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Abstract

The growth of online marketplaces for selling goods has
increased the need for product photography by novice users
and consumers. Additionally, the increased use of online
media and large-screen billboards promotes the adoption of
videos for advertising, going beyond just using still imagery.

Lighting is a key distinction between professional and
casual product videography. Professionals use specialized
hardware setups, and bring expert skills to create good light-
ing that shows off the product’s shape and material, while
also producing aesthetically pleasing results.

In this paper, we introduce a new do-it-yourself (DIY) ap-
proach to lighting design that lets novice users create studio
quality product videography. We identify design principles
to light products through emphasizing highlights, rim light-
ing, and contours. We devise a set of computational metrics
to achieve these design goals. Our workflow is: the user
acquires a video of the product by mounting a video camera
on a tripod and using a tablet to light objects by waving
the tablet around the object. We automatically analyze and
split this acquired video into snippets that match our design
principles. Finally, we present an interface that lets users
easily select snippets with specific characteristics and then
assembles them to produce a final pleasing video of the prod-
uct. Alternatively, they can rely on our template mechanism
to automatically assemble a video.

1. Introduction
Popular online marketplaces like eBay, craigslist, and

Etsy allow everyone to directly sell their own goods. As a
consequence, product photography, a domain that used to
be reserved to professionals, is now also needed by novice
users. Further, the online nature of these platforms favors the
sharing of videos and animated gifs. But producing a pro-
fessional quality product video is challenging and requires
a studio and specialized equipment for lighting. Profession-
als carefully arrange lights and reflectors to emphasize the
product’s shape and material while achieving visually com-
pelling video. Setting up such illumination requires time,

money, and a great deal of expertise. For these reasons,
novices are unable to produce nearly as good a result, and
their videos typically look unflattering, and rarely do justice
to the product.

Our work aims to let casual users create quality product
videos. We propose a simple do-it-yourself (DIY) setup with
a video camera on a tripod recording the product while the
user waves a tablet around it for a couple of minutes. Al-
though the raw footage is too long and unappealing as is, we
show that we are able to identify good snippets and assemble
them into a short pleasing video that showcases the product.
First, we study professional product videos and the literature
to formulate the design principles that guide our approach.
For instance, video artists always use long light sweeps to
create highlights that move consistently over the product.
They also rely on a few typical standard illumination con-
figurations such as rim lighting and highlights which follow
the main edges of the object, e.g., [25].

We build analysis tools to achieve these design principles.
We define scoring functions to rank video segments accord-
ing to characteristics such as the presence of rim lighting or
their emphasis on edges. Robustness is a paramount require-
ment for these functions because the objects in which we are
interested are often highly non-Lambertian (e.g., a transpar-
ent and refractive perfume bottle or a bejeweled watch) and
many standard analysis algorithms fail on them. We show
that our numerical schemes perform well on a wide variety
of objects and materials despite these challenges.

We present a graphical interface based on faceted search
that lets users select and assemble snippets and produce a
video with sophisticated lighting effects. It also provides
tools to create a “base image” corresponding to the static
illumination on top of which the highlights move. Capturing
the input footage takes about 10 minutes, and editing the final
result with our interface, another 15 minutes. We show that
novices can go through this process with minimal training
and produce quality product videos that they would not be
able to produce otherwise. Alternatively, we propose a few
templates that enable users to automatically assemble a video
according to a predefined sequence of shots.



Contributions. To assist novice users with the production
of product videos, we make the following contributions:
– A set of design principles for product videography that we
support with empirical observations of professional videos
and existing literature on lighting design.
– A simple acquisition procedure to generate short video
snippets covering a wide variety of light configurations.
– Robust analysis tools to rank these snippets according to
the criteria that we expressed in our design principles.
– A faceted-search user interface to browse the snippets and
assemble a few of them to produce a quality video.

1.1. Related Work

A few techniques exist to relight video content. For in-
stance, Shih et al. [22] adjust the low-frequency illumination
of video portraits as part of their style transfer technique. In
comparison, we seek a more fine-grained and more generic
technique to control the lighting in product videos. Wenger
et al. [26] offer such control but requires a dedicated light
stage, which limits its use to professional productions.

More work has been done on the static case. Akers et
al. [3], Agarwala et al. [1], and Mohan et al. [18] capture
several photos of an object under different illuminations and
describe a user interface to combine these images to achieve
a desired lighting. Compared to our approach, these methods
assume that users are able to guide the algorithm with scrib-
bles whereas we provide high-level design principles and
algorithmic tools to help users follow them. Boyadzhiev et
al. [6] provide such high-level assistance but their technique
does not handle specular objects well. Srikanth et al. [23]
help photographers with the positioning of a light source
to create and control rim lighting using a drone. While
rim lighting is relevant to our work, we are also interested
in several other effects and aim for a simpler setup not re-
quiring a drone. Fattal et al. [8] also use a multi-light im-
age collection and describe an image fusion algorithm to
create a single image that reveals fine details. This tech-
nique is effective, but user control is limited to a couple
of predefined settings whereas we seek to give more cre-
ative control to users. Winnemöller et al. [27] let users
directly specify an environment map that they are able to
approximate by estimating the position of each light in the
input collection. While specifying an envmap gives full
control over the illumination, it requires expert users that
are able to specify this information. Bousseau et al. [5] as-
sist users in this task with an algorithm that optimizes an
envmap for a given effect and material, e.g., to maximize
back lighting on a wax candle. However, their approach
requires full 3D knowledge of the scene and its materials,
which is impractical in our context. Lopez-Moreno et al. [16;
15] and Karsch et al. [12] address the problem of inferring
lighting directions and rough geometry from a single photo.
Those systems allow the applications of relighting and in-

clusion of new objects in existing static scenes, but the user
still has to specify the target lighting. In comparison we
propose high-level principles that guide the target lighting
for product photography based on capturing video of a static
object under dynamic lighting, thus avoiding the potentially
brittle stage of estimating 3D geometry for the purpose of re-
lighting. Further, recall that all techniques in this paragraph
focus on static images, whereas we are interested in videos.

Finally, our approach is also related to techniques that
select video snippets either to generate a summary, e.g., [2],
or an infinitely looping video, e.g., [21; 14]. However, these
techniques are concerned with the duration of the video and
are not about lighting design.

1.2. Overview

Our new workflow comprises three parts: acquisition,
analysis, and compositing.
Acquisition. The user records a short video (3-4 minutes)
by mounting a camera on a tripod and waving an area light
source around the object of interest. We instruct users to
wave the light source along smooth arcs approximately cen-
tered on the object and to vary the trajectories, e.g., front
to back, side to side going above or behind the objects, and
other intermediate options. The goal of the acquisition step
is to capture sufficiently diverse trajectories so that our snip-
pet selection algorithm extracts enough useful snippets. We
recommend that the camera is level with the object and that
the object is centered in the frame. While other configura-
tions are possible, this setup is simple and clear to novices.
The whole acquisition process takes at about 10 minutes to
set up and capture 3-4 minute long videos.
Analysis. The video is analyzed for features such as the
speed and direction of the motion of lighting. These features
are then used by various metrics to split the video into a set
of snippets. Our metrics aim to capture design principles
such as highlighting contours, rim lighting, and accentuating
meso-structure.
GUI and Compositing. Finally, the user explores the col-
lection of extracted snippets, and composites and sequences
them in our GUI to produce the final video.

2. Design Principles
Lighting designers balance many goals when setting up

lights. They illuminate the object to show off its material, em-
phasize its shape, reveal subtle details, while also producing
a visually pleasing video. Artists have acquired an intimate
understanding of these objectives and their interactions, but
we could not find any formal comprehensive description of
this craft. Instead, we analyzed professionally produced clips
such as [25] [24] and reinterpreted photographic guidelines
in the context of product videos to formulate the following
principles.



Lighting Properties. The majority of the clips that we
analyzed use white area light sources. The lights are either
fixed to create a base illumination, or move slowly along
long smooth trajectories to generate highlights that move
predictably. Further, it has been demonstrated [9] that area
lights are better than point lights for material perception; a
swept light integrated over time creates an area light effect.

Video Structure. Product videos are typically made up
of 4 to 8 shots, each lasting typically between 2 and 10
seconds. There is little to no camera motion during each
shot and the light does not change speed or direction. The
first shots are framed to depict the entire object or its main
part, e.g., the face of a watch. A recurring choice is to use
rim lighting on these first shots to show the object silhouette
without revealing its appearance. Then, subsequent shots
are progressively framed tighter on small details, and the
last shot is often a well-lit view of the product in its entirety.
In all the videos, to avoid distracting the viewer, the object
is shown on top of a simple uncluttered background, often
black or white.

Shape and Material. Video artists often use the same
strategies as photographers to emphasize the shape and mate-
rial of a product. An exception is the use of a slowly moving
light at a grazing angle to generate glittering on surfaces with
specular micro-geometry. Besides glittering, several other ef-
fects can be interpreted as an adaptation of well-documented
guidelines used for static photography.

Placing lights around the object to maximize the contrast
around edges helps reveal the shape of the object [6]. Plac-
ing them behind produces rim lighting that shows off the
silhouette and separates the object from the background [23].
Setting the light behind a glass object with black elements
on the side creates a “bright field” that reveals the shape of
the object that would otherwise be transparent [5].

For translucent objects, back and side lighting emphasize
the translucency of their material by maximizing scatter-
ing [28]. Grazing illumination increases the visibility of
the mesostructure of rough surfaces by generating fine-scale
shadows [20]. For specular objects, an illumination that
minimizes highlights while maximizing the diffuse reflec-
tion reveals their intrinsic color [6], while lighting them
so that highlights align with the main curved regions helps
understand their shape and emphasizes the material’s shini-
ness [13].

3. Analysis
The input of our approach is a video sequence taken from

a fixed viewpoint while the user slowly moves a light source
around the object following long arcs. As is, the raw footage
is not usable but it contains many useful subsequences. Our

goal is to find them and use them as building blocks for the fi-
nal video. Our approach also eases the burden of acquisition
on users since it is robust to bad segments in the recording.

In this section, we first split the captured footage into
shorter segments that we call snippets. Then, we analyze
these snippets, yielding a set of scores that allow us to rank
them according to the criteria derived from our design prin-
ciples (Section 2). We assume that a foreground mask is
available. In practice, it was created by hand, which was
easy since the static object stands in front of an uncluttered
background.

3.1. Splitting the Input Footage into Snippets

Following our design principles, we seek to isolate long
portions where the light follows a smooth trajectory. Since
we do not have access to the 3D position of the light during
the recording, we rely on image cues to infer this infor-
mation. Intuitively, smooth light motion results in smooth
variations of image properties such as pixel color and optical
flow, which one can analyze to infer information about the
light. However, image variations can also be triggered by
other phenomena such as occlusions and geometric discon-
tinuities and makes relying on a single cue brittle. Instead,
we rely on several criteria and introduce a cut point in the
video when they collectively indicate a discontinuity. Our
rationale is: from our experiments, sharp variations in the
light trajectory affect all the cues simultaneously, whereas
other causes perturb only one or two.

Direction smoothness score. We observe the highlights
and estimate how fast the direction of their motion is chang-
ing at each frame. We use the Lucas-Kanade method [17] to
compute the flow at each pixel between each pair of adjacent
frames. While Lucas-Kanade is not the best performing on
standard optical flow benchmark, unlike other approaches,
it assumes very little about the scene, which is critical to
track highlights that typically violate the assumptions made
by other techniques (e.g., our objects are not Lambertian).
We experimented with other state of the art optical-flow al-
gorithms and found that Lucas-Kanade gives more stable
and predictable results on our challenging datasets. We fur-
ther use the per-pixel confidence values, produced by the
algorithm, to concentrate our analysis on pixels where the
algorithm behaves well.

First, we estimate the dominant motion direction of the
highlights between frames i and i + 1 by building a his-
togram of flow vector directions, but only for pixels with
a confidence in the top 5%. Each sample is weighted by
the magnitude of the optical flow and the intensity of its
corresponding pixel, Ī = 0.299R+ 0.587G+ 0.114B. This
weight gives more importance to highlights, while reducing
that of small flow vectors more likely to be due to noise. We
define the dominant direction as the label of the fullest his-



togram bin H1 and estimate a confidence factor 1−H2/H1

that favors cases where the selected bin is unambiguously
larger than the second fullest bin H2.

For frame i, we consider the dominant directions of
the N = 12 previous frames. We build a new histogram
with them, this time using their confidence factor as weight
and again extract the dominant direction which we call D`.
We do the same with the N following frames to get Dr
and compute the angle difference D`r = [(D` − Dr + π)
mod 2π]− π. The direction smoothness score is computed
as: Sd(i) = exp(−D2

`r/(π/6)). We found the scale factor
π/6 to work well in our experiments although its exact value
had a limited impact on the results. The same is true for the
other constants used in the rest of the section.

Highlight speed smoothness score. We now estimate
how smoothly the speed of the highlights varies. First, we
compute their speed between frames i and i + 1 as the av-
erage of the magnitudes of the flow vectors weighted by
the intensity of their corresponding pixel. When comput-
ing this average, we discard the amplitudes smaller than
1 pixel because they are likely to be dominated by noise and
such small motion is not perceivable. We then compute the
median of the N previous and N following frames to get
V` and Vr respectively, and compute the smoothness score
Sa(i) = exp((1− min(V`,Vr)

max(V`,Vr)+ε
)2/0.5) with ε = 10−7.

Light speed smoothness score. For the last cue, we seek
to estimate how fast the light was moving when the video
was recorded. Our approach is inspired by the work of Win-
nemöller et al. [27] who showed how image color differences
relates to 3D light distances. Inspired by this result, we es-
timate the speed of the light source between frames i and
i+1 as the sum of the absolute values of the temporal deriva-
tives at each pixel. Then, similar to the previous case, we
compute the medians T` and Tr and the smoothness score is:
Ss(i) = exp((1− min(T`,Tr)

max(T`,Tr)+ε
)2/0.3).

Overall snippet smoothness score. Finally, we add all
three scores to get Scut(i) = Sd(i) + Sa(i) + Ss(i). Low
smoothness values are likely to correspond to irregular light
motion, e.g., between two sweeps, and local minima are
good candidates to cut if needed. Our cutting procedure pro-
cesses the video recursively, starting with the entire recorded
video. Given a sequence of frames [a, b], we first check
that it is longer than the threshold Lmin, controlling the
shortest sequence that we can cut. If it is longer, we com-
pute

∑
i∈[a;b] Scut(i)/mini∈[a;b] Scut(i) and compare it to

the threshold Lmax that defines the maximum length of
a snippet. If it is above, we cut at the local minimum
arg mini∈[a;b] Scut(i). The advantage of this criterion is that
it always cuts sequences longer than Lmax and for shorter

sequences, the shorter they are, the less likely they are to be
cut because the sum in the numerator contains fewer terms.
That is, our criterion balances the requirements of not having
overly long snippets while at the same time avoiding very
short ones. All our results are generated with Lmin = 20
and Lmax = 200.

Discussion. We derived the above formulas and parame-
ters empirically during our early experiments. We used them
for all our results (with the same parameters), and achieved
good results. Other choices aimed at addressing the same
high-level objectives may work equally well, and may be
worth exploring.

3.2. Assigning Scores to Snippets

The above approach generates about a hundred short snip-
pets for a video of a few minutes. To make sense of these
snippets, we assign them scores motivated by our design
principles (Section 2). We use these scores later in our user
interface (Section 4) to help users select the best snippets.

We compute scores by first estimating per-pixel quantities
that we later sum over a region of interestM. Formally, to
compute a score S on a snippet [a; b], we first define per-
pixel values s at each pixel p and sum them over the region
M: S([a; b],M) =

∑
p∈M s([a; b], p). For brevity’s sake,

we omit the [a; b] operand. This formulation lets users create
masks and search for snippets that achieve a desired effect on
a specific part of the product. We now describe each scoring
function in detail. But first, we explain how to summarize a
snippet with a single image which we call a still, that is used
in the definition of several scoring functions.

Summarizing a Snippet with a Still. Summarizing a
snippet with a single still image is a useful building block
when defining our score functions. We also use the still when
producing our final result to create a “base image”, represent-
ing the static illumination of the scene on top of which the
highlights move. We seek an image Istill that shows all the
frames at once. A naive solution is to average all the frames,
but this generates a bland image in which the highlights have
been averaged out. Another option is the per-pixel maxi-
mum, but it is sensitive to noise. Instead, we use a per-pixel
per-channel soft-max over the snippet:

Istill(p) =

∑b
i=a Ii(p) exp(αIi(p))∑b

i=a exp(αIi(p))
(1)

where the computation is carried out independently for each
color channel and α controls the effect: α = 0 corresponds
to standard averaging and larger values make the result closer
to the actual maximum. We use α = 5 in all our results.



3.2.1 Color

This function assigns high scores to snippets that reveal the
color of the object as opposed to the color of the light re-
flected on it. Since we use a white light source (a tablet
displaying an all-white image), we can use color saturation
to differentiate object color from that of highlights. This
strategy is similar to that of Boyadzhiev et al. [6], but their
approach based on RGB angles, favors dark pixels and re-
quires a correction factor. Instead, we use the RGB distance
to the gray diagonal of the RGB cube. We compute this quan-
tity over the still image of the snippet to define the per-pixel
score function:

scolor(p) =

√
(Rstill − Îi)2 + (Gstill − Îi)2 + (Bstill − Îi)2

(2)
where (Rstill, Gstill, Bstill) is the color of the pixel p in the
still image of the snippet, i.e. Istill (p), and Î = (Rstill +
Gstill + Bstill)/3 is its projection on the black–white axis.
This measure does not favor dark pixels because these are
all close to each other in the black corner of the RGB cube.
In comparison, well-exposed pixels lie in the middle of the
cube and can be farther away from the gray diagonal. We
observed in our experiments that this metric is effective even
with objects that look gray because in practice, they are never
perfectly colorless.

3.2.2 Shape and Texture

This score finds snippets that emphasize the shape and tex-
ture of the product. The intuition behind our approach is that
the structures that repeatedly appear in the captured footage
are characteristic of the object (or its texture) while those that
are visible in only a few frames are not. Our goal is to rank
snippets that reveal these repeated features higher. We build
our scoring function upon structure tensors. These are a
standard image analysis tool and we provide an introduction
to them in the supplemental material.

Estimating Structure Similarity. To find whether a snip-
pet shows off characteristic features of the product, we use
structure tensors computed with the intensity gradients ∇Ī .
For a given snippet, we compare the log-Euclidean sum over
the entire video to the tensor computed over its still:

sstruct(p) = ntsp(exp
(∑

all i

log(T[∇Īi])
)
,T[∇Īstill]) (3)

where T[∇Īi] is the structure tensor of the intensity gradi-
ents, and ntsp indicates the normalized tensor scalar product
used to compare two tensors (see supplemental material). In
order to aggregate the information from several tensors, we
work in log-Euclidean space [4] instead of simply adding
them. The rationale for this scoring function is that, since

the sum is over the entire recorded video which comprises
thousands of frames, it captures only the features that appear
in many frames. The other occasional features are negligible.
Intuitively, this sum is a summary of the main structures of
the video, and snippets with similar structure tensor fields
show off these characteristic structures well.

3.2.3 Motion

We proceed similarly to score the snippets according to how
well the motion visible in them represents the typical motion
visible on the objects. We compute the structure tensor T[f ]
of the optical flow f for each frame. We aggregate it over
the entire recorded video and over the snippet only. The
rationale is the same as in the previous case: aggregating
over the entire video captures only the most characteristic
features of the motion and we seek snippets with similar
motion features. Formally, the scoring function is:

smo(p) = ntsp

(
exp
(∑

all i

log(T[fi])
)
, exp

( b∑
i=a

log(T[fi])
))

(4)

3.2.4 Contours

As we discussed in our design principles, emphasizing object
contours with rim highlights is standard practice, e.g., [23].
Our scoring function is based on the observation that under
rim lighting, the silhouettes of the product are bright and its
center is dark, which approximately looks like the distance
function to the object border encoded such that 0 is white and
large values are black. We apply the distance transform [19]
to the mask to get the distance to the border D which we
remap to get D̃ = 1 − 2

(
D/max(D)

)ν
which is 1 at the

border and -1 at the center, with ν controlling how thick the
positive region near the border is, i.e., how thick the rim
highlight should be. Although ν = 1 produces acceptable
results, we found that it is better to set ν so that the positive
and negative regions have approximately the same area. For
an object with a circular silhouette, ν = log(2)/(log(2) −
log(2−

√
2)) ≈ 0.56 generates equal positive and negative

areas. We use this value in the paper.
We then remap the still’s intensity so that bright pixels

equal 1 and dark ones equal -1, that is: Ĩ = 2Īstill− 1. These
two quantities define our scoring function:

srim(p) = D̃(p)Ĩ(p) (5)

This score is high for bright pixels near silhouettes and dark
pixels near the center, corresponding to rim illumination.

3.2.5 Glittering

Gems and surfaces with fine micro-geometry glitter, and
artists often emphasize this effect. We characterize glittering



as the fast variation of the fine-scale details of the image.
Formally, we first apply a high-pass filter to each frame’s
intensity to get a layer Hi = Ī⊗ (1−Gσ) where Gσ is a 2D
Gaussian kernel with standard deviation σ. We use σ = 1 in
all our results to capture only the highest-frequency details.
Then, we measure the amplitude of the temporal derivative
of this layer to define our score:

sgli(p) = |Hi+1(p)−Hi(p)| (6)

3.2.6 Directional Sweeps

A critical artistic choice is the direction in which the high-
lights move. The two standard choices are horizontal and
vertical sweeps. We provide a scoring function for each by
estimating how well the optical flow structure tensor repre-
sents the vectors (1; 0)T and (0; 1)T:

shor(p) =

b∑
i=a

(
1 0

)
T[fi]

(
1
0

)
(7a)

sver(p) =

b∑
i=a

(
0 1

)
T[fi]

(
0
1

)
(7b)

Summary. Given the user’s input footage (a few minutes),
we split it into snippets (around 100), and then develop
scoring functions that rank the snippets based on various
criteria: shape, motion, rim lighting, glitter, and directional
sweeps.

4. GUI and Compositing
As the last step in our workflow, the user combines snip-

pets into a final video using our GUI. At startup, we present
to the user the familiar preview pane similar to other photo
and video editors. Since the video is often dark, we initially
show the temporal average frame.

The two main user interactions are to create a region, and
to assign a snippet to a region. Regions are similar to layers
in numerous image editing tools in that they are associated
with image data (i.e., a snippet), and a blending mask. With
the mouse, users can create rectangular or lasso-polygon
regions, which we rasterize into an alpha mask with Guided
Filtering [10], using the average image as the guide.

We enable the browsing of the available snippets with
faceted search where the user is given a series of cascaded
lists, similar to the interface found on many shopping sites.
After selecting a region and a primary criterion (e.g., rim
lighting), an initial list contains all snippets sorted by the
mean score inside the region. The user either chooses one
of these snippets, or selects a secondary criterion, in which
case our system takes the top 50% of the snippets, sorts their
mean scores in the secondary criterion, and presents them in
a secondary list. Cascading continues until the user selects

(a) Professionally lit
wine bottle from [7]

(b) Our criteria ap-
plied on different parts

(c) Our final result (on
a white background)

Figure 1. In the professionally lit photo (a), (1) the back-lit body
reveals the colors and darkens the contours, (2) the side highlight
reveals the reflective glass body, and (3) the shape and texture on
the cap and the logo are emphasized through directional lighting.
We achieve these effects (b) by applying the color and vertical
motion criteria to the body, to capture the translucent color, dark
contours, and vertical highlight ((1) and (2)), and (3) the shape &
texture criterion to the cap and logo. Finally, we composite all of
these effects over a white background (c).

a snippet. To help the user quickly understand the selected
snippet, we provide a summary panel with a temporal soft-
max of the snippet, a tone-mapped score image, and the
blending mask. The summary panel also has a button to play
the snippet in the main preview window (compositing it over
the other regions), and a slider to change playback speed.

Compositing. For novice users, traditional alpha com-
positing can lead to unexpected results when ordered im-
properly. Therefore, we use the soft-max operator, which
is commutative, for spatial compositing as well. For our
application, soft-max performs better than other commuta-
tive blending operators such as plus because our focus is on
bright moving lights, which tend to blur under linear com-
binations. Given a collection of regions, their alpha masks,
and corresponding snippets, we premultiply each snippet
frame by the alpha mask, apply soft-max across regions, and
normalize by alpha.

Sequencing. In lieu of a timeline, we provide a simple but
flexible scripting interface to sequence the final video. Users
create a series of shots, which are played sequentially with
fade to black between them. Each shot is a collection of
regions, which are either dynamic (at its selected framerate)



or a still (its temporal soft-max), an optional zoom window,
and an optional background. All of our results are created
using this system. The supplemental material contains a
screen capture of an interactive session.

In our user study (Section 5.1), the more sophisticated
users asked for advanced blending modes and nonlinear
editing. These features are complementary to our prototype
and can be added to make the GUI production quality.

We also experimented with templates, i.e., pre-defined
scripts to automatically generate videos. Each sequence in
a template specifies a type of shot, e.g., rim light or sweep,
and we automatically assign the highest-ranked snippet in
that category. We enable close-ups by zooming in on the
center of the image, which corresponds to the center prior for
saliency introduced by [11]. We demonstrate a few examples
in the supplemental materials. We envision that trained users
can create template libraries that novices can use. While
using templates results in more repetitive videos compared
to user-created scripts, they can be useful to high-volume
sellers who need to generate many videos quickly.

5. Results
We demonstrate the effectiveness of our approach to pro-

duce lighting designs on a variety of objects for both still
images and short videos. In the supplemental video, we used
Adobe Premiere to create a fade-in and fade-out effect be-
tween the individual short clips generated by our system and
to add music. Those features are orthogonal to our research
and they can easily be added to the future versions of our
prototype software.

Wine bottle (still). The wine bottle in Figure 1 is a com-
mon case in product photography. We demonstrate that our
technique allows a quick exploration and combination of
classical lighting-design objectives, which are captured by
the top few high-ranking snippets sorted according to our
criteria. In the supplemental video, we also show a video
result.

Golden watch (video). Watches are another common sub-
ject in the lighting-design videos we studied. In Figure 2, we
show a few frames of a short, 22-second video clip produced
with our system. We start by showing the full scene and we
play one of the high-ranking snippets that emphasizes the
overall shape through rim lighting. Next, we zoom in on
a few regions and play snippets that reveal various shape
and material properties. We zoom into the case and use the
glittering criterion to emphasize the diamonds, composited
over a still snippet that reveals the texture of the glass. Fi-
nally, we zoom out to show a full view of the scene where
we still a few snippets to get a good base light on top of
which we play the highest-ranked snippet that captures a

(a) Rim lighting (b) Glittering on the bracelet

(c) Glittering on the diamonds (d) Highlight sweep

Figure 2. A few representative frames of the Golden Watch video
produced using our system.

horizontal highlight sweep. This final sweep is often seen
in professional videos, where the goal is to attract viewer’s
attention to the reflective behavior of the glass case. Our
horizontal motions criterion captures this common goal.

Perfume (video). Perfume bottles made from faceted
glass are a challenging case because of the complex interac-
tions with the moving light. In Figure 3, we show a video
result on a perfume bottle using our method. To reveal con-
tours, we first play high-ranking rim-light snippets on the
left and then right sides of the bottle, which reveal its overall
shape. Next, we zoom in on a few regions to emphasize
shape (the cap) and material (the logo). Finally, we zoom
out and show the still image of the highest-ranked snippet
that reveals the shape of the body, on top of which we blend
an animation of the snippet that highlights the logo.

5.1. Validation

We conducted two small-scale user studies to validate our
system.

Study 1: Our Pipeline. The first study was designed to
ascertain whether novice users, given only a short tutorial,
can use our system to produce good product photography.
We asked two novice users who have never seen our system
to go through our entire pipeline. They were both tasked with
acquiring, analyzing (using our automatic techniques from
Section 3), and editing two objects: one chosen by us (coins),
and the other chosen by them (tool and camera, respectively).
Neither user had much video editing experience, although
both have a fair amount of experience with image editing
using Photoshop.

The first question both users asked after our tutorial was



(a) Average image (b) Rim shot right (c) Rim shot left

(d) Shape on the cap (e) Colors on the logo (f) Final shot

Figure 3. A few representative frames from shots in our Perfume
video. We show the full clip in the supplemental video.

“what do I do?” Despite the fact that they chose and acquired
a personal item, they were unsure what is good lighting
design for product videos. For this study, we did not show
the users any professional videos and simply encouraged
them to explore the dataset. User A was photographically
motivated and spent a significant amount of time creating
masks to blend various still lights, before adding a single
moving light. User B was more exploratory and browsed
around until he found a “favorite”. He only applied one light
sweep per region before quickly moving on to the next.

The results of the first study demonstrate that amateurs
can use our pipeline, although quality depends on “knowing
what you want.” Novice users need training in lighting
design before they can take full advantage of our system.
Their results are included in the supplemental material.

Study 2: Snippet Analysis and GUI. The goal of the sec-
ond study was to assess the quality of our snippet analysis
and its usefulness as part of a video production tool. We
asked five users to work on the same sequence (Golden
Watch). Each user was given a single viewing of an actual
40-second watch commercial as a template, a short tutorial
on our system, and unlimited time to practice on a training
sequence of a leather watch. They were then given 15 min-
utes to create a video in the spirit of the commercial, and
given a short exit survey (see supplemental material).

We found that overall, everyone liked the concept. One
user wrote: “I like that it is giving me a tool to emulate
professional product shots without having to buy a bunch of
gear. Lighting is a big separator between professional and
non-professional photographers/videographers.” Most users

found our snippet analysis “generally helpful, although not
completely reliable”, and that “The classifiers help, but it’s
still a pretty big list to sift through.” Although half the users
mentioned that they found the fully-automatic compositing
intuitive, everyone felt that the biggest pain point was the
lack of a full-featured nonlinear editor. Users wanted to trim
or reverse snippets, and the more advanced users wanted to
apply more sophisticated blending.

To summarize, all the users liked the concept of a one-
person DIY tool to create professional-looking product
videos. They found faceted search of catalogued snippets to
be a fast way to find the right effect. However, with regard to
the user interface, nearly all users wanted additional features
and would have preferred that our tool be part of a nonlinear
video editor such as Premiere or iMovie.

5.2. Discussion and Limitations

We describe a user-driven approach meant to help users
create compelling lighting-design videography. However,
not all criteria configurations are necessarily useful in all sit-
uations. For example, if a scene does not have materials with
glittering properties, our criterion cannot return a snippet
that has the expected behavior. That said, our experiments
show that even if one or two criteria do not produce the
expected behavior on a given scene, many of the others do.

Our results do not correspond to a physical setup, since
our per-region blending does not alter illumination in a phys-
ical way. However, it is close to what could be produced
using blockers, and our results look plausible. Further, our
soft-max operator, which blends frames across snippets in a
non-linear manner, is close to what one can get in practice
with a longer exposure and also looks plausible.

Our snippet extraction procedure may not always cut
where a designer would, as our smoothing scores may not
always correspond to what a designer would perceive as a
smooth and complete sweep. Nevertheless, we found that
our automatically extracted and ranked snippets are useful in
quickly directing the designer to a desired point in the video
where the effects of various criteria are observed. Sliders
to refine the start/end frames of the snippets can easily be
added to let a designer further refine snippets.

Finally, we found that our approach is most suitable for
novices. Some of our test users had never done video editing
before and said that they would not have been able to gener-
ate a product video with any other tools. On the other hand,
more skilled users asked for more advanced tools typically
found in video editing software. This suggests that our ap-
proach is a good candidate for inclusion in a standard video
editing package to enable novices while assisting advanced
users. While such inclusion is beyond the scope of this study,
it is a possible direction for future work.



6. Conclusion
The growth of sites like craigslist and eBay is increasing

the need for tools that enable easy-to-produce product pho-
tographs and videos. Additionally, the increasing ubiquity
of electronic billboards and online advertising is increasing
the importance of product videography.

We introduce a do-it-yourself lighting design system for
product photography and videography. Our pipeline of acqui-
sition, analysis, and compositing lets novice users produce
high quality lighting design for products without too much ef-
fort. Our simple acquisition pipeline requires no specialized
hardware beyond a tablet and a smartphone. We automati-
cally analyze videos to produce snippets that are ranked on
various criteria based on whether they reveal shape, texture,
motion, glitter, or achieve rim lighting.

Many future avenues of research remain. A more com-
plete production quality UI would improve the user expe-
rience. Automatic summarization of the input video could
decrease user interaction, except when they want to artisti-
cally control the results. Combining this approach with an
Arqspin-type product can let us expand the range of effects
by combining varying viewpoints and illumination of an ob-
ject. Exploiting knowledge of the 6DoF tracking of the light
and camera to get 3D information could also significantly
expand the possibilities.
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