
Mashup Component Isolation via Server-Side
Analysis and Instrumentation
K. Vikram

kvikram@cs.cornell.edu
Department of Computer Science

Cornell University, Ithaca, NY 14853

Michael Steiner
msteiner@us.ibm.com

IBM T.J. Watson Research Center
19 Skyline Drive, Hawthorne, NY 10532

Abstract—Web 2.0 and mashups provide opportunities for
exciting new applications. However, the security model of the
underlying browser technology is quite inadequate to deal with
the new trust and security issues. In particular, it provides
no good and easy way to isolate mashup components from
each other. While browsers might eventually fix these problem,
this will take its time. One promising approach which works
with current browsers is based on server-side analysis and code
instrumentation.

I. BACKGROUND

Web 2.0 mashups provide exciting new ways to aggregate
information services from multiple providers, and present
them to users. However, given that these services stem from
different and not necessarily mutually trusting providers, it is
clear that such mashups should be built on a sound security
foundation protecting the interests of the various involved
parties such as the providers and the end-user. For example,in
a mashup providing a one-stop car purchase portal combining
information from different dealers and the user’s bank, neither
should dealers be able to modify each others car prices nor
should they be able to spy on a user’s bank account.

Unfortunately, mechanisms offered by current browsers1 are
rather weak and lack clean ways to isolate different client-side
components as well as limit their interaction to tightly control-
lable channels. In particular, the same-origin policy turns out to
be deficient: On the one hand, it is too restrictive as it prevents
safe communication between different sites which often results
in developers using dynamically inserted<script> tags,
e.g., JSONP2, which give the remote side arbitrary control over
the page content. On the other hand, the policy is too weak as
it provides no separation between components from the same
site, even though such information might stem from server-side
aggregation combining sources of different trustworthiness
such as is seen often in Internet portals and advertisement-
sponsored web-pages. Even for situation such as enterprise
portals where arguably information comes from the same trust
domain, the sensitivity of salary data and alike makes security-
in-the-depth a necessity to protect against programming errors
such as cross-site-scripting attacks.

1In the following, we are focusing on core DHTML technologiessuch as
(X)HTML, CSS, DOM and JavaScript. In particular, we do not address Java
Applets and Flash which are either rarely used or are proprietary. Besides,
neither of their secure models provide the answer for the problems identified.

2http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/

While secure solutions often could be built in principle,
the involved subtleties are beyond what we can reasonably
expect from the usual mashup developers. What we need
are new high-level and fail-safe programming abstraction and
corresponding isolation mechanisms for securely separating
components of a mash-up. While eventually browsers might
offer such abstractions natively based on proposals such
as the W3C HTML component model3 or Doug Crockford’s
<module> tag4, this will take a while. Therefore, it seems
wise to explore alternatives which work with current browsers.

II. SERVER-SIDE ANALYSIS AND INSTRUMENTATION

One promising way to get such a foundation for component
separation is based on server-side static analysis and code
instrumentation. While code instrumentation has been used
in much prior work, e.g., IRM [1], only recently did it get
targeted to JavaScript [2]: BrowserShield [3] used JavaScript
code interposition to prevent exploitation of browser vul-
nerabilities whereas Yu et al. [4] explored the theoretical
foundations. Independent of above-mentioned work, we were
exploring similar techniques focusing on JSR 168 [5] portlets.
The security model we want to enforce is isolation of portlets
from each other. More specifically, portlets and their associated
JavaScript code should be contained to disjoint well-identified
DOM subtrees.

JavaScript poses a number of new challenges due to its
dynamic nature which allows to modify virtually any code and
to evaluate — using a multitude of ways — arbitrary code at
runtime. Furthermore, to address the browser environment one
also has to incorporate the Document Object Model (DOM)5,
which in turn also adds additional ways for self-modification
of code and data. This makes it hard to analyze arbitrary code
and to make interposition code tamper-proof.

Our approach to tackle portlet isolation roughly comprises
the following steps: (1) For each portlet fragment, we checka
number of syntactic constraints6 and mark each fragment with

3http://www.w3.org/TR/NOTE-HTMLComponents
4http://json.org/module.html
5http://www.w3.org/DOM/
6For example, two malicious portlets are not prevented by JSR186 from

wrapping a form element of a third good portlet with another form and hence
hijack information submitted from the good portlet, even when JavaScript is
disabled. This attack is possible with at least one commercial portal server.

http://bob.pythonmac.org/archives/2005/12/05/remote-json-jsonp/
http://www.w3.org/TR/NOTE-HTMLComponents
http://json.org/module.html
http://www.w3.org/DOM/


its corresponding security domain by wrapping it in a special
div elementportlet-root; (2) After aggregation of the
portlet fragments into a whole HTML page, we convert the
page into an equivalent JavaScript program, i.e., one which
renders the exact same content; (3) Together with an object
model of the browser’s DOM, also defined in JavaScript, we
perform a static analysis of isolation and integrity constraints
using a predecessor of IBM Research’s WALA7 libraries; (4)
Finally, we rewrite certain code constructs, e.g., to separate
name spaces. Converting everything into JavaScript allowsfor
a unified analysis approach. For instance, having converted
the HTML into equivalent JavaScript, the analysis engine
automatically constructs an object model for the DOM tree
for the page, which is used to perform precise alias analysis
of DOM objects. Uniformly using JavaScript also enables
easy customizations to particular browsers which are usually
not 100% standards-conformant and provide various security-
sensitive extensions.

Two examples of constraints we perform in step (3) are the
restriction of DOM tree walking of a portlet to its domain and
the protection of the integrity of system code.

To restrict tree-walking, we perform a pointer analysis on
all operations that climb up in the tree — descending is
always safe – and make sure that the points-to set does
not include theportlet-root element. Together with the
constraints guaranteed by construction in step (1), the name
space separation ensured by step (4), this will guarantee the
invariant that a portlet can only access its own DOM elements.

Of course, above algorithm relies also on the integrity of the
system libraries which brings us to the second example of anal-
ysis. To maintain code integrity, we have to assure that no user
code can redefine system code or objects. Furthermore, we
have to make sure that system functions only receive objects
as parameters which meet the expectation, i.e., the parameter
to the methodappendChild of DOMNode must be a proper
DOMNode generated byDOMDocument.createElement
or equivalent. This is necessary to prevent a rogue ele-
ment to subvert the browser “inside-out”. To achieve this,
an information-flow lattice has to be enforced to prevent
user information from flowing into system code. Obviously,
given the multiple ways JavaScript allows to alias functions
and variables, we have to be careful to do appropriate alias
analysis.

III. C HALLENGES

So far we mostly side-stepped the issue of runtime code
evaluation: We restrict executed code in event handlers to
calls to statically fixed functions and baneval in its various
incarnations.eval is mostly unnecessary and indicates the
presences of bad coding; even for handling of JSON8 objects,
a common use-case foreval, a JSON parser instead ofeval
is preferable from a security-in-the-depth perspective. Such a
restricted model will require changes to existing code and we
might have to relax the model in the future to get acceptability.

7http://wala.sourceforge.net/
8http://www.json.org/

Currently, we also do not allow for any collaboration among
portlets. This is clearly not sufficient for mashups. While
one can imagine extending this approach to implement fine-
grained access control on individual DOM resources and
stack-introspection, similar to Java, we conjecture that this is
much too complex to be usable to ordinary programmers. Our
view is that communication should be via declared and typed
message passing interfaces and DOM resources (sub-trees)
should stay completely isolated. A client-side variant similar
to the event mechanisms allowing portlets to communicate on
the server-side defined in the upcoming revision of JSR 168 [6]
could provide an good programming model also for mashup
components. Regarding access policy, RBAC or capabilities
seem suitable choices.

Finally, of high importance of course is also performance.
Generic code rewriting has a high overhead, e.g., Browser-
Shield [3] reports a slowdown of 20x-400x. While static
analysis and a restricted programming model reduces the
complexity of code rewriting, it can increase drastically the
computation cost on the server side. It is an interesting research
question whether the analysis could be done directly on the
generation code, e.g., JSP or PHP. A potential hybrid approach
would be for the code generation to generate additional infor-
mation facilitation the analysis akin to proof carrying code
[7]. Basing the original code generation on a more restricting
language, e.g, providing certain type-safety as in GWT9 could
help towards that goal. This would also be helpful if the
component is generated remotely, e.g., via WSRP [8].

IV. A CKNOWLEDGEMENTS

We would like to thank Julian Dolby for providing the
generic JavaScript static analysis functionality and helping us
getting around in the framework.

REFERENCES

[1] Úlfar Erlingsson and F. B. Schneider, “IRM enforcement of Java stack
inspection,” in Proceedings of the IEEE Symposium on Research in
Security and Privacy, IEEE Computer Society, Technical Committee on
Security and Privacy. Oakland, CA: IEEE Computer Society Press, May
2000, pp. 246–255.

[2] ECMA, “ECMAScript language specification,” Dec. 1999, eCMA Stan-
dard 262, 3rd Edition.

[3] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S. Esmeir,
“BrowserShield: Vulnerability-driven filtering of dynamic HTML,” in
Proceedings of the Sixth Symposium on Operating Systems Design and
Implementation, Nov. 2006.

[4] D. Yu, A. Chander, N. Islam, and I. Serikov, “JavaScript instrumentation
for browser security,” in34st Symposium on Principles of Programming
Languages (POPL). ACM Press, Jan. 2007, pp. 237–249.

[5] A. Abdelnur and S. Hepper, “Java Portlet specification: Version 1.0,” Java
Community Process, Java Specification Requests 168, Oct. 2003.

[6] S. H. (Editor), “Java Portlet specification: Version 2.0,” Java Community
Process, Java Specification Requests 286, Feb. 2007, early draft 2, rev.
12.

[7] G. C. Necula, “Proof-carrying code,” in24th Symposium on Principles
of Programming Languages (POPL). Paris, France: ACM Press, Jan.
1997, pp. 106–119.

[8] A. Kropp, C. Leue, and R. Thompson, “Web Services for Remote Portlets
Specification,” OASIS, OASIS Standard, Aug. 2003, version 1.0.

9http://code.google.com/webtoolkit/

http://wala.sourceforge.net/
http://www.json.org/
http://code.google.com/webtoolkit/

	Background
	Server-Side Analysis and Instrumentation
	Challenges
	Acknowledgements
	References

