ctests which are effective in capturing bugs
and misconfigurations in our evaluation.

Dormant bugs exposed by configuration changes. We find
14 previously unknown bugs in the latest versions of the five
evaluated systems. 12 of those bugs are confirmed and 10
were fixed by the developers after we reported them; 9 bugs
are considered “Major” or “Critical”. Real users encountered
a bug after we reported it [24]. 12 of the 14 bugs existed for
more than five years in these projects that routinely run static
analyses and perform testing. Figure 7 shows one of these
bugs, in which changing the value of the parameter to a valid
option TopAuditLogger will crash the NameNode of HDFS
because a default constructor is required but not implemented.

Hidden configuration constraints. We also discovered 11
hidden constraints that cause the generated values to result
in errors. We say these constraints are “hidden” because they

public void testStartupSafemode() {

fsn = new FSNamesystem(conf, fsImage);

}

FSNamesystem(Configuration conf, FSImage fsImage) {...
className = conf.get("dfs.namenode.audit.loggers");
logger = Class.forName(className).newInstance();
...

}

...

NoSuchMethodException
(BUG: TopAuditLogger has no

default constructor)
/* namenode/FSNamesystem.java */

@Ctest /* Generated from namenode/TestFSNamesystem.java */

Configuration Change
- dfs.namenode.audit.loggers = DefaultAuditLogger
+ dfs.namenode.audit.loggers = TopAuditLogger

...

Figure 7: A new bug that was exposed by a valid configuration
change and was captured by a ctest [23]. The bug crashes HDFS
NameNode due to missing a default constructor. The bug has been
fixed after we reported it.

Hidden Constraints
hbase.http.max.threads’s value has to be larger than the number of
threads needed by an external library (which is machine-dependent).

public void testGetMasterInfoPort() {...}
@Ctest /* Generated from hbase/TestInfoServer.java */

HBase used 5 threads
but 6 is needed by jetty./* jetty-server-9.3.27.v20190418.jar */

protected void doStart() {
if (needed > max)
throw new IllegalStateException(String.format(
“Insufficient threads...”));

}

max = conf.getInt(“hbase.http.max.threads”);
/* http/HttpServer.java */

...

Configuration Change
- hbase.http.max.threads = 10
+ hbase.http.max.threads = 5

Figure 8: A hidden constraint exposed by a ctest. The configura-
tion of HBase is constrained by an external library (Jetty).

were not documented and are not intuitive to discover. Fig-
ure 8 is an example of a hidden constraint—the configuration
parameter of HBase is constrained by an external library, Jetty.
Any configuration value that is smaller than the needed vari-
able’s value in Jetty will cause a runtime exception.

5.4 Rewriting Ctests
We further study the intended configuration resets in test code
(§4.2.2) to understand the opportunities and challenges of
rewriting tests. We focus on environment-related configura-
tion parameters—as discussed in §4.3, tests often reset con-
figuration values to set up test environments, which are not
needed by ctests. For this study, we selected 44 configuration
parameters with hardcoded environment settings, including
all four from ZooKeeper and 10 from the other four systems.
There are altogether 263 tests that reset at least one of the 44
parameters; 233 of these tests were transformed to generate
ctests but those ctests cannot check the reset parameters. The
233 generated ctests cover all 44 parameters (Table 3).

742 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

We manually applied the two test rewriting rules described
in Figure 6 to these 263 tests. Removing hardcoded resets
alone (Figure 6a) can enhance 86 tests for ctests to cover
8 parameters. Further, by removing or rewriting hardcoded
assertions (Figure 6b), we can enhance 16 more tests. In total,
the two test rewriting rules can cover 102 (38.8%) tests for
18 out of 44 parameters. The remaining tests either cannot
benefit from rewriting, or require significant changes beyond
the two simple patterns in Figure 6.

The test rewriting effort was small in HCommon, HDFS,
HBase, and Alluxio for which we rewrote 33 tests for 16
parameters using a total of 90 changed lines. Rewriting a
test in these four systems takes only two or three lines of
test code (Figure 6). The rewriting effort was much larger
in ZooKeeper, mainly because ZooKeeper does not utilize
similar configuration APIs (§5.1) as other systems—the test
code does not use SET APIs to reset the parameter value as in
Figure 6a. So, we wrote a new API to load actual configuration
values into the tests; our implementation has 14 lines of code.
With our new API, we were able to rewrite 69 tests for two
parameters, which takes a total of 103 changed lines.

6 Evaluation of Ctest Effectiveness
We used three experimental settings to extensively evaluate
ctests’ effectiveness for testing configurations in context:

1. real-world configuration-induced failures documented
in issue tracking databases;

2. diverse injected misconfigurations for configuration pa-
rameters that have different value types and semantics;

3. non-default configuration files collected from Docker
images hosted at DockerHub [14].

6.1 Evaluating Ctests on Real-world Failures
We evaluate the effectiveness of ctests for detecting failure-
inducing configurations that caused real-world failures. Our
goal is to see how many of these failures ctests could have
been detected earlier.

Configuration-induced failures used. We reproduced 64
real-world configuration-induced failures from the issue-
tracking database of the five systems (Table 4). Each fail-
ure was reported by real system users and was caused by a
configuration change (i.e., a value different from the default
was used). These 64 failures have diverse root causes, in-
cluding 51 misconfigurations and 13 software bugs exposed
by valid configuration changes.3 We collected failures from
issue-tracking systems instead of user forums or mailing lists
because: (1) failures recorded in issue-tracking databases tend
to have had large impact, and (2) issue-tracking databases
rigorously record the version of the systems on which the

3For seven failures, misconfigurations triggered bugs in the code. We
categorize them as “misconfigurations” in Table 4.

Software Misconfigs Bugs (Valid Configs) Total

HCommon 11 (84.6%) 2 (15.4%) 13
HDFS 21 (95.5%) 1 (4.5%) 22
HBase 8 (61.5%) 5 (38.5%) 13
ZooKeeper 8 (66.7%) 4 (33.3%) 12
Alluxio 3 (75.0%) 1 (25.0%) 4

Total 51 (76.9%) 13 (20.3%) 64

Table 4: Statistics on real-world configuration-induced failures
from issue-tracking databases used in ctest evaluation.

Root Cause # Failures # (%) Detected by Ctests
Gen Only Gen + Rewrite

Misconfigurations 51 41 (80.4%) 51 (100.0%)
` Corrupt config files 3 3 (100.0%) 3 (100.0%)
` Value type errors 3 3 (100.0%) 3 (100.0%)
` Out-of-range values 12 11 (91.7%) 12 (100.0%)
` Value semantic errors 22 16 (72.7%) 22 (100.0%)
` Dependency violations 10 7 (70.0%) 10 (100.0%)
` Resource violations 1 1 (100.0%) 1 (100.0%)

Bugs exposed by valid config 13 10 (76.9%) 11 (84.6%)

Total 64 51 (79.7%) 62 (96.9%)

Table 5: Ctest effectiveness in detecting real-world configura-
tion-induced failures of various root-cause types. Most types are
self-explanatory; value semantic errors refer to misconfigurations
that violate the semantics of the configuration parameter, including
invalid file paths, URI, IP addresses, permission masks, etc.

failures were reported, which is critical for reproducing fail-
ures. Importantly, we only generate ctests from the tests in
the reported version, not from tests in later versions.

Ctests evaluated. For each failure, we identify each config-
uration parameter pi and its value vi in the failure-inducing
configuration change (13 of 64 failures involve more than one
configuration parameter). We then generate ctests using the
method in §4 for pi. Further, we apply the two rewriting rules
in §5.4 to enhance 11 generated ctests.

6.1.1 Effectiveness
Table 5 shows the effectiveness of ctests in detecting the 64
real-world failures and the root causes of those failures.

The results are promising. 96.9% (62/64) of the failure-
inducing configurations are detected by ctests. All failures
due to misconfigurations are detected. Specifically, 79.7%
(51/64) of all failures are detected by using only generated
ctests; the other 17.2% (11/64) require rewriting of ctests
(§5.4). In 9 of the 11 failures that require rewriting, we only
remove unnecessary value resets (like in Figure 6a). In the
other two, we also change an assertion (like in Figure 6b).
The results show that existing tests contain effective test logic
and oracles needed to expose failure-inducing configuration
changes. By leveraging those test logic/oracles, ctests can
effectively detect failure-inducing configuration changes and
prevent them from being deployed to production.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 743

Failure Mode Count (Pct)

Unexpected runtime exceptions 31 (50.0%)
Exceptions thrown by configuration-checking code 27 (43.5%)
Failing assertions in ctest code 3 (4.8%)
Test timeout (the system hangs) 1 (1.6%)

Table 6: Failure modes of ctests when detecting the failures.

By checking the behavior of code that exercise configura-
tion parameters, ctests have generic ability to detect diverse
types of misconfigurations, as well as bugs exposed by valid
configuration changes (Table 5). That is, ctests are not de-
signed to detect specific types of misconfigurations or bugs.
We exemplified failures detected by ctests in Figures 1 and 2.
Table 6 shows the failure modes of ctests on the 62 detected
configuration-induced failures. Most failures manifested as
unexpected runtime exceptions (division by zero, array in-
dex out of bound exceptions, etc.) or exceptions thrown by
configuration-checking code. We show examples in Figures 2
and 7. Both types of exceptions would have the same impact
on production systems if the failure-inducing changes were
deployed. In three failures, test assertions fail because of un-
expected behavior. The last failure was a test timeout that
occurred because the configuration change caused the system
to hang (similar to Figure 9a).

Two of the 64 failures were not detected by ctests [2,80]. In
ALLUXIO-9810 [2], the root cause is a buggy shell script that
no test invoked. The root cause of ZOOKEEPER-2299 [80] is
a bug in a method that no test in the reported ZooKeeper
version exercised. Both bugs can be detected by extend-
ing the test suite. In fact, for ZOOKEEPER-2299, the latest
ZooKeeper version includes a test from which we have now
generated a ctest that detects this bug.

6.1.2 Comparison with State-of-the-Art Techniques
Table 7 compares ctests with two state-of-the-art configura-
tion checking techniques, PCheck [67] and Spellcheck [48].
Both PCheck and Spellcheck are designed for cloud systems
and do not require additional training data or rule sets.

None of the 13 failures induced by valid configuration
changes triggering bugs in code can be detected by existing
configuration validation or automatic misconfiguration detec-
tion techniques, because those techniques only check whether
configuration values are valid.

Ctests detected all misconfigurations among the real-world
failures, including many that are challenging for state-of-the-
art checking and detection techniques to detect. Spellcheck
only detects value-type errors. In our real-world configuration-
induced failure dataset (Table 5), only three failures were
caused by value-type errors.

The following misconfigurations detected by ctests cannot
be detected by PCheck: (1) two misconfigurations leading
to non-crashing behavior (e.g., Figure 1), (2) five miscon-
figurations involving operations that have side effects (e.g.,

Failures Spellcheck PCheck Ctest
Gen Only Gen+Rewrite

Misconfigs 51 3 41 41 51
Bugs 13 0 0 10 11

Total 64 3 41 51 62

Table 7: A comparison of Ctests, PCheck, and Spellcheck in de-
tecting misconfigurations and bugs exposed by valid configura-
tion changes (Table 5). We assume sound PCheck and Spellcheck
static analyses—these are upper bounds for PCheck and Spellcheck.

writing files), and (3) three misconfigurations that require
client-side interactions to expose. Note that PCheck performs
post-deployment configuration validation; PCheck does not
run tests but instruments deployed systems. Ctests detect mis-
configurations early, during pre-deployment testing. PCheck
has two limitations that ctests do not have: (1) PCheck can-
not have side effects in the production environment, and
(2) PCheck cannot deal with external dependencies and events
(e.g., client operations) [67]. Moreover, unlike PCheck, ctests
can find bugs resulting from valid configuration changes.

6.2 Evaluating Ctests on Diverse Misconfigurations
We ran ctests on injected misconfigurations to (1) systemat-
ically evaluate ctests’ effectiveness on many diverse config-
uration parameters with different value types and semantics,
and (2) experimentally evaluate ctests on misconfigurations
that were not in the failures from issue-tracking databases.

Injected misconfigurations. We generate up to three erro-
neous values for each of the 392 configuration parameters in
§5. We use the misconfiguration generation rules proposed for
misconfiguration injection testing [31,32,69]. But we exclude
rules such as case alternation and random fuzzing, which lead
to many false errors. Note that the misconfiguration gener-
ation rules are different from the heuristics for generating
valid values in §4.2.2. Specifically, we generate misconfigura-
tions based on the types and semantics of each configuration
parameter. For Boolean or enum types, we generate invalid
options. For numeric types, we generate values containing
alphabetic characters, and out-of-range values (smaller/larger
than the min/max value). For parameters without explicit data
ranges specified in the configuration file, we use the range
of their data type, e.g., INT_MAX as the maximum value of
integers. For strings, erroneous values are generated based on
the semantics of the parameter. We follow the fine-grained
rules defined in [32, 69]. For example, for file-path parame-
ters, we generate non-existent files, incorrect file content, and
incorrect file types. We reviewed each generated erroneous
value to reduce false errors.

Ctests evaluated. We use the generated ctests from §5. For
each erroneous value e generated for p, we create a configura-
tion diff De = {(p 7! e)} that sets p’s value to e. We run all

744 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Software Complete Partial None N/A

HCommon 43 (48.3%) 22 (24.7%) 24 (27.0%) 1
HDFS 67 (77.9%) 12 (14.0%) 7 (8.1%) 4
HBase 52 (61.9%) 23 (27.4%) 9 (10.7%) 6
ZooKeeper 20 (90.9%) 2 (9.1%) 0 (0.0%) 10
Alluxio 43 (47.8%) 15 (16.7%) 32 (35.6%) 0

Table 8: Ctest effectiveness in detecting injected misconfigura-
tions per parameter. “Complete”, “Partial”, and “None” refer to
number of parameters with all, some (but not all), and none of the
injected misconfigurations detected, respectively. “N/A” refers to the
number of parameters in which all the generated misconfigurations
turned out to be valid due to the imprecision of error generation.

Misconfiguration
hadoop.security.random.device.file.path = INVALID_RANDEV

public void testRandomBytes() {
...
OsSecureRandom rand = new OsSecureRandom(conf);
// checkRandomBytes will timeout if secure random
// implementation always returns a constant value
checkRandomBytes(rand, ...);

}

@Ctest /* Generated from TestOsSecureRandom.java */

RuntimeException (not readable file)
TimeoutException (not rand device)

The random device
is used by the object
to get random bytes.

...

(a) Invalid file content. The ctest detects the misconfigurations by
testing the functionality of the random device.

Misconfiguration
hbase.regionserver.hlog.reader.impl = ProtobufLogReader
hbase.regionserver.hlog.writer.impl = SecureProtobufLogWriter

public void testWALTrailer() {
...
// Appends entries in the WAL and reads it.
doRead(...);

}

@Ctest /* Generated from wal/AbstractTestProtobufLog.java */

IOException (the log written by the hlog writer
cannot be read by the hlog reader on the region server)

The misconfiguration is latent (causing runtime exception) and undocumented.

...

(b) Non-interoperability (undocumented [22]). The ctest detects the
misconfigurations by testing the reader and writer together.

Figure 9: Non-trivial misconfigurations detected by ctests.

the ctests for p on each De and check whether any ctest fails
on e. Unlike in §6.1, we do not rewrite ctests in this evaluation
due to the larger size of experiments. So, our effectiveness
results are a lower bound.

6.2.1 Effectiveness on Injected Misconfigurations
Table 8 shows the effectiveness of ctests in detecting the
injected misconfigurations. Ctests detect all injected errors
for 47.8%–90.9% of parameters and at least one injected error
for 64.4%–100% of the parameters across the five systems.

Figure 9 shows two non-trivial misconfigurations detected
by ctests. In Figure 9a, a ctest detects an invalid random
device file path in HCommon by using the referred device to
generate random bytes. Very few existing misconfiguration
detection tools check file content; they mostly just check file
paths and metadata. In Figure 9b, most reader and writer

Software No Observable Symptom Test Inadequacy
Correction Mask No Exposure No Oracle

HCommon 14 (14.0%) 10 (10.0%) 56 (56.0%) 20 (20.0%)
HDFS 4 (11.8%) 8 (23.5 %) 9 (26.5%) 13 (38.2%)
HBase 25 (46.3%) 8 (14.8%) 19 (35.2%) 2 (3.7%)
ZooKeeper 2 (100.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)
Alluxio 3 (2.7%) 0 (0.0%) 100 (90.9%) 7 (6.4%)

Total 48 (16.0%) 26 (8.7%) 184 (61.3%) 42 (14.0%)

Table 9: Root causes of false negatives among the injected mis-
configuration values.

1 if (snapRetainCount < 3) {
2 LOG.warn(
3 "Invalid autopurge.snapRetainCount: "
4 + snapRetainCount + ". Defaulting to 3");
5 snapRetainCount = 3;
6 }
7 /* quorum/QuorumPeerConfig.java */

(a) An example of error correcting code in ZooKeeper

1 try { ...
2 paths = conf.get("dfs.datanode.shared.file.

descriptor.paths")
3 fdFac = FileDescFactory.create(..., paths);
4 ...
5 } catch (IOException e) {
6 LOG.debug(
7 "Disabling ShortCircuitRegistry", e);
8 }
9 /* datanode/ShortCircuitRegistry.java */

(b) An example of partial-failure masking in HDFS

Figure 10: Two patterns that lead to false negatives during mis-
configuration injection.

implementations of HBase are interoperable, but a few are
not. Ctests checked the interoperability of a specific (reader,
writer) pair and detected this non-trivial misconfiguration.
The non-interoperability was neither documented nor checked
in the system code before we reported it [22]. Using the non-
interoperability configurations will fail HBase region servers.

The generated ctests failed to detect 28.4% (300 of 1055)
injected misconfigurations, i.e., false negatives. The results are
consistent with the evaluation of misconfigurations without
rewriting in §6.1. Recall that we do not rewrite tests in this
evaluation, which could improve ctest adequacy (§6.1).

We inspected the 300 false negatives. Table 9 shows root
causes of false negatives and their distribution. 75.3% of false
negatives are due to inadequacy of ctests that either does not
expose the effects of the misconfigurations or does not have
oracles to check the effects. Many of these effects are non-
functional (e.g., performance issues). Moreover, unlike real-
world failures (§6.1), many injected misconfigurations are
expected to be uncommon in practice. So, the systems have
no error-checking logic or test code. For example, in HDFS,
negative io.seqfile.compress.blocksize values cause se-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 745

inf inf inf inf inf8 8 16 40 84 4 8 20 42 2 4 10 2

Per-Ctest Time Budget (second)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

en
es

s R
at

io

HCommon HDFS HBase ZooKeeper Alluxio

Complete
Partial

Figure 11: Time-budget analysis results. The results show the
effectiveness of detecting misconfigurations if only ctests that finish
under each time budget are run. The inf budget is equivalent to
times from Table 8 where “Complete” and “Partial” are defined. We
use the shaded budgets for experiments in §6.3.

vere performance degradation: every append triggers data
compression. However, HDFS does not check against nega-
tive values nor have a test with performance-based oracles.

The remaining 24.7% of false negatives have no observable
effects because of the presence of error-correcting code (e.g.,
Figure 10a), or because the consequences were masked (e.g.,
Figure 10b) by the system. Ctests cannot detect misconfigura-
tions that have no observable effects.

6.2.2 Time-Budget Analysis
The per-parameter evaluation enables us to analyze the trade-
off between effectiveness and running time of ctests. To ana-
lyze this tradeoff, we performed a time-budget analysis. Our
time-budget analysis excludes ctests that do not finish under
a specified time budget and measures the effectiveness of the
remaining ctests for detecting misconfigurations. We have
not yet designed a test prioritization [45,72] scheme for ctests
(§7), so we use per-test budgets (the amount of time each
ctest is allowed to run) rather than a total-test-time budget
(the amount of time all ctests are allowed to run). Per-test
time budgets are well suited to test-suite parallelization, where
each test is run in a separate process. Ctests for time-budget
analysis run on an 8-core Intel i7-9700 CPU with 32 GB
memory and Ubuntu 18.04.

Figure 11 shows the results of time-budget analysis. We
observe that different budget ranges are needed for different
systems given their different test characteristics. For example,
ZooKeeper does not have many unit tests but relies mostly
on integration tests. So, ZooKeeper needs larger per-test time
budgets than other systems. Further, all ctests in HCommon
finish under two seconds, so there is no decline in effective-
ness across the time budgets shown. The key result from
Figure 11 is that smaller per-test budgets can still achieve
similar levels of effectiveness as running all the ctests for all
projects except for Zookeeper. We use the shaded budgets
in Figure 11 for evaluating ctests on real-world configuration
files in §6.3.2 because they achieve good time-effectiveness

Software # Files # Files that Fail Ctests # False
Tested Version/Env. Misconfig. Alarms

HCommon 20 16 4 0
HDFS 20 15 2 0
HBase 20 12 0 0
ZooKeeper 20 14 0 0
Alluxio 12 3 1 0

Table 10: Results of running ctests on real-world configuration
files collected from Docker images.

tradeoff. We use a minimal per-test budget of 4 seconds to
leave room for performance variability.

6.3 Evaluating Ctests on Configuration Files
We evaluate the effectiveness of ctests using configuration
files collected from public Docker images. The experiments
also enable us to measure the false positives and overhead
of ctests on real-world configuration files (these are hard to
systematically evaluate in §6.1 and §6.2).

Evaluated configuration files. We extract 92 configuration
files from Docker images hosted on DockerHub [14] using the
method described in [68]. We randomly sample 20 Docker
images from the most popular 300 image repositories on
DockerHub for the five systems. We only find 12 Alluxio
image repositories that use non-default configuration files on
DockerHub. We use the most recent image in each repository.
The average number of configuration parameters in these files
is 5.8 (the minimum is one and the maximum is 29).

Ctests evaluated. We generate ctests using the method in §4.
For each configuration file f , we create a diff D f = {(p 7!
v f)} for all v f explicitly set in f and run all the ctests that
cover at least one parameter in D f (see §3.2). We use the
selected per-test budget from §6.2.2 to run ctests on each
configuration file. We run ctests against the configuration files
on our server, rather than deploying the ctest infrastructure in
each image’s container to reduce the cost of resolving depen-
dencies and setting up environments (many images are built
from old OS distributions with incompatible dependencies).

6.3.1 Ctests Effectiveness on Configuration Files
Table 10 presents the effectiveness of ctests on real-world
configuration files. Surprisingly, many configuration files did
not pass the ctests. We inspected all failed ctests and found 85
of 537 values to be erroneous. 76 of 85 erroneous values are
correct in the container, but fail ctests because (1) certain files,
IP addresses and ports in the containers do not exist or are
not available on our server, and (2) the ctests are generated
from tests from a newer version of the system—the configu-
ration values in the images are no longer correct. We reported
one such case, ALLUXIO-3402 [1], where the configuration
parameter alluxio.user.file.metadata.load.type has the
value “Always” in an image, scality/alluxio. But, in the
latest Alluxio, an all-capitalized parameter value is required.

746 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Software Ctests with Budget # All Ctests
Ctests Runtime # Ctests Runtime Baseline

HCommon 1014.20 1.90 1019.55 3.42 3.84
HDFS 1850.75 37.48 2310.20 126.35 120.43
HBase 842.75 47.70 1053.65 99.47 140.86
ZooKeeper 39.55 6.79 76.95 26.29 19.98
Alluxio 796.5 1.66 796.5 1.66 1.44

Table 11: The number of ctests and their running time (in min-
utes) per configuration file using all ctests and ctests within time
budget (selected in §6.2.2). The numbers are averaged over all eval-
uated files. “Baseline” is the time for running the corresponding
original tests (not ctests).

So a ctest generated for the latest Alluxio fails. These results
show that ctests effectively detect misconfigurations caused
by version and environment changes [76].

Ctests also detect 9 misconfigurations of various types in
seven configuration files (Table 10), including malformed
files, value-type errors, and dependency violations, which are
misconfigurations in the native container. Based on our in-
spection on the seven Docker images, we suspect that some of
these configuration files may be managed by custom scripts
that overwrite those files. Unfortunately, we find no documen-
tation for five of the seven Docker images on DockerHub.

Zero false positives found. We expected a few false positives
due to tests that assume some values but were not identified
when generating parameter sets for ctests—the heuristics for
generating valid values for validation are unsound (§4.2.2).
However, we found no false positives (Table 10).

6.3.2 Ctest Running Time on Configuration Files
We measure the ctest-running time per configuration file. Ta-
ble 11 shows the average total ctest-running time per configu-
ration file when running ctests that finish within the per-test
time budgets selected in §6.2.2. HCommon, ZooKeeper and
Alluxio take less than ten minutes. HDFS and HBase have
longer-running tests and take few tens of minutes.

We run all ctests with the inf budget and compare it with
running the ctests under the time budget. There is no differ-
ence in the effectiveness of ctests, showing that the budgets
are sufficient. We also compare total running time of all ctests
with a baseline total time for running all the original software
tests from which the ctests are generated. The results show
that the running times of the ctests are similar to those of the
original software tests (“Baseline” in Table 11). The running
time for HBase is about 70% of its baseline because many
tests in HBase aborted the execution and failed quickly due
to the exceptions triggered by misconfigurations.

7 Discussion and Limitations
There is no silver bullet against configuration-induced failures.
Ctests offer a simple, effective way to detect failure-inducing
configurations, and are complementary to existing techniques.

The effectiveness of generated ctests depends on the ade-
quacy of the original tests. On the evaluated systems, which
have abundant tests, ctests outperform state-of-the-art tools.
However, ctests cannot be generated if there are no existing
tests, which is why no ctest exposed the two bugs in the evalua-
tion (§6.1.1). Mature software systems will likely benefit from
ctests because they have comprehensive test suites [29, 51].
For newer projects or projects with less comprehensive test
suites, the generation of ctests could be limited. Note that
the concept of ctests is not limited by the generation method
discussed in §4. Ctests can be implemented by developers,
just like they implement regular software tests.

Ctests cannot localize the root causes of configuration-
induced failures. Based on our analysis of ctest results (§6.2
and §6.3), root cause localization can usually be done effi-
ciently by analyzing the stack traces. However, a few failures
take considerable time to understand, due to (1) complexity of
configuration value propagation and transformation, or (2) un-
expected, hidden configuration constraints (e.g., Figure 8).
Fault localization [64] for configuration-induced failures can
be developed to automate root cause analysis.

Ctests can increase the cost of regression testing, which
is already expensive. Section 6.3.2 shows that running ctests
for the evaluated systems takes reasonable time. On the other
hand, we believe that the cost of running ctests can be sig-
nificantly reduced by developing ctest reduction, prioritiza-
tion and minimization techniques, as was done for regression
testing [72]. One direction is to analyze ctest code and to
understand how each ctest exercises configuration changes,
towards reducing and prioritizing ctests. Ctests running time
can also be further reduced by running ctests in parallel.

The ctest generation described in §4 is neither sound nor
complete. First, the heuristics for detecting implicit test as-
sumptions (§4.2.2) are unsound and could lead to false neg-
atives in detecting bugs. Our heuristics minimize false posi-
tives. Second, dynamically tracing test executions to identify
parameters exercised in tests (§4.2.1) is incomplete, because
configuration changes could lead to different execution paths.
Like any other form of testing, we do not claim completeness.

Like any other pre-deployment testing, ctests are funda-
mentally limited by a possible mismatch between the test
environment and the production environment. Such a mis-
match could lead to both false positives and false negatives.

8 Related Work
The severity and prevalence of configuration-induced fail-
ures [18, 19, 34, 35, 40, 42, 55, 74] has resulted in novel tech-
niques for misconfiguration troubleshooting and debugging [3,
4, 46, 61–63, 73]. Advanced techniques have also been devel-
oped for diagnosing production failures [10,13,30,79]. Ctests
proactively detect failure-inducing configuration changes to
prevent production failures in the first place.

Ctests is complementary to our prior work, PCheck [67].
We compared ctests with PCheck [67] in §6.1.2, despite

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 747

PCheck being a post-deployment technique. Note that PCheck
can only detect misconfigurations, because it considers only
statements on the data-flow path of each configuration value.
Differently, ctests can detect valid configuration changes that
expose bugs in the code, a common type of failure-inducing
configuration changes [55]. Techniques designed for pre- and
post-deployment have fundamentally different opportunities
and challenges. In our experience, it is difficult (if not impos-
sible) for auto-generated checking code to deal with many
sophisticated real-world misconfigurations. This was the main
motivation behind ctests which can exercise code and con-
figurations together. But post-deployment techniques such
as PCheck do not have problems caused by the mismatches
between the test and the production environments.

We mentioned in §3.2 that ctests are complementary to
configuration validation and misconfiguration detection [6,
27, 38, 43, 44, 49, 50, 55, 59, 61, 62, 66, 67, 75, 77], similar to
how software testing complements static bug detection tools.
Ctests can detect failure-inducing configuration changes that
are challenging for existing techniques to detect, e.g., valid
configuration changes that expose bugs. Most automated de-
tection techniques only focus on specific types of miscon-
figurations. For example, Rex [38] detects dependency vi-
olations between source-code files and configuration files
which should be updated together. Ctests are not specific to
any type of misconfigurations or softwre bugs—they detect
failure-inducing configuration changes based on the resulting
program behavior. A common class of existing validation/de-
tection techniques requires validation rules or training data
that either do not exist (e.g., for systems that we evaluate)
or are not available (we found no rule sets or training data
online). In contrast, ctests do not rely on external rule sets or
training data—they leverage existing abundant test cases.

Ctests complement software and system testing. In essence,
ctests enhance existing testing techniques to focus on the
actual configurations in production or configurations to be
deployed, given that testing all possible configurations is in-
feasible. A ctest is a parameterized test. But ctests differ from
traditional parameterized unit tests (PUTs) [57, 58] in goal,
parameter source, and generation method. The goal of PUTs
is to allow developers rerun the same test against different
inputs, to cover more program paths. The goal of ctests is to
connect production system configurations to software tests,
to find failure-inducing configuration changes. The inputs
to PUTs are either specified by developers or automatically
generated by symbolic execution, but the inputs to ctests are
read from the system configuration files or diffs.

9 Conclusion
This paper proposes ctests to connect software testing with
production system configurations to enable detecting failure-
inducing configurations during testing. We present how to
generate ctests from existing software tests that are abun-
dant in mature cloud systems. We show that ctests are ef-

fective in detecting real-world failure-inducing configura-
tions, including both misconfigurations and dormant soft-
ware bugs exposed by valid configuration changes. Our
goal of ctests is to make testing of configuration changes
a key component of configuration management and fill the
missing piece in the practice of treating configuration as
code. We have made all the code and datasets available at:
https://github.com/xlab-uiuc/openctest.

Acknowledgement
We thank the anonymous reviewers and our shepherd, Haryadi
Gunawi, for their insightful comments and feedback. We
thank Darko Marinov, Lalith Suresh, Neil Zhao, Madhusudan
Parthasarathy, Yongle Zhang, David Chou, and Justin Meza
for the invaluable discussions. We thank Qingrong Chen, An-
drew Yoo, Angello Astorga, Liia Butler, and Jonathan Osei-
Owusu for helping proofread the paper. This work was funded
in part by CCF-1816615, CCF-2029049, CNF-1956007, CCF-
2019277, a Facebook Distributed Systems Research award,
Microsoft Azure credits, and Google Cloud credits.

References
[1] ALLUXIO-3402. Backward compatibility for enum-

typed configuration. https://alluxio.atlassian.net/
browse/ALLUXIO-3402, 2020.

[2] ALLUXIO GITHUB ISSUE #9810. Alluxio worker fails
to start when using multiple storage media in single
tier on EMR. https://github.com/Alluxio/alluxio/
issues/9810, 2019.

[3] ATTARIYAN, M., CHOW, M., AND FLINN, J. X-ray: Au-
tomating Root-Cause Diagnosis of Performance Anomalies
in Production Software. In Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation
(OSDI’12) (October 2012).

[4] ATTARIYAN, M., AND FLINN, J. Automating Configuration
Troubleshooting with Dynamic Information Flow Analysis. In
Proceedings of the 9th USENIX Conference on Operating Sys-
tems Design and Implementation (OSDI’10) (October 2010).

[5] BARROSO, L. A., HÖLZLE, U., AND RANGANATHAN, P. The
Datacenter as a Computer: Designing Warehouse-Scale Ma-
chines. Morgan and Claypool Publishers, 2018.

[6] BASET, S., SUNEJA, S., BILA, N., TUNCER, O., AND ISCI,
C. Usable Declarative Configuration Specification and Valida-
tion for Applications, Systems, and Cloud. In Proceedings of
the 18th ACM/IFIP/USENIX Middleware Conference (Middle-
ware’17), Industrial Track (December 2017).

[7] Bazel: a fast, scalable, multi-language and extensible build
system. https://bazel.build/, 2020.

[8] BELL, J., LEGUNSEN, O., HILTON, M., ELOUSSI, L., YUNG,
T., AND MARINOV, D. DeFlaker: Automatically Detecting
Flaky Tests. In In Proceedings of the 40th International Con-
ference on Software Engineering (ICSE’18) (May 2018).

[9] BEYER, B., MURPHY, N. R., RENSIN, D. K., KAWAHARA,
K., AND THORNE, S. Site Reliability Workbook: Practical
Ways to Implement SRE. O’Reilly Media Inc., August 2018.

748 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/xlab-uiuc/openctest
https://alluxio.atlassian.net/browse/ALLUXIO-3402
https://alluxio.atlassian.net/browse/ALLUXIO-3402
https://github.com/Alluxio/alluxio/issues/9810
https://github.com/Alluxio/alluxio/issues/9810
https://bazel.build/

[10] BHAGWAN, R., KUMAR, R., MADDILA, C. S., AND PHILIP,
A. A. Orca: Differential Bug Localization in Large-Scale
Services. In Proceedings of the 13th USENIX Conference
on Operating Systems Design and Implementation (OSDI’18)
(October 2018).

[11] Buck: A fast build tool. https://buck.build/, 2020.
[12] CHEN, Q., WANG, T., LEGUNSEN, O., LI, S., AND XU, T.

Understanding and Discovering Software Configuration De-
pendencies in Cloud and Datacenter Systems. In In Proceed-
ings of the 2020 ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software
Engineering (ESEC/FSE’20) (November 2020).

[13] CUI, W., GE, X., KASIKCI, B., NIU, B., SHARMA, U.,
WANG, R., AND YUN, I. REPT: Reverse Debugging of Fail-
ures in Deployed Software. In Proceedings of the 13th USENIX
Conference on Operating Systems Design and Implementation
(OSDI’18) (October 2018).

[14] Docker Hub. https://www.docker.com/products/
docker-hub, 2020.

[15] FOWLER, M. Eradicating Non-Determinism in
Tests. https://martinfowler.com/articles/
nonDeterminism.html, April 2011.

[16] Gradle Build Tool. https://gradle.org/, 2020.
[17] GRAVES, T. L., HARROLD, M. J., KIM, J.-M., PORTER, A.,

AND ROTHERMEL, G. An Empirical Study of Regression
Test Selection Techniques. ACM Transactions on Software
Engineering and Methodology 10, 2 (April 2001), 184–208.

[18] GUNAWI, H. S., HAO, M., LEESATAPORNWONGSA, T.,
PATANA-ANAKE, T., DO, T., ADITYATAMA, J., ELIAZAR,
K. J., LAKSONO, A., LUKMAN, J. F., MARTIN, V., AND SA-
TRIA, A. D. What bugs live in the cloud? a study of 3000+
issues in cloud systems. In Proceedings of the 5th ACM Sym-
posium on Cloud Computing (SoCC’14) (November 2014).

[19] GUNAWI, H. S., HAO, M., SUMINTO, R. O., LAKSONO, A.,
SATRIA, A. D., ADITYATAMA, J., AND ELIAZAR, K. J. Why
Does the Cloud Stop Computing? Lessons from Hundreds of
Service Outages. In Proceedings of the 7th ACM Symposium
on Cloud Computing (SoCC’16) (October 2016).

[20] HADOOP-10508. RefreshCallQueue fails when autho-
rization is enabled. https://issues.apache.org/jira/
browse/HADOOP-10508, 2014.

[21] HBASE-22559. [RPC] set guard against
CALL_QUEUE_HANDLER_FACTOR_CONF_KEY.
https://issues.apache.org/jira/browse/HBASE-
22559, 2019.

[22] HBASE-23962. Improving the documentation for
‘hbase.regionserver.hlog.reader, writer.impl‘. https://
issues.apache.org/jira/browse/HBASE-23962, 2020.

[23] HDFS-15124. Crashing bugs in NameNode when using a
valid configuration for ‘dfs.namenode.audit.loggers‘. https:
//issues.apache.org/jira/browse/HDFS-15124,
2020.

[24] HDFS-15250. Setting ‘dfs.client.use.datanode.hostname‘
to true can crash the system because of unhandled Unre-
solvedAddressException. https://issues.apache.org/
jira/browse/HDFS-15250, 2020.

[25] HDFS-7684. The host:port settings of the daemons should be
trimmed before use. https://issues.apache.org/jira/
browse/HDFS-7684, 2015.

[26] HDFS-7727. Check and verify the auto-fence settings to
prevent failures of auto-failover. https://issues.apache.
org/jira/browse/HDFS-7727, 2015.

[27] HUANG, P., BOLOSKY, W. J., SIGH, A., AND ZHOU, Y. Con-
fValley: A Systematic Configuration Validation Framework for
Cloud Services. In Proceedings of the 10th ACM European
Conference in Computer Systems (EuroSys’15) (April 2015).

[28] HUO, C., AND CLAUSE, J. Improving Oracle Quality by De-
tecting Brittle Assertions and Unused Inputs in Tests. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (FSE’14) (November
2014).

[29] IVANKOVIĆ, M., PETROVIĆ, G., JUST, R., AND FRASER,
G. Code Coverage at Google. In Proceedings of the 27th
ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ES-
EC/FSE’19) (August 2019).

[30] KASIKCI, B., SCHUBERT, B., PEREIRA, C., POKAM, G., AND
CANDEA, G. Failure Sketching: A Technique for Automated
Root Cause Diagnosis of In-Production Failures. In Proceed-
ings of the 25th ACM Symposium on Operating System Princi-
ples (SOSP’15) (October 2015).

[31] KELLER, L., UPADHYAYA, P., AND CANDEA, G. ConfErr: A
Tool for Assessing Resilience to Human Configuration Errors.
In Proceedings of the 38th IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN’08) (June
2008).

[32] LI, S., LI, W., LIAO, X., PENG, S., ZHOU, S., JIA, Z., AND
WANG, T. ConfVD: System Reactions Analysis and Evalua-
tion Through Misconfiguration Injection. IEEE Transactions
on Reliability 67, 4 (December 2018), 1393–1405.

[33] LILLACK, M., KÄSTNER, C., AND BODDEN, E. Tracking
Load-time Configuration Options. IEEE Transactions on Soft-
ware Engineering (TSE) 44, 12 (December 2018), 1269–1291.

[34] LIU, H., LU, S., MUSUVATHI, M., AND NATH, S. What bugs
cause production cloud incidents? In Proceedings of the 16th
Workshop on Hot Topics in Operating Systems (HotOS’19)
(May 2019).

[35] MAURER, B. Fail at Scale: Reliability in the Face of Rapid
Change. Communications of the ACM 58, 11 (November 2015),
44–49.

[36] Apache Maven. http://maven.apache.org/, 2020.

[37] MEDEIROS, F., KÄSTNER, C., RIBEIRO, M., GHEYI, R., AND
APEL, S. A Comparison of 10 Sampling Algorithms for Con-
figurable Systems. In Proceedings of the 38th International
Conference on Software Engineering (ICSE’16) (May 2016).

[38] MEHTA, S., BHAGWAN, R., KUMAR, R., ASHOK, B.,
BANSAL, C., MADDILA, C., BIRD, C., ASTHANA, S., AND
KUMAR, A. Rex: Preventing Bugs and Misconfiguration in
Large Services using Correlated Change Analysis. In Proceed-
ings of the 17th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’20) (February 2020).

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 749

https://buck.build/
https://www.docker.com/products/docker-hub
https://www.docker.com/products/docker-hub
https://martinfowler.com/articles/nonDeterminism.html
https://martinfowler.com/articles/nonDeterminism.html
https://gradle.org/
https://issues.apache.org/jira/browse/HADOOP-10508
https://issues.apache.org/jira/browse/HADOOP-10508
https://issues.apache.org/jira/browse/HBASE-22559
https://issues.apache.org/jira/browse/HBASE-22559
https://issues.apache.org/jira/browse/HBASE-23962
https://issues.apache.org/jira/browse/HBASE-23962
https://issues.apache.org/jira/browse/HDFS-15124
https://issues.apache.org/jira/browse/HDFS-15124
https://issues.apache.org/jira/browse/HDFS-15250
https://issues.apache.org/jira/browse/HDFS-15250
https://issues.apache.org/jira/browse/HDFS-7684
https://issues.apache.org/jira/browse/HDFS-7684
https://issues.apache.org/jira/browse/HDFS-7727
https://issues.apache.org/jira/browse/HDFS-7727
http://maven.apache.org/

[39] MUKELABAI, M., NEŠIĆ, D., MARO, S., BERGER, T., AND
STEGHÖFER, J.-P. Tackling Combinatorial Explosion: A
Study of Industrial Needs and Practices for Analyzing Highly
Configurable Systems. In Proceedings of the 33rd ACM/IEEE
International Conference on Automated Software Engineering
(ASE’18) (September 2018).

[40] NAGARAJA, K., OLIVEIRA, F., BIANCHINI, R., MARTIN,
R. P., AND NGUYEN, T. D. Understanding and Dealing with
Operator Mistakes in Internet Services. In Proceedings of the
6th USENIX Conference on Operating Systems Design and
Implementation (OSDI’04) (December 2004).

[41] NARLA, C., AND SALAS, D. Hermetic Servers. https:
//testing.googleblog.com/2012/10/hermetic-
servers.html, October 2012. Google Testing Blog.

[42] OPPENHEIMER, D., GANAPATHI, A., AND PATTERSON, D. A.
Why Do Internet Services Fail, and What Can Be Done About
It? In Proceedings of the 4th USENIX Symposium on Internet
Technologies and Systems (USITS’03) (March 2003).

[43] PALATIN, N., LEIZAROWITZ, A., SCHUSTER, A., AND
WOLFF, R. Mining for Misconfigured Machines in Grid Sys-
tems. In Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining
(KDD’06) (August 2006).

[44] POTHARAJU, R., CHAN, J., HU, L., NITA-ROTARU, C.,
WANG, M., ZHANG, L., AND JAIN, N. ConfSeer: Leveraging
Customer Support Knowledge Bases for Automated Miscon-
figuration Detection. In Proceedings of the 35th International
Conference on Very Large Data Bases (VLDB’15) (August
2015).

[45] QU, X. Configuration Aware Prioritization Techniques in
Regression Testing. In Proceedings of the 31st International
Conference on Software Engineering (ICSE’09) (May 2009).

[46] RABKIN, A., AND KATZ, R. Precomputing Possible Configu-
ration Error Diagnosis. In Proceedings of the 26th IEEE/ACM
International Conference on Automated Software Engineering
(ASE’11) (November 2011).

[47] RABKIN, A., AND KATZ, R. Static Extraction of Program
Configuration Options. In Proceedings of the 33rd Interna-
tional Conference on Software Engineering (ICSE’11) (May
2011).

[48] RABKIN, A. S. Using Program Analysis to Reduce Misconfig-
uration in Open Source Systems Software. PhD thesis, Univer-
sity of California, Berkeley, 2012.

[49] SANTOLUCITO, M., ZHAI, E., DHODAPKAR, R., SHIM, A.,
AND PISKAC, R. Synthesizing Configuration File Specifica-
tions with Association Rule Learning. In Proceedings of 2017
ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’17) (October
2017).

[50] SANTOLUCITO, M., ZHAI, E., AND PISKAC, R. Probabilistic
Automated Language Learning for Configuration Files. In
Proceedings of the 28th International Conference on Computer
Aided Verification (CAV’16) (July 2016).

[51] SAVOIA, A. Code coverage goal: 80% and no
less! https://testing.googleblog.com/2010/07/

code-coverage-goal-80-and-no-less.html, July 2010.
Google Testing Blog.

[52] SAVOR, T., DOUGLAS, M., GENTILI, M., WILLIAMS, L.,
BECK, K., AND STUMM, M. Continuous Deployment at Face-
book and OANDA. In Proceedings of the IEEE/ACM 38th
International Conference on Software Engineering (ICSE’16)
(May 2016).

[53] SHERMAN, A., LISIECKI, P., BERKHEIMER, A., AND WEIN,
J. ACMS: Akamai Configuration Management System. In
Proceedings of the 2nd USENIX Symposium on Networked
Systems Design and Implementation (NSDI’05) (May 2005).

[54] SHIEBER, J. Facebook blames a server config-
uration change for yesterday’s outage. https:
//techcrunch.com/2019/03/14/facebook-blames-
a-misconfigured-server-for-yesterdays-outage/,
March 2019.

[55] TANG, C., KOOBURAT, T., VENKATACHALAM, P., CHAN-
DER, A., WEN, Z., NARAYANAN, A., DOWELL, P., AND
KARL, R. Holistic Configuration Management at Facebook. In
Proceedings of the 25th ACM Symposium on Operating System
Principles (SOSP’15) (October 2015).

[56] THE APACHE HBASE REFERENCE GUIDE. Default Configu-
ration. https://hbase.apache.org/book.html#hbase_
default_configurations, 2020.

[57] TILLMANN, N., AND SCHULTE, W. Parameterized Unit Tests.
In Proceedings of the 10th European Software Engineering
Conference Held Jointly with 13th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering
(ESEC/FSE’05) (September 2005).

[58] TILLMANN, N., AND SCHULTE, W. Unit Tests Reloaded:
Parameterized Unit Testing with Symbolic Execution. IEEE
Software 23, 4 (July 2006), 38–47.

[59] TUNCER, O., BILA, N., ISCI, C., AND COSKUN, A. K. Con-
fEx: An Analytics Framework for Text-Based Software Config-
urations in the Cloud. Tech. Rep. RC25675 (WAT1803-107),
IBM Research, March 2018.

[60] WACKER, M. Just Say No to More End-to-End
Tests. https://testing.googleblog.com/2015/04/
just-say-no-to-more-end-to-end-tests.html, April
2015. Google Testing Blog.

[61] WANG, H. J., PLATT, J. C., CHEN, Y., ZHANG, R., AND
WANG, Y.-M. Automatic Misconfiguration Troubleshooting
with PeerPressure. In Proceedings of the 6th USENIX Con-
ference on Operating Systems Design and Implementation
(OSDI’04) (December 2004).

[62] WANG, Y.-M., VERBOWSKI, C., DUNAGAN, J., CHEN, Y.,
WANG, H. J., YUAN, C., AND ZHANG, Z. STRIDER: A
Black-box, State-based Approach to Change and Configuration
Management and Support. In Proceedings of the 17th Large
Installation Systems Administration Conference (LISA’03) (Oc-
tober 2003).

[63] WHITAKER, A., COX, R. S., AND GRIBBLE, S. D. Configura-
tion Debugging as Search: Finding the Needle in the Haystack.
In Proceedings of the 6th USENIX Conference on Operating
Systems Design and Implementation (OSDI’04) (December
2004).

750 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://testing.googleblog.com/2012/10/hermetic-servers.html
https://testing.googleblog.com/2012/10/hermetic-servers.html
https://testing.googleblog.com/2012/10/hermetic-servers.html
https://testing.googleblog.com/2010/07/code-coverage-goal-80-and-no-less.html
https://testing.googleblog.com/2010/07/code-coverage-goal-80-and-no-less.html
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage/
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage/
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage/
https://hbase.apache.org/book.html#hbase_default_configurations
https://hbase.apache.org/book.html#hbase_default_configurations
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html
https://testing.googleblog.com/2015/04/just-say-no-to-more-end-to-end-tests.html

[64] WONG, W. E., GAO, R., LI, Y., ABREU, R., AND WOTAWA, F.
A Survey on Software Fault Localization. IEEE Transactions
on Software Engineering (TSE) 42, 8 (August 2016), 707–740.

[65] XIANG, C., HUANG, H., YOO, A., ZHOU, Y., AND PASUPA-
THY, S. PracExtractor: Extracting Configuration Good Prac-
tices from Manuals to Detect Server Misconfigurations. In
Proceedings of the 2020 USENIX Annual Technical Confer-
ence (ATC’20) (July 2020).

[66] XIANG, C., WU, Y., SHEN, B., SHEN, M., HUANG, H., XU,
T., ZHOU, Y., MOORE, C., JIN, X., AND SHENG, T. Towards
Continuous Access Control Validation and Forensics. In Pro-
ceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security (CCS’19) (November 2019).

[67] XU, T., JIN, X., HUANG, P., ZHOU, Y., LU, S., JIN, L., AND
PASUPATHY, S. Early Detection of Configuration Errors to
Reduce Failure Damage. In Proceedings of the 12th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI’16) (November 2016).

[68] XU, T., AND MARINOV, D. Mining Container Image Repos-
itories for Software Configurations and Beyond. In In Pro-
ceedings of the 40th International Conference on Software En-
gineering (ICSE’18), New Ideas and Emerging Results (May
2018).

[69] XU, T., ZHANG, J., HUANG, P., ZHENG, J., SHENG, T.,
YUAN, D., ZHOU, Y., AND PASUPATHY, S. Do Not Blame
Users for Misconfigurations. In Proceedings of the 24th
ACM Symposium on Operating System Principles (SOSP’13)
(November 2013).

[70] XU, T., AND ZHOU, Y. Systems Approaches to Tackling
Configuration Errors: A Survey. ACM Computing Surveys
(CSUR) 47, 4 (July 2015).

[71] YIN, Z., MA, X., ZHENG, J., ZHOU, Y., BAIRAVASUN-
DARAM, L. N., AND PASUPATHY, S. An Empirical Study on
Configuration Errors in Commercial and Open Source Systems.
In Proceedings of the 23rd ACM Symposium on Operating Sys-
tems Principles (SOSP’11) (October 2011).

[72] YOO, S., AND HARMAN, M. Regression Testing Minimisa-
tion, Selection and Prioritization: A Survey. Software Testing,
Verification, and Reliability 22, 2 (March 2012), 67–120.

[73] YUAN, C., LAO, N., WEN, J.-R., LI, J., ZHANG, Z., WANG,
Y.-M., AND MA, W.-Y. Automated Known Problem Diagno-
sis with Event Traces. In Proceedings of the 1st ACM European
Conference on Computer Systems (EuroSys’06) (April 2006).

[74] YUAN, D., LUO, Y., ZHUANG, X., RODRIGUES, G., ZHAO,
X., ZHANG, Y., JAIN, P. U., AND STUMM, M. Simple Testing
Can Prevent Most Critical Failures: An Analysis of Production
Failures in Distributed Data-intensive Systems. In Proceedings
of the 11th USENIX Conference on Operating Systems Design
and Implementation (OSDI’14) (October 2014).

[75] YUAN, D., XIE, Y., PANIGRAHY, R., YANG, J., VERBOWSKI,
C., AND KUMAR, A. Context-based Online Configuration
Error Detection. In Proceedings of 2011 USENIX Annual
Technical Conference (USENIX ATC’11) (June 2011).

[76] ZHANG, G., AND LIU, L. Why Do Migrations Fail and What
Can We Do about It? In Proceedings of the 25th USENIX Large
Installation System Administration Conference (LISA’11) (De-
cember 2011).

[77] ZHANG, J., RENGANARAYANA, L., ZHANG, X., GE, N.,
BALA, V., XU, T., AND ZHOU, Y. EnCore: Exploiting System
Environment and Correlation Information for Misconfiguration
Detection. In Proceedings of the 19th International Confer-
ence on Architecture Support for Programming Languages and
Operating Systems (ASPLOS’14) (March 2014).

[78] ZHANG, S., AND ERNST, M. D. Which Configuration Option
Should I Change? In Proceedings of the 36th International
Conference on Software Engineering (ICSE’14) (May 2014).

[79] ZHANG, Y., RODRIGUES, K., LUO, Y., STUMM, M., AND
YUAN, D. The Inflection Point Hypothesis: A Principled
Debugging Approach for Locating the Root Cause of a Failure.
In Proceedings of the 26th ACM Symposium on Operating
System Principles (SOSP’19) (October 2019).

[80] ZOOKEEPER-2299. NullPointerException in LocalPeer-
Bean for ClientAddress. https://issues.apache.org/
jira/browse/ZOOKEEPER-2299, 2015.

[81] ZOOKEEPER-3721. PR #1266: ZOOKEEPER-3721: Mak-
ing the boolean configuration parameters consistent. https:
//github.com/apache/zookeeper/pull/1266, 2020.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 751

https://issues.apache.org/jira/browse/ZOOKEEPER-2299
https://issues.apache.org/jira/browse/ZOOKEEPER-2299
https://github.com/apache/zookeeper/pull/1266
https://github.com/apache/zookeeper/pull/1266

	Introduction
	Motivation
	Contributions

	Background and Examples
	Ctest Overview
	Ctest Definition
	Ctest Usage
	Creating a Ctest Infrastructure

	Ctest Generation
	Parameterization
	Transformation
	Identifying Parameters Exercised in Tests
	Generating Parameter Sets for Ctests

	Rewriting

	Generating Thousands of Ctests
	Evaluated Systems and their Test Suites
	Ctest Generation Results
	Detecting Bugs and Hidden Constraints
	Rewriting Ctests

	Evaluation of Ctest Effectiveness
	Evaluating Ctests on Real-world Failures
	Effectiveness
	Comparison with State-of-the-Art Techniques

	EvaluatingCtestson DiverseMisconfigurations
	Effectiveness on Injected Misconfigurations
	Time-Budget Analysis

	Evaluating Ctests on Configuration Files
	Ctests Effectiveness on Configuration Files
	Ctest Running Time on Configuration Files

	Discussion and Limitations
	Related Work
	Conclusion

