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Abstract. This paper presents a ray tracer that facilitates near-interactive scene
editing with incremental rendering; the user can edit the scene both by manip-
ulating objects and by changing the viewpoint. Our system uses object-space
radiance interpolants to accelerate ray tracing by approximating radiance, while
bounding error. We introduce a new hierarchical data structure, the ray seg-
ment tree (RST), which tracks the dependencies of radiance interpolants on re-
gions of world space. When the scene is edited, affected interpolants are rapidly
identified— typically in 0.1 seconds—by traversing these ray segment trees. The
affected interpolants are updated and used to re-render the scene with a 3 to 4�
speedup over the base ray tracer, even when the viewpoint is changed. Although
the system does no pre-processing, performance is better than for the base ray
tracer even on the first rendered frame.
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1 Introduction

Ray tracing is a popular technique for producing high-quality imagery. Ray tracers typ-
ically support specular and diffuse reflectance functions, and general geometric primi-
tives, producing high quality view-dependent images. However, this quality is achieved
by compromising interactivity; ray tracing is not commonly used in interactive applica-
tions such as editing and viewing because of the high cost of computing each frame.

In recent years, strides have been made in facilitating interactive scene manipula-
tion with ray tracing. Several researchers have developed ray tracers supporting scene
editing that incrementally render parts of the scene that might be affected by a change.
Cook’s shade trees [4] maintain a symbolic evaluation of the local illumination at each
pixel of a frame. When an object’s material properties are changed, if the shade trees
remain the same, they are re-evaluated with the new material properties. Séquin and
Smyrl [9] extend these shade trees to include reflections and refractions. Their trees
represent the entire radiance contribution by the scene at each pixel. In their system,
changes to an object’s material properties (e.g., color, specular coefficient) are the only
user-specified edits permitted. Murakami and Hirota [8] and Jevans [7] extend these
techniques to support geometry changes (e.g., object is moved) by associating rays
with the voxels they traverse. A scene change affects voxels and their associated rays.

More recently, Brière and Poulin [3] introduced a system that maintains color trees
and ray trees to separately accelerate updates to object attributes and geometry. At-
tribute changes involve adjustments to an object’s color, reflection coefficient etc., while
geometry changes include changes such as moving an object. Their system reflects at-
tribute changes in about 1-2 seconds, and geometry changes in 10-110 seconds.
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All of the above techniques are pixel-based; that is, additional information is main-
tained for each pixel and used to recompute radiance as the user edits the scene. The
chief drawback of these systems is that they are completely view-dependent; while a
user can edit the scene, he cannot adjust the viewpoint. Also, for high resolution im-
ages, the memory requirements can be large.

Another related area of research is the use of line or ray space to accelerate editing
and rendering in global illumination algorithms. Arvo and Kirk [1] represent bundles
of rays as 5D bounding volumes that are used to accelerate ray-object intersections,
but do not accelerate shading or editing. In the context of editing for radiosity appli-
cations, Dretakkis and Sillion [5] augment the link structure of hierarchical radiosity
with additional line-space information to track links affected by the addition or deletion
of objects. The hierarchical link structure, and hence the implicit line space, makes it
possible to identify affected regions rapidly when an object is edited. Their system is
not pixel-based; therefore, a user can change the viewpoint after an update. However,
their algorithms apply only to radiosity systems for scenes with diffuse materials.

In previous work [2, 11] we presented a system to accelerate ray tracing using
per-object 4D radiance interpolants used to approximate radiance, while guarantee-
ing bounds on error. A radiance interpolant records view-dependent radiance for a set
of rays that intersect an object. The system uses an error predicate to guarantee that the
interpolant approximates radiance for every ray covered by that set of rays to within a
user-specified error bound. For each pixel, the system finds the interpolant that covers
that eye ray, and if it exists, uses it to interpolate radiance. Interpolants are built lazily
and adaptively as needed and stored in 4D trees called linetrees. When the viewpoint
changes, some interpolants from the previous frame are reused. Thus, our system accel-
erates ray tracing while allowing the viewpoint to move; however, objects in the scene
cannot be modified.

In this paper, we present a system that supports interactive scene editing while per-
mitting changes in the viewpoint. Our work draws on the work of Brière and Poulin,
Dretakkis and Sillion, and our previous work on radiance interpolants, while providing
additional functionality. Our system builds radiance interpolants to accelerate render-
ing by approximating radiance. When an object is updated, only a subset of global line
space is affected. We introduce space-efficient hierarchical 5D ray segment trees to
track the regions of ray space that affect an interpolant. When the scene is edited, trees
are traversed to rapidly identify and invalidate the interpolants that are affected by the
edit. When a new frame is rendered from the same or a different viewpoint, interpolants
that are still valid are reused to accelerate rendering.

First, we review 4D per-object interpolants in Section 2. In Section 3, we show how
to augment interpolants to support interactive scene editing, and describe how these
augmented interpolants can be used with global linetrees to track the regions of line
space affected by an interpolant. In Sections 4 and 5, we address the limitations of the
4D global linetrees by using 5D ray segment trees, and explain how these trees can be
used to find all interpolants that might be affected by a scene edit. Finally, we present
results in Section 6, and conclude with a discussion of future work in Section 7.

2 Radiance Interpolants

In this section, we review how 4D radiance interpolants are used to accelerate ray trac-
ing by exploiting spatial coherence, both object and screen-space, and also temporal
coherence. The key idea of this system is to accelerate ray tracing by approximating
radiance while guaranteeing error bounds. Every ray intersecting an object has an asso-
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ciated radiance. Assuming that a ray intersects an object, and the object is surrounded
by a transparent medium, the ray can be parameterized using four coordinates. The
space of all such rays is the four-dimensional space of directed lines, called line space.
A radiance interpolant represents the radiance of an object over a region of line space;
the interpolant is said to cover that region of line space. The region of line space cov-
ered by an interpolant is a four-dimensional hypercube, and every ray covered by the
interpolant lies inside the hypercube. The interpolant records a radiance sample for
each of the sixteen vertices of the hypercube. The radiance associated with any ray
covered by the interpolant is then approximated by quadrilinearly interpolating these
radiance samples. When radiance is coherent, radiance interpolants are an efficient way
to compute and represent the radiance of a scene.

Radiance interpolants have two important properties for interactive scene editing:

� Interpolants do not depend on the viewpoint; therefore, the viewpoint can be
changed freely without invalidating them. As long as rays from the current view-
point are covered by an interpolant, the interpolant can be reused.

� An update to the radiance samples stored in an interpolant effectively updates ra-
diance for all rays covered by that interpolant. Thus, interpolants are an efficient
way to structure the update of radiance information when a scene is edited.

2.1 Ray parameterization

h + 2w

l +
 2

w

h

l

b

a
d

c

(a,b)
(c,d)

w

Fig. 1. Ray parameterization in 3D. The ray is parameterized by (a; b; c; d), its intercepts with
the front and back faces of the expanded face pair.

Every ray intersecting an object is parameterized by four coordinates (a; b; c; d),
which are the intercepts that it makes with two parallel faces surrounding that object
(see Figure 1). To completely cover the space of rays that intersect the object, six pairs
of parallel faces are considered. Each face pair is defined by two parallel faces and a
principal direction that is perpendicular to the faces. The principal directions of the six
face pairs are �x̂, �ŷ and �ẑ. Every ray intersecting o is uniquely associated with the
face pair whose principal direction is closest to the ray’s direction; that is, the principal
direction onto which the ray has the maximum positive projection. To ensure that every
ray associated with a face pair intersects both parallel faces, the faces are sized as shown
in Figure 1. Once the face pair associated with a ray is identified, the ray is intersected
with its front and back faces to compute its (a; b) and (c; d) coordinates respectively.
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2.2 4D Radiance Interpolants

When rendering a pixel, the system must be able to find an interpolant (if any) that
covers the eye ray corresponding to that pixel. To accelerate interpolant lookup, inter-
polants are stored in linetrees that are the 4D analogues of octrees. There is a linetree
associated with each face pair of an object. For every eye ray, once the object it inter-
sects is known, an interpolant is found by walking recursively down from the root of the
linetree of the appropriate face pair. The radiance for the eye ray is then quadrilinearly
interpolated using the radiance samples in the interpolant.

Interpolation error arises from discontinuities and non-linearities in the radiance
function. An error predicate is tested to automatically detect both these conditions. An
interpolant is not constructed if the error predicate indicates conservatively that its inter-
polation error would exceed a user-specified bound. The error predicate uses informa-
tion about ray trees [3] to identify the regions of line space that have smoothly varying
radiance that is approximated well by quadrilinear interpolation. The error predicate
ensures that linetrees are subdivided adaptively; interpolants cover large regions of line
space where radiance varies smoothly, and conversely, where radiance changes rapidly,
interpolants cover small regions of line space. Thus, adaptive subdivision of linetrees
prevents erroneous interpolation while allowing reuse when possible. Currently, the
error predicate only supports convex objects, as discussed in Section 7.

Visibility determination at pixels is another important function of the ray tracer and
is needed in order to find the correct interpolant for an eye ray. We use a conservative
algorithm for reprojection of linetree cells to accelerate visibility determination. This
algorithm exploits the temporal frame-to-frame coherence in the user’s viewpoint, while
guaranteeing that the correct visible surface is detected for each pixel. A fast scan-line
algorithm accelerates rendering using the reprojected linetrees. See [2] for details.

This algorithm has the important property that it is entirely on-line; no pre-processing
is necessary to construct radiance interpolants. Radiance interpolants are generated
lazily and adaptively as the scene is rendered from various viewpoints. This on-line
property is useful for interactive applications.

3 Interpolants and Scene Editing

In this section, we describe how to identify interpolants that are affected by an object
edit. First, we present a global four-dimensional parameterization of rays and show
that the region of line space affected by an object edit is a subset of global line space.
We then describe how a hierarchical global linetree can be used to rapidly identify and
invalidate the interpolants affected by an object edit.

3.1 Global Line Space Parameterization

Global line space is the space of all directed lines that intersect the scene. In the pre-
vious section, we presented a four dimensional parameterization of rays intersecting an
object. We use a similar parameterization for rays intersecting the scene, except that
the face pairs (as shown in Figure 1) surround the scene, and w� l�h is the size of the
bounding box of the entire scene. As explained in Section 2, every ray intersecting the
scene is associated with a face pair, and the ray is parameterized by the four intercepts
it makes with the two parallel faces of the face pair. Note that per-object line space
coordinates can be easily transformed into global line space coordinates.

For simplicity, we explain ideas in 2D in this paper; the extension of these ideas to
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3D is straightforward. Each 2D ray is represented by two intercepts (a; c) that it makes
with a pair of parallel 2D line segments; this representation is a 2D analogue of the
ray parameterization in Section 2.1. For example, in Figure 2-(a), the horizontal lines
surrounding the circle represent a 2D face pair for global line space. Four such face
pairs are needed to represent all the rays that intersect the scene.

3.2 Line Space affected by an Object Edit

A basic intuition is that interpolants can be updated efficiently to reflect an object edit
because an object edit affects a contiguous subset of line space, as shown in Figures 2-
(a) and (b). On the left in Figure 2-(a), a circle C in world space, a ray that intersects
C, and its associated face pair are shown. On the right is a Cartesian representation of
2D line space. Every directed line in world space is a point in line space. The set of
rays that intersects the circle in world space corresponds to the interior of a hyperbola
in line space as shown on the right in Figure 2-(a) (See Appendix A for details). When
the circle is edited, the radiance of every ray in the shaded region of line space could
be affected. Therefore, every interpolant that includes a ray in the shaded region should
be updated. If all the rays covered by an interpolant lie outside this hyperbola the
interpolant is not affected and can be reused. In the next section, we explain how to find
the rays covered by an interpolant.
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Fig. 2. When the circle or rectangle are edited, the shaded region of line space (on the right of
the corresponding figures) is affected.

If instead of a circle, a rectangle is edited (shown in Figure 2-(b)), an hourglass-
shaped region (similar to a hyperbola) of line space is affected by the edit. The impor-
tant point is that the region of line space affected by an edit is a well-defined subset
of line space that can be identified efficiently using a hierarchical tree to represent line
space. This is true for object edits in 3D world space (4D line space) as well.

3.3 Interpolant Dependencies

Interpolants are an efficient way to structure the update of radiance when a scene is
changed, since an update to the radiance samples of the interpolant effectively updates
the radiance for all rays covered by the interpolant. In this section, we explain how
interpolants are affected by scene editing.

First we review the concept of ray trees, which are important for understanding
interpolant dependencies. In a Whitted ray tracer [13], when the radiance for a ray is
computed, an associated ray tree can be built that records all the sources of radiance
that contributed to the total radiance of the ray [2, 3, 9]. Each internal node in the
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ray tree corresponds to an intersection of a ray with a surface, and the leaf nodes are
lights. An arc of a ray tree represents a ray segment from a surface to either another
surface or a light. A ray tree node has position-independent and position-dependent
information [3]. The position-independent information includes the object intersected
by the ray, a list of every light that contributes to the radiance at that point, and a list
of every occluder that blocks some light. The position-dependent component includes
the point of intersection of the ray, the normal at that point, texture coordinates (if the
object is textured), and pointers to the reflected and refracted ray trees (if they exist).
These reflected and refracted ray trees are computed recursively. To conserve memory,
the position-independent information in ray trees is shared when possible [2, 3].

In our earlier work [2], the error predicate used the sixteen radiance samples and
their associated ray trees to determine if the interpolant approximates radiance to within
a user-specified error bound over the region of line space that is covered by the inter-
polant. To detect radiance discontinuities, the error predicate requires that the position-
independent components of the sixteen extremal ray trees be the same. Since the ob-
ject associated with the interpolant is convex, every ray covered by the interpolant is
bounded by the extremal rays, even after one or more reflections. An additional shaft-
cull [6] then guarantees that every ray covered by the interpolant also shares the same
position-independent ray tree component.

The sixteen extremal ray trees differ only in their position-dependent information.
Consider one set of sixteen corresponding arcs from the extremal ray trees; each arc is a
ray segment. The corresponding ray segment of every interior ray lies in the 3D volume
bounded by these sixteen ray segments. Therefore, when a scene edit affects that 3D
volume of space, the interpolant should be invalidated to guarantee correctness. We
represent this 3D volume conservatively as a shaft [6]. The set of all shafts represented
by an interpolant’s ray trees is similar to the tunnels used by Brière and Poulin [3],
although in that work ray dependencies are captured only for a fixed viewpoint. In Plate
A, some tunnels associated with interpolants for the three-sphere scene are shown.
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Fig. 3. Rays that affect an interpolant: (a) Light rays, (b) Occluder rays, (c) Reflected rays.

Now we consider the different types of ray-tree arcs and the 3D volumes they cover.
Figure 3 depicts three such arcs, corresponding to unoccluded light rays, occluded light
rays, and reflected rays. In the figure, the ellipse o is the object for which an interpolant
I is built. The interpolant is associated with the face pair shown as two vertical line
segments surrounding o. The dotted lines show the four extremal rays (in 2D) that are
used to build I. The two horizontal lines at the top and bottom of the scene show one
of the face pairs of global line space. The volume that affects each arc (and therefore
affects the interpolant) is shaded in each figure.

In Figure 3-(a), the four extremal rays intersect o, and their radiance is evaluated
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by shooting rays to the light L which is visible to every ray covered by I. Therefore, I
depends on the shaded region shown in the figure. In Figure 3-(b), the light rays for the
interpolant are all occluded by the same occluder b. If b is opaque, I depends only on
the occluder b. If b is transparent, I depends on the shaded region shown in the figure.
In Figure 3-(c), the volume of space that affects the arcs corresponding to reflections in
the interpolant is shaded. Thus, the regions of world space that affect an interpolant can
be determined using the ray trees associated with the extremal rays of the interpolant.
An interpolant can become invalid only if the scene edit affects one of these regions.

3.4 Finding Affected Interpolants using Global Linetrees

Given a scene edit, we want to efficiently identify the interpolants that could be affected
by the edit. We now discuss how global line space can be used to track the regions of
3D space that affect an interpolant. This is similar to the approach taken by Drettakis
and Sillion [5] for radiosity systems.

c0 c1

a0 a1a0 a1

c0 c1

Fig. 4. Global line space for: (a) Light rays, (b) Reflected rays.

When the scene is edited, the edit affects a 3D volume. An interpolant depends on
that 3D volume if any tunnel associated with the interpolant intersects that volume. We
would like to rapidly identify all such tunnels. Each of the tunnel sections is contained
in some region of global line space. This region can be characterized conservatively
by extending the sixteen extremal rays that define the tunnel section until they intersect
the appropriate global face pair. For example, Figures 4-(a) and (b) show this compu-
tation in 2D. In Figure 4-(a), the four extremal rays from the object o to the light L
are extended to intersect a global face pair (shown as horizontal lines surrounding the
scene). The a and c ranges of these intersections are computed. The corresponding
rectangular region in line space, [a0; a1]� [c0; c1], is a conservative characterization of
the volume that affects the interpolant. In the figure, this region of line space is shown
in medium gray. Similarly, in Figure 4-(b), the extremal reflected rays are intersected
with the global face pair and the medium gray region shows the corresponding region
of line space. This characterization is conservative because it covers a larger 3D volume
than its tunnel section. In the next section this characterization is made more precise.

In 4D, each tunnel section of an interpolant is conservatively represented by 8 co-
ordinates (a0; b0; c0; d0) — (a1; b1; c1; d1) that define a 4D bounding box in line space.
The tunnel sections affected by an object edit can be rapidly identified in the following
manner: a linetree is constructed for each face pair of global line space. Each node of
the linetree corresponds to a 4D bounding box in line space. A leaf node in the linetree

7



contains pointers to every interpolant that depends on the region of line space repre-
sented by the node. In other words, for every interpolant included in the linetree node,
the 4D bounding box of the linetree node intersects the 4D bounding box that conser-
vatively represents at least one of the interpolant’s tunnel sections. This hierarchical
linetree can be used to rapidly identify the interpolants affected by an object edit.

4 Interpolants and Ray Segments

The previous section described a data structure that conservatively tracks the regions of
line space that affect an interpolant. However, this representation is too conservative.
In this section, we introduce a 5D parameterization of rays to address this limitation,
and describe ray segment trees that improve on the linetrees of the previous section.

4.1 Limitations of Line Space
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Fig. 5. (a) Line space vs. Ray space, (b) using the extra distance dimension t.

The main disadvantage of the 4D representation of lines is that it is too conserva-
tive. This problem is illustrated in Figure 5-(a), which shows an interpolant for o. The
tunnel section corresponding to reflected rays from o is shown in dark gray, while the
corresponding conservative line space representation is shown in light gray. When the
circles p and q are edited, they intersect the 4D bounding box represented by the tunnel
section. Therefore, o’s interpolant, stored in some leaf of the global linetree, is flagged
as a potential candidate for invalidation. However, o’s interpolant is only affected by
changes in the dark gray region and this invalidation is unnecessary. We address this
problem by introducing an extra parameter t for rays. Intuitively, this parameter repre-
sents the distance along the 4D lines. In Figure 5-(b), the light gray line space region
is bounded by t = t0 and t = t1. Using this extra parameter, o’s interpolant is not
flagged for invalidation when the circles are updated.

4.2 Global ray segment trees

To efficiently identify the interpolants that are affected by an edit, the system main-
tains six global ray segment trees (RSTs). Each RST node stores ten coordinates
(a0; b0; c0; d0; t0) to (a1; b1; c1; d1; t1) that define a 5D bounding box in ray segment
space. The t dimension represents the distance along the principal direction of the face
pair. The front face of the face pair is at t = 0 and the back face is at t = 1. The
root node of the tree spans the region from (0; 0; 0; 0; 0) to (1; 1; 1; 1; 1). When an RST
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node is subdivided, each of its five axes is subdivided simultaneously. Each of the 32
children of the RST node covers the region of 5D ray space that includes all rays from
its front face to its back face. While this branching factor may seem high, the tree is
sparse, keeping memory requirements modest.

Figure 6 shows RST nodes for 2D rays. The parent node from (a 0; c0; t0) to
(a1; c1; t1) is shown on the top left, and a-c-t ray segment space (a three dimensional
unit cube) is shown on the top right. The parent represents all rays entering its front
face and leaving its back face. When the parent is subdivided, the rays represented by
its eight children are as shown. Children 0 through 3 correspond to the ray segments
that start at the front face at t = t0 and end at the middle face at t = t0+t1

2
. Similarly,

children 4 through 7 start at the middle face and end at t = t 1. When the parent is
subdivided, truncated segments of the parent’s rays (shown in black in the figure) lie in
different children.
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Fig. 6. Subdivision of Ray Segment Trees.

4.3 Inserting interpolants in the RSTs

RSTs are populated with interpolants by a recursive insertion algorithm that starts from
the root RST node. For each tunnel section of the interpolant, its sixteen extremal
rays are intersected with the current RST node to compute a 5D bounding box that
includes the tunnel section. If this bounding box intersects a leaf RST node, a pointer
to the interpolant is inserted in the node. For a non-leaf node, the algorithm recursively
inserts the interpolant into the children of the RST node that intersect its 5D bounding
box. As described in Section 3, the leaf node in an RST stores a list of pointers to every
interpolant that depends on the region of ray segment space covered by that node and a
list of the 5D bounding boxes of the interpolant’s corresponding tunnel section.

5 Using Ray Segment Trees

In this section, we describe how interpolants affected by an object edit are rapidly iden-
tified and invalidated using RSTs. Brière and Poulin [3] describe two main categories of
object edits: attribute changes (including changes to an object’s color, specular or dif-
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fuse coefficient), and geometry changes (including insertion or deletion of an object).
In their work, attribute and geometry changes are handled using different mechanisms,
since attribute changes can be dealt with rapidly, while geometry changes require more
time. In our work, RSTs permit rapid identification of affected interpolants; therefore,
we use the same mechanism to identify affected interpolants for both types of changes.

5.1 Identifying Affected Interpolants

When an object is edited, we use 3D shafts [6] to identify every region of ray seg-
ment space, and therefore every associated interpolant, that is affected by the edit. The
identification algorithm is recursive and starts at each of the six root RST nodes with a
world-space region v (the object’s bounding box) that is affected by an object edit. For
each RST node visited recursively, a shaft is built enclosing the 3D volume between the
front and back face of the node. The shaft consists of six planes: four planes from each
edge of the node’s front face to the corresponding edge of its back face, and two planes
that correspond to its front and back faces. If the shaft intersects v, the children of the
RST node are recursively tested for intersection with v. When the shaft of a RST node
does not intersect v, the descendants of that node are not visited. If the RST node is a
leaf, it has a list of pointers to interpolants that depend on the 3D volume represented
by the node’s shaft, and the 5D bounding boxes of their corresponding tunnel sections.
A 3D shaft is constructed for each such tunnel section. If that shaft intersects v, the
interpolant is flagged as a candidate for update. Our approach is similar to the shafts
presented by Drettakis and Sillion [5], though they implicitly use the radiosity link
structure to construct shafts. In [3], shafts are constructed for pixel-based rays. Plate A
shows the interpolants that depend on the reflective mirror for the museum scene shown
in Plate B.

One class of affected interpolants (depicted in Figure 3-(c)), can be identified rapidly
using a different mechanism. While building an interpolant for o, if a light is occluded
by an opaque object b, that tunnel section of the interpolant can only be affected when
b moves. Therefore, we maintain a separate list of interpolants for occluders; when b is
edited, its list of interpolants is marked for invalidation.

5.2 Interpolant Invalidation

The algorithm to identify affected interpolants is conservative: it might flag interpolants
for update even if they are not affected by an object edit, because shaft culling against
the edited object’s bounding box is conservative. Therefore, we perform an additional
check on the position-independent component of the interpolant’s ray tree to determine
if the interpolant is affected by the edit. For example, when o’s color is edited, the edit
affects an interpolant I if either I is o’s interpolant, or I depends on o indirectly, for
example through reflections. For a geometry change, such as the deletion of an object
o, an interpolant I should be invalidated if I is o’s interpolant, or o appears in the ray
tree of I , for example, as an occluder or a reflection. Note that, as in [3], we treat an
object movement as a deletion from its old position and an insertion to its new position.

When an interpolant is invalidated, the memory allocated to the corresponding ob-
ject’s linetree node is automatically garbage collected and the node itself is marked for
deletion. If recursively, all that linetree node’s siblings are also invalid, their space is re-
claimed, and therefore, the parent is reclaimed. For example, consider an object o 1 that
blocks the light to another object o2, causing o2’s linetrees to be subdivided around o1’s
shadow. When o1 is deleted, o2’s interpolants are compacted, so that no unnecessary
subdivision of o2’s linetrees takes place around the shadow that no longer exists.
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To support rapid editing for attribute changes, interpolants could be augmented to
include extra information such as the surface normal and point of intersection, for each
of the sixteen extremal rays. Using this extra information, the interpolants could be
updated by computing the difference in radiance due to the change in o’s material prop-
erties. However, this extra position-dependent information increases the memory re-
quirements of interpolants. Therefore, we invalidate interpolants for both attribute and
geometry changes and lazily recompute them as needed.

6 Performance Results

We have extended our accelerated interpolant ray tracer to maintain and use RSTs
for scene editing. The interpolant ray tracer, and the base ray tracer it is compared
with, both implement classical Whitted ray tracing [13] with textures and use the Ward
isotropic local shading model [12]. The system can handle convex primitives such as
cubes, spheres, cylinders, cones, disks and polygons, and CSG union and intersection
operations on these primitives. The base ray tracer contains several standard perfor-
mance optimizations (see [2] for details).

Our timing results were obtained for the museum scene shown in Plate B. The scene
has more than 1100 primitives (a tesselation of these primitives requires about 500k
polygons). All timing results are reported for frames rendered at 1200�900 resolution
on a single 250MHz processor of an SGI Infinite Reality. We report results for three
edits (shown in Plate B): the top of the sculpture is deleted (Edit-(a)), the bottom of the
sculpture is deleted (Edit-(b)), a green cube is moved in on the right (Edit-(c)). Camera
translations and rotations correspond to small adjustments of the viewpoint; a forward
translation is by 0.2 feet (the room size is 45�30 sq. ft.), while a rotation is by 2:5 Æ.
When the user changes the viewpoint, new interpolants are built as required.

Plate B shows the impact of edits on interpolants. On the left, rendered images
are shown, and on the right are error-coded images showing the regions of interpola-
tion failure and success. Green and yellow pixels are not interpolated due to radiance
discontinuities such as shadow edges and object silhouettes. Magenta pixels are not
interpolated because of adaptive error-driven subdivision. Pixels that are successfully
interpolated are shown in dark blue. The red pixels show the interpolants that are in-
validated and rebuilt when the scene is edited. For example, after Edit-(a), the top of
the sculpture and the shadow behind it are updated; the new interpolants lazily built to
cover those pixels are shown in red. After Edit-(b), the interpolants associated with the
bottom of the sculpture and its reflection in the mirror are found and invalidated.

In Table 1, we present results for time and memory usage for scene edits. A change
to the viewpoint is considered a scene edit, except that no interpolants are invalidated
by the viewpoint change. This is because interpolants do not explicitly depend on the
current viewpoint. For each of the edits, traversing the RSTs and invalidating the cor-
responding linetrees is extremely fast, on the order of a tenth of a second. Depending
on the type of edit, and its impact on interpolants, updating interpolants lazily while re-
rendering a frame takes 26 to 28 seconds. Of this time, building new interpolants lazily,
shown in red in the plate, takes 1 to 3 seconds. Similar results are obtained when the
object’s attributes (e.g., color) are changed. As the camera position is changed, frames
are rendered in 26 to 31 seconds, depending on the camera movement; the greater the
reuse of interpolants from the previous frame, the shorter the rendering time.

The memory requirements of this system are modest: each edit requires an addi-
tional 0.6 to 1 MB of memory. Camera movements typically require 0.7 to 2.1 MB of
memory, depending on the type and extent of the movement. Additionally, in [2], we
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Edit Base ray tracer Interpolant ray tracer with RSTs
Time (in secs) Memory

Traverse RSTs and Update (in MB)
Invalidate linetrees and Re-render

Edit-(a) 109.0 0.11 25.6 0.7 M
Edit-(b) 108.6 0.10 28.2 1.0 M
Edit-(c) 109.2 0.09 27.4 0.6 M
Pan camera 108.2 — 26.9 0.7 M
Step forward 108.5 — 31.2 2.1 M

Table 1. Time and memory usage for edits and camera movements.

Ray Tracer System Time (in secs) Memory (in MB)
Base 109.0 —
Interpolant 79.5 18.0 M
Interpolant with RSTs 80.4 23.5 M

Table 2. Time and memory usage for ray tracers supporting interpolants and RSTs.

have implemented a least-recently used (LRU) memory-management technique to limit
memory used for interpolants to a user-specified maximum. This technique imposes a
performance penalty of only 1% when memory usage is restricted to 40MBs. This LRU
system can be easily extended to limit the memory used for RSTs.

Table 2 shows system performance when rendering the first frame. Unlike in [3], the
ray tracer using interpolants is 25% faster than the base ray tracer even on the first frame:
interpolants exploit the spatial coherence within a frame. Note that our algorithm is an
on-line algorithm; no pre-processing is needed to build either linetrees or RSTs. The
overhead of creating RSTs is small: less than 1 second. For the first frame, interpolants
require 18 MBs of memory, while RSTs require an additional 5.5 MBs. Subsequent
frames require much less memory, as shown in Table 1.

7 Conclusions and Future Work

We have presented an incremental ray tracer for scene manipulation that permits the
user to edit the scene and the current viewpoint. The system maintains ray segment trees
to track the dependencies of interpolants on regions of world space. When the scene is
edited, the RSTs are rapidly traversed, in roughly a tenth of a second, to identify and
invalidate the interpolants affected by the edit. The interpolants are rebuilt as needed.
For full-screen images, the scene is re-rendered with 3 to 4� speedup over the base
ray tracer. For small adjustments to the viewpoint, incremental rendering is effective.
For large changes in the camera position and even for the first frame, the system is still
faster than the base ray tracer.

We believe this is a promising approach to support scene editing in ray tracers.
There are several extensions that will improve the system. To support faster re-rendering
when the scene is edited without changing the viewpoint, we could add screen-space
acceleration structures similar to those described by Brière and Poulin [3]. Since inter-
polants succeed for a large number of pixels (e.g., 90% for the museum scene), these
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acceleration structures will only be maintained for the small fraction of the pixels that
fail interpolation. Therefore, we expect that they will significantly accelerate render-
ing when the camera is not moved, while having modest memory requirements. These
screen-space structures can be invalidated when the camera moves, and re-built as nec-
essary. With this optimization, we expect that both attribute and geometry changes will
require less than 3-5 seconds for fixed viewpoints.

One constraint of the interpolant ray tracer is that it can only guarantee error bounds
for convex primitives. Interpolants are not built for non-convex or transparent primi-
tives; therefore, rendering of these primitives is not accelerated. For scene editing, the
screen-space structures discussed above could still be used to rapidly update these ob-
jects. However, we would like to accelerate the rendering of non-convex and transparent
objects when the viewpoint changes as well. In [2], we discuss how to extend the er-
ror predicate to support non-convex objects by using linear interval arithmetic. We are
currently extending our system to support parametric patches and transparent objects.
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A Appendix

In this appendix, we characterize the region of line space affected by an object edit. In
2D, the region of line space affected by an object edit is a hyperbola. We then extend
this result to an object edit in 3D — the region of 4D line space affected by the edit can
be characterized by a fourth-order equation.

A.1 In 2D

Consider a scene and its four global segment pairs. In Figure 2-(a), one of the four
segment pairs (the pair of thick horizontal lines), with +ẑ as principal direction, is
shown on the left. When an object o is edited, every ray that passes through o is affected
by the edit. We prove that the region of line space (shown as a square on the right of
the figure) affected by updates to o is a hyperbola in 2D.

A ray R is specified by its intercepts [a; c] on its associated segment pair. Without
loss of generality, R = [c�a; 1]. If R is a ray on the boundary of the region of line space
affected by the edit, it satisfies two additional constraints: R intersects the circle o at
some point P = [X;Z], and R is tangential to the circle at P. We have three constraints:
P lies on R, R is perpendicular to the normal at P, P lies on the circle.

[X;Z] = [a;�
1

2
] + t[c� a; 1];R � N = 0; (X � Cx)

2 + (Z � Cz)
2 = R

2

Eliminating t, X and Z:

[(c� a)Cz + (
a+ c

2
� Cx)]

2
�R

2[1 + (c� a)2] = 0 (1)

Equation 1 is a second order equation in a and c; the discriminant of the equation
satisfies the condition of a hyperbola [10]. Thus, when a circle o is edited, the region of
2D line space affected by the edit is a hyperbola — i.e., the rays in the shaded region on
the right in Figure 2-(a) are affected by the edit. The parameters of the hyperbola can
be derived from o’s location and radius.

A.2 In 4D

A similar derivation identifies the region of 4D line space affected by an edit to a 3D
sphere o. Each ray R associated with the face pair with principal direction +ẑ is spec-
ified as [c � a; d � b; 1]. The region of 4D space affected by an edit to a 3D sphere is
characterized by the following equation:

[(c� a)Cz + (
a+ c

2
� Cx)]

2 + [(d� b)Cz + (
b+ d

2
� Cy)]

2

�R
2[1 + (c� a)2 + (d� b)2]

+[(c� a)(
b+ d

2
� Cy)� (d� b)(

a+ c

2
� Cx)]

2 = 0

While the first two lines of the equation are exactly the 4D generalization of a 2D
hyperbola, the third line introduces fourth-order cross terms. Thus, when a 3D sphere
o is edited, the region of 4D line space affected by the edit is not a hyperboloid, but it
is specified by a fourth-order equation. Every ray inside the surface represented by this
equation could potentially be affected by the object edit.
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Plate A: Tunnels and Interpolant Dependencies

Figure 3: Museum Scene,
Interpolant dependencies.
   Interpolants that depend on the 
     reflective mirror.

Figure 1: 3 spheres. On the right, one interpolant for the red sphere is shown.
The interpolant has: a reflection tunnel to the ground, and a direct tunnel to the light. 

Figure 2: Scene Edit. The green sphere is replaced by the yellow cube. On the 
right, a color-coded image shows the impact of the edit. Blue-gray pixels are 
interpolated. Green, yellow and magenta pixels fail due to the error predicate.
 Interpolants are only invalidated and rebuilt for the dark red pixels.
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Plate B: Scene Edits for Museum Scene

Museum Scene Top to Bottom: 
    Edit-(a) - delete top of sculpture
    Edit-(b) - delete bottom of sculpture
    Edit-(c) - add green bench

16


