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Abstract—
This paper describes CMS (constrained minimization synthe-

sis), a fast, robust texture synthesis algorithm that creates output
textures while satisfying constraints. We show that constrained
texture synthesis can be posed in a principled way as an energy
minimization problem that requires balancing two measures of
quality: constraint satisfaction and texture seamlessness. We then
present an efficient algorithm for finding good solutions to this
problem using an adaptation of graphcut energy minimization.
CMS is particularly well suited to detail synthesis, the process
of adding high-resolution detail to low-resolution images. It also
supports the full image analogies framework, while providing
superior image quality and performance. CMS is easily extended
to handle multiple constraints on a single output, thus enabling
novel applications that combine both user-specified and image-
based control.

Index Terms— texture synthesis, detail synthesis, super-
resolution, image analogies

I. INTRODUCTION

Texture synthesis can decrease onerous modeling tasks
by automatically creating textures from examples. Recent
advances in texture synthesis technology, such as Graphcut
Textures [2], have dramatically improved both texture quality
and synthesis performance. However, texture synthesis algo-
rithms are still hard to control; they often fail in undesirable
ways, producing unusable output. This has been an obstacle
for the adoption of texture synthesis in settings where the user
needs the output to have certain properties.

Several authors have recognized the benefit of controlling
texture synthesis through analogy [3], [4]. In Image Analogies
[3], the user specifies a correspondence in the form of two
images A and A′. Then, given a constraint image B, the
system tries to find an output B′ that is related to B in the
same way that A′ is related to A. Pixel-based methods are
used to compute this analogy, and the technique is applied to
a remarkable range of inputs. Image Quilting [4] achieves a
similar effect for the specific application of texture transfer by
augmenting their image quilting algorithm with a correspon-
dence map. However, these techniques both suffer from two
shortcomings. First, it is hard to precisely characterize what
kind of image similarity they are aiming for. Second, their
output quality and performance can suffer due to limitations
in the underlying synthesis and correspondence algorithms.

This paper describes CMS (constrained minimization syn-
thesis), a texture synthesis algorithm that generates constrained
output by solving a global optimization problem. CMS is an
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Fig. 1. Results showing detail synthesis (top) and user-controlled texture
synthesis for texture-by-numbers (bottom). In both examples, CMS produces
output superior to Image Analogies and Image Quilting. Top: Carpet. The
constraint is a blurry image, and the sources are high resolution texture (left).
CMS is able to effectively match the constraint and synthesize plausible high-
resolution detail. Bottom: Cloth. The user-specified correspondence is a map
of texture regions to solid color regions, and the constraint is a rearrangement
of these colors (left). CMS is able to seamlessly integrate data from the source
image while respecting the color constraints and maintaining local coherence.

effort to combine the quality and performance of Graphcut
Textures with the power of the Image Analogies framework.
Our algorithm is particularly suited to the application of detail
synthesis [5] (Figure 1, top) and it supports the wide range
of applications of Image Analogies as well, including artistic
filtering, texture transfer, and texture-by-numbers (Figure 1,
bottom). Constraints can be specified by a user, as in texture-
by-numbers, or through a photograph, e.g. a low resolution
image for detail synthesis. Additionally, multiple constraints
can be combined for greater power, which is a new function-
ality not demonstrated in previous work.

In this paper we make the following contributions. First, we
give a principled formulation of constrained texture synthesis
as an energy minimization problem balancing two measures of
quality: constraint matching and texture seamlessness. Second,
we demonstrate how to approximate this energy minimization
problem and solve it efficiently using an adapted graphcut
energy minimization algorithm. Third, in addition to showing
our ability to support the general Image Analogies framework,
we demonstrate the success of our technique for the particular
problem of detail synthesis. We believe that detail synthesis
is an important application for image-based modeling, and
automated techniques for generating plausible high-resolution
detail will become very useful in the future.



To appear in IEEE TVCG 2

Mapped Source Q

Source S Output O (iteration k)

Mapped Output O
Q

(iteration k)

Refinement

Constraint C
Mapped Output O

Q

(final)

Output O (final)

!

. . . . . .

Fig. 2. CMS overview. The user provides input S, and additional inputs Q and C to control the synthesis process. CMS synthesizes from S and Q in
parallel, iterating until Q’s output OQ looks like C. When this process is finished, we say the output O has been generated successfully as well.

II. RELATED WORK

Texture synthesis. Texture synthesis algorithms [6] use a
small source texture to generate a large output texture that
“looks the same”. Pixel-based synthesis algorithms [7], [8]
grow an output texture pixel-by-pixel, often using scale-space
representations to match across different frequency bands.
These approaches are quite effective on stochastic textures, but
they typically fail on textures with more coherent structure.
Patch-based synthesis algorithms [2], [4], [9] copy whole
source patches into the output instead of single pixels. Because
of this, they tend to be faster and better at capturing visual
coherence than pixel-based algorithms. However, when they
are forced to paste very small texture patches, their behavior
becomes more similar to pixel-based methods. Ashikhmin [10]
proposes pixel-by-pixel patch growing, which represents a
middle ground between pixel-based and patch-based methods.

In work concurrent with ours, Kwatra et. al. [11] pro-
poses a hybrid method based on energy minimization for
unconstrained synthesis, with some extensions for flow-field
based constraints. We discuss specific differences between
their minimization technique and ours at the end of Section IV-
D.
Synthesis with constraints. General constraints to drive tex-
ture synthesis have been introduced in pixel-based [3], [10]
and patch-based [4] contexts. Ashikhmin [10] proposes user-
drawn color constraints as a guide for synthesis, and Image
Analogies [3] presents a full framework supporting both user-
drawn and image-based constraints. Zhang et. al. [12] use
a simplified analogies framework on surfaces to generate
textures from texton masks.

Among patch-based analogy techniques, Image Quilting [4]
uses a correspondence map and hierarchical patch pasting
to compute texture transfer, and Schödl [13] proposes an
extension to Graphcut Textures [2] that is related to our work.
See Sections V for result comparisons. Other constrained
patch-based synthesis techniques include Interactive Digital

Photomontage [14] and that of Zhou et. al. [15], where graph-
cut formulations are used for user-controlled photomontages
and surface BTF painting, respectively. We discuss specific
similarities and differences between CMS and all of these
algorithms in Section IV-D.

Super-resolution and detail synthesis. Super-resolution and
detail synthesis are slightly different approaches to the problem
of enhancing a low-resolution image with high-resolution de-
tail. Super-resolution [16] attempts to solve for the actual high
frequency content in a low-resolution image. Common super-
resolution algorithms take a low-resolution video sequence as
input and extract additional data for one frame by analyzing
its sequence of neighboring frames. Detail synthesis [5], on
the other hand, synthesizes plausible detail for a single low
resolution image, using a couple of small, high resolution
samples. Freeman et. al. [17] use a Laplacian-like operation
to split training images into low and high frequency, and then
add high frequency information to a low-resolution image
by quilting patches. The algorithm is promising for subtle
edge enhancement at up to 4× linear (16× pixel) zoom, but
artifacts can arise due to mismatches between existing data and
added high frequencies. Detail synthesis for highly specialized
problems has also been attempted for faces [18] and liver cells
[19] by using very large sets of training data. Our approach can
be useful in these contexts because of its ability to compute
dramatic image zoom with just a few sample images.

Graphcut energy minimization. The graphcut energy min-
imization framework was introduced by Boykov et. al. [20],
and it has proven to be a remarkably effective algorithm both
in vision [21]–[23] and graphics [2], [14], [15], [24]. Graphcut
Textures was one of the first papers to apply this technique to
texture synthesis. The CMS algorithm is an extension of the
ideas of Graphcut Textures to support analogy applications
and constrained synthesis; it is not meant to be used for
unconstrained synthesis. For details, refer to Section IV-D.
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III. CMS OVERVIEW

An overview of CMS is shown in Figure 2. As in normal
texture synthesis, the user provides a source image S to syn-
thesize an output O. To control synthesis, the user represents
the desired synthesis process in another domain, in the form
of two additional input images, the mapped source Q and the
constraint C. For instance, in Figure 2, Q consists of various
colored regions corresponding to structures in S, and C is
a different arrangement of these colors corresponding to a
desired output. The basic idea is to compute the synthesis
process that takes Q to C, and apply it to S to get O.

Specifically, CMS takes the image pair {S, Q} and syn-
thesizes another image pair {OQ, O}. Synthesis is performed
in parallel; whenever a pixel is copied from S to O, the
corresponding pixel from Q is copied into OQ. If, through
multiple synthesis iterations, we can make OQ look like C,
then by analogy we can claim that O has been synthesized
properly as well. We also would like O to be visually seamless.
Thus the goal of CMS is to take Q, S, and C, and generate
an output O such that

• OQ = C (constraint match)
• O has no visual seams (texture seamlessness)

In this framework, the Image Analogies relationship A : A′ ::
B : B′ is given by Q : S :: C : O. We prefer the latter
terminology because it emphasizes the specific roles of each
image in the algorithm.

Apart from texture-by-numbers, CMS is useful for all
other Image Analogies applications, such as artistic filtering
and texture transfer. CMS is particularly promising for the
application detail synthesis (see Figure 1, top).

IV. CONSTRAINT SYNTHESIS VIA ENERGY MINIMIZATION

The core of CMS is a labeling L that maintains the synthesis
moves computed by the algorithm, stored as the pasting of
different patches from S. An energy function is defined over
L to capture constraint matching and texture seamlessness, and
this function is minimized using graphcut energy minimization
[20] to generate the final output O. This section explains this
construction in detail, starting with an overview of graphcut
energy minimization, and ending with a complete description
of the algorithm in Section IV-C.

A. Graphcut minimization review
Graphcut minimization [20] can be used to assign labels to

a grid of pixels such that the assignment minimizes an energy
function of the form

E(L) =
P

p U(p, L(p)) +
P

(p,q) V (p, q, L(p), L(q)) (1)

where p is a pixel location, (p, q) are neighboring pixel loca-
tions, and L(p) is the label assigned to p. U , the assignment
cost, captures how well a label suits a particular pixel. V ,
the separation cost, imposes a penalty if neighboring pixels
have incompatible labels. In computer vision problems, labels
typically represent disparity or depth. The overall approach
is to iteratively improve the labeling L by repeatedly trying
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Fig. 3. (A) Some example labels. The label l = (i, j) corresponds to an
image Sl, which represents a translation of S i pixels horizontally and j pixels
vertically. (B) Left: An example labeling, with the labels from (A) marked
in color, and all others marked grey. Right: the synthesis result, again with
corresponding regions marked in color.

many label swapping moves, stopping when the energy cannot
be decreased further.

The power of this algorithm comes from the particular
swapping moves used to improve the labeling, most notably
the α-expansion [20]. An α-expansion permits every pixel to
either keep its current label or flip it to α, picking the overall
flip that reduces energy the most. Graphcut minimization will
repeatedly perform α-expansions for every possible label until
convergence. A single α-expansion can be computed very
efficiently via graph max-flow/min-cut [25], and it is from
this reduction that graphcut minimization gets its name.

The optimality of the solution obtained by this algorithm
depends solely on V . For simple V , it is possible to find
minima that are a factor of 2 within the global minimum
(i.e. a 2-approximation). If V is a metric, it is possible to
find what is referred to as a “strong local minimum” [26]. As
V ’s theoretical properties worsen, optimality guarantees get
weaker, but results are still excellent in practice.

B. Constrained texture synthesis as minimization
Here we will explain how CMS can be cast as a graphcut

minimization problem. We adapt the construction of Graphcut
Textures, which just uses the separation cost mentioned above,
and augment it with an assignment cost to capture the effect
of the constraint C.

1) Defining the label space: To apply graphcut minimiza-
tion, we must define synthesis in terms of a labeling L. In
patch-based texture synthesis, the goal is to paste a set of
candidate patches into the output, stitching them together to
form seamless image. In our application, the set of candidate
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Fig. 4. The energy function E(L) balances two measures of quality:
constraint matching (captured by A) and texture seamlessness (captured by
B). A computes the match between OQ and C B computes the visual
disparity between different labels along their boundaries.

patches is the set of translations and 90-degree rotations
of S. Therefore, each label will correspond to a specific
transformation of S.

For example, consider translations alone. Let (0, 0) be the
lower left corner of O. We can define a translation label as l =
(i, j), where (i, j) represents the offset of (the lower left corner
of) S in O prior to pasting. Figure 3A shows some examples
for a simple brick texture source. The label l = (−111,−91)
would correspond to aligning the lower left corner of S with
the lower left corner of O, moving S 111 pixels to the left
and 91 pixels down, and then pasting S into O. We call
this resulting image Sl; note that Sl is the same size as O.
Arbitrary patch transformations are handled in an analogous
manner. A sample labeling L is shown in Figure 3B. Notice
how contiguous patches correspond to contiguous labels. The
synthesis result L is a mapping of locations in O to labels in
this space.

2) Defining the energy function: Now that we have the
labeling L, we need to define the energy function E captur-
ing synthesis quality. We will first define some terminology
to express the correspondence of pixels and neighborhoods
between the various images we have. Let p be a pixel location
in L (or O), and Np its neighborhood; then the corresponding
location and neighborhood in C (and OQ) are given by p̂ and
N̂p̂, respectively.

The energy function E we define over L requires several
derived quantities. Recall that we synthesize two images in
parallel: the mapped output OQ from Q, and the output O
from S. OQ is used to determine if we have matched C, and
O is the final output we are computing. Both of these images
can be computed from L as follows:

• Let gO be the function that creates the output O from
the labeling L; i.e. gO(L) = O. This is computed by
looking up each location’s label in L and using it to find
the appropriate source transformation to copy from. For
example, if L(p) = l, then to find O(p), transform S as
per the label l, forming Sl, and take the pixel Sl(p).

• Let gOQ be the function that creates the mapped output
OQ from L; i.e. gOQ(L) = OQ. This is computed in an
analogous manner; if L(p) = l, then we transform Q as
per the label l, forming Ql, and take the pixel Ql(p̂).

Given this, the energy function E characterizing the quality
of the synthesis result can be defined as:

E(L) =
P

p A(p, L) +
P

(p,q) B(p, q, L(p), L(q)) (2)

where the second summation is over all pairs of neighboring
pixels (p, q). Note the similarity to Equation 1.

Figure 4 gives an overview of E and its two terms. The A
function, the agreement cost, captures how well our current
synthesis matches the constraint at p. It is given by:

A(p, L) = KSSDN̂p̂
(gOQ(L), C) = SSDN̂p̂

(OQ, C) (3)

where K is a weighting factor, and SSDN (X, Y ) is the
sum of square differences between images X and Y over a
neighborhood N :

SSDN (X, Y ) =
X

p∈N

|X(p)− Y (p)|2

The neighborhood Np in O matches the constraint if the
difference between N̂p̂ in OQ and N̂p̂ in C is small. It is
possible to define A by only looking at the individual pixels
p and p̂, but this approach will not capture visual coherence
and continuity; therefore, we use neighborhoods.

The B function, the boundary cost, captures how visible the
boundaries are between different adjacent labels (and therefore
different patches) in the output O. Our function is equivalent
to the M function of Graphcut Textures. It is given by:

B(p, q, L(p), L(q)) = ||SL(p)(p)− SL(q)(p)||2 (4)
+ ||SL(p)(q)− SL(q)(q)||2 (5)

Intuitively, this function is capturing the following: if pixels
p and q are copied from different patches, then when walking
from p to q, will one notice that the patch has actually changed
(and vice-versa)? If two neighboring pixels are copied from
the same patch, the B cost is 0 for that pair, since their labels
are the same.

There are two user inputs affecting the energy function
E (Equation 2). One is K, which weights the A and B
costs during synthesis. The other is is N , the size of the
neighborhoods CMS considers (i.e. the size of Np and N̂p̂).
In general, larger N captures larger structures, and larger K
enforces a closer constraint match; see Section V-H for details.
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Fig. 5. Graphcut minimization cannot work with the A cost function because
of multiple labels in a single neighborhood. Therefore we approximate A with
A′, which only looks at the center label. (A) Constraint neighborhood N̂p̂
in C. (B) Corresponding neighborhood Np in L. (C) The A function uses
N̂p̂ in OQ, corresponding to Np in L, which has multiple labels. (D) The
A′ function only looks at the center pixel label, so it just uses N̂p̂ in QL(p),
which is the patch corresponding to the center label. The neighborhoods in
OQ and QL(p) are similar after several patch pasting moves, showing that
this is a reasonable approximation in practice. (E) Np in the resulting final
output O.

3) Graphcut minimization for CMS: There are two issues
with applying the graphcut framework directly to CMS. Firstly,
we must modify our objective function before we can use
graphcut minimization. Secondly, we must introduce a heuris-
tic to make graphcut minimization feasible for our application.

Modifying the agreement cost A. The assignment cost U
in Equation 1 is nearly suited to represent A. However, the
definition of A is not directly applicable because it is defined
over a neighborhood of L, which contains multiple labels,
rather than over the single label L(p) (as required by graphcut
minimization). Therefore, we approximate A with another
function A′ that does have the correct form. A′ evaluates how
suitable a patch label is for a location p. At L(p):

A′(p, L(p)) = K SSDN̂p̂
(QL(p), C)

Intuitively, this treats a neighborhood of pixel locations
with possibly different labels as if it were a neighborhood of
pixel locations all with a single label: the label of the center
pixel. See Figure 5 for an illustration. The reason A′ works
well is that optimizing the A′ and B costs at all locations in
Np tends to force local agreement even at patch boundaries.
Therefore, even if Np contains different patch labels in L, the

actual neighborhood N̂p̂ in the mapped output image OQ will
eventually look like it came from a single patch.

With this change, we have a new energy function that is
amenable to graphcut minimization:

E′(L) =
P

p A′(p, L(p)) +
P

(p,q) B(p, q, L(p), L(q)) (6)

Many labels. CMS presents a challenge for graphcut min-
imization because the set of labels is extremely large, and
the original minimization algorithm tries all labels multiple
times until convergence. This is a recognized open problem in
the vision community as well [21]. Translations alone require
O(m + n) labels, where m is the number of pixels in S and
n is the number of pixels in O (the lower left corner of S can
occur in every pixel of O, and then every other pixel of S can
occur in the lower left corner of O). Adding basic rotations
or other affine transformations expands this further. Because
of the lack of constraints, Graphcut Textures does not need to
paste many patches to produce good output (on the order of
tens). By contrast, CMS needs to adapt to all the features in
C, and thus it needs to paste many more times (100-500 in
our examples). Furthermore, to get the best output, one needs
to consider as much of the full label space as possible. Even
for small output (e.g. n = 128× 128) the space is huge.

We apply a heuristic to get around this issue. To select
a good α-expansion, CMS first ranks all output locations
according to the following match error metric, which is a local
version of our original texture quality energy function E:

MatchErr(p, L) = A(p, L) +
X

(p,q)∈Np

B(p, q, L(p), L(q)) (7)

The idea behind MatchErr is to find a neighborhood where
the labeling has high energy, so that we can search for an
α-expansion to improve it. The A cost is evaluated solely at
p, and the B cost is evaluated for all adjacent pixel pairs
(p, q) ∈ Np. Now, for every output location p that has a large
match error, we rank all candidate labels that could possibly
improve the texture at p, based on the following improvement
metric:

Imprv(l, L) = A′(p, l) + SSDNp(Sl, gO(L))

= KSSDN̂p̂
(Ql, C) + SSDNp(Sl, O) (8)

The Imprv metric is trying to guess which α-expansions will
successfully reduce the energy at p. The first term is A′, which
as discussed earlier evaluates the suitability of a particular
label for a particular location. The second term tries to predict
the seam cost after the α-expansion by comparing Sl and O
in this neighborhood.

After ranking all labels, we select the top c candidates
(typically c = 5). Experimentally, output quality seems to
be insensitive to increasing this parameter further. For per-
formance reasons, we have found that c = 1 is not the best
choice for our algorithm because we search for candidate
patches using a local measure of improvement, whereas an
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Fig. 6. Overview of a single iteration of CMS. (1) Find a location in O
that needs improvement. (2) Find candidate labels that match this region by
searching Q for matches with C (constraint) and S for corresponding matches
with O (seamlessness, not shown). (3) Perform α-expansions integrating data
from S with O. Steps (1)-(3) are repeated until the termination condition is
satisfied.

α-expansion move can have a much more global effect that
our metrics cannot take into account. It is quite possible
that the best candidate based on our local measure does not
actually result in the best α-expansion for our output location;
therefore, it is useful to perform expansions for all of the top
c matches. Computationally, patch search is slower than α-
expansion computation, so it is to our advantage to use one
patch search to come up with and try many candidate labels
to speed up convergence. For example, this results in a 3×
speedup for the cloth synthesis example in Figure 8A.

We avoid picking tightly clustered labels corresponding to
similar translations by enforcing that each label lies beyond
some minimum cutoff distance d from any other candidate
label (like the Poisson distribution in [27]). In our implemen-
tation we use d = 20.

C. Algorithm
We now describe the full algorithm (see Figure 6).

Step 0: Initialization. To start, all locations in L are assigned
to a dummy label that has an artificially large cost. Thus, any
label we choose will be preferred to this dummy label in the
optimization process. We have found that our initialization of
L does not significantly affect performance or convergence
properties.
Step 1: Output refinement location. Find the worst location
p0 in O by evaluating MatchErr (Equation 7) at each
location p and storing the results in a priority queue HistLocs.
Pick the top location.
Step 2: α-expansion search. Find the best c candidate labels
to improve p0 by evaluating Imprv (Equation 8) at each label
and storing the results in a priority queue SourceLocs, picking
the top c labels.
Step 3: Performing the α-expansion. Perform an α-
expansion for each of the c labels as described by [20], using
U = A′ and V = B as the cost functions.
Step 4: Termination. On each iteration, the algorithm main-
tains a history of h locations we have tried to improve (h = 5-
10 for all our examples). If all c moves combined don’t provide

enough improvement for the “worst location” p0 (as computed
by Step 1), then we look in HistLocs for the next “worst
locations” p1, p2, . . . ...ph−1, repeating Steps 2 and 3 for each,
until we find moves that improve the energy. If none of the
h locations can be improved by more than some tolerance
energy t, iterative synthesis is terminated. Because K scales
the A′ energy term, t should be proportional to K. We use
t = 5(K + 2) for all our examples; smaller values of t do not
appear to improve image quality significantly.

Extensions: CMS easily extends to handle multiple sources
and multiple constraints. In general, given sources {Sj} and
constraints {Ck}, CMS requires as additional input mapped
sources {Qjk} to interrelate all sources and constraints. The
only change required to the cost functions is that A and A′

must now sum over all constraints, instead of just looking at
one.

D. Detailed comparisons with other algorithms

Our work combining graphcut minimization and constrained
synthesis differs from that in previous / concurrent work in the
following ways:
Graphcut Textures [2]. While the mechanisms of our algo-
rithm and Graphcut Textures are similar, the most obvious
difference between the two is the domain of application.
Graphcut Textures addresses the problem of unconstrained
synthesis, where there is no assignment cost to guide patch
placement. Therefore, it is necessary in their work to develop
a variety of patch searching / pasting heuristics and graphcut
extensions to somehow capture the structure of a variety
of textures while still maintaining some irregularity in the
output. CMS, on the other hand, is focused on constrained
synthesis, captured by the addition of the assignment cost
term. We use one deterministic heuristic for all results, and
our implementation of the graphcut minimization technique is
entirely modeled after the original construction in Boykov et.
al.

Algorithmically, the presence of an assignment cost results
in many more patch pasting moves than in Graphcut Textures,
which is the reason we opted for an automated termination
condition and c expansion moves per heuristic search, instead
of one, as done in Graphcut Textures. One could imagine
adding similar automated termination conditions and multiple
patch pasting moves to Graphcut Textures without much
difficulty, although such additions are probably not useful
without an assignment cost.
Interactive Digital Photomontage [14]. Interactive Digital
Photomontage uses a graphcut energy formulation containing
both an assignment cost and a separation cost to capture the
idea of interactive image editing for various user-specified
objectives, such as color, focus, and so on. The primary differ-
ence it has with CMS is that it performs α-expansions through
user guidance and interaction. A user will typically paint
a ‘single-image objective’ capturing some desired attribute,
and the interface will provide the user with a limited set
of patch pastings (α-expansions) to choose from. Automatic
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minimization along the lines of CMS (referred to as a ‘multi-
image objective’ in their work) is not typically encouraged
because the application is interactive.
BTF surface decoration [15]. Zhou et. al. also use an assign-
ment cost and a separation cost for the application of BTF
synthesis on surfaces. Their constraints are typically binary
masks, which is ideal for their application (binary masks
show presence/absence of a new BTF texture patch). However,
instead of α-expansions, they use square patch quilting for
synthesis, and perform a graphcut computation to find optimal
seams between patches. CMS, on the other hand, uses much
more general image constraints, and attempts to run a full
optimization in the spirit of Boykov et. al.
Image Quilting [4]. The constrained version of this algorithm
is a multi-pass hierarchical technique. First, patches of a
certain size in S (say 64×64) and pasted into O in raster order,
using quilting. Patches are selected based on how well they
match C and the existing output in O. Call the finished output
Oprev . Then, in the next pass, the patch size is reduced, and the
same synthesis algorithm is repeated, this time incorporating
match cost with Oprev into the patch selection, and also
increasing the weight of C. Oprev is updated, and this iterates
several times. To fully match the constraint, it is important to
use very small patches in the final pass.

Image Quilting only demonstrates results for texture trans-
fer, but detail synthesis results have reasonable quality as well.
However, this algorithm has two shortcomings. One is that the
artifacts of the raster-scan patch quilting approach are often
evident in the output, in the form of sharp vertical / horizontal
seams or block-like behavior. The other is performance. For
example, given a 640 × 500 image, and a final patch size
of 7 × 7, one needs to perform almost 9000 patch searches
just for the final pass. CMS performs around 50-100 patch
searches for the full algorithm. Thus, our running time for
such an example is about 4 minutes, while the Image Quilting
algorithm can take upwards of 7 hours.
Schödl Ph.D. Thesis [13] This algorithm is a proposed exten-
sion to [2], where an assignment cost is added to the objective
function, and full graphcut minimization is attempted with
random label selection (realized as random patch placement).
In this case, the only demonstrated results are for artistic
filtering, and the random placement algorithm works suffi-
ciently well for such cases. However, as shown in Figures 7A
and 8A, this technique is not as effective for solving problems
with highly structured constraints (see submitted images for
further comparisons). As mentioned in our discussion of many
labels, introducing an assignment cost significantly changes
the behavior of the optimization framework; it is difficult
for random placement to adapt quickly and effectively to
the features of the constraint image, especially when both
the source and constraint are highly structured. Thus, this
approach cannot converge to good solutions as fast as CMS.
Texture Optimization [11]. Concurrent with our work, Kwa-
tra et. al. formulate an optimization framework for un-
constrained and constrained texture synthesis. They use an
expectation-maximization type algorithm instead of graphcut
minimization, and demonstrate impressive constrained results
for textures affected by flow fields. Performance times are

roughly 7-10 minutes for 256 × 256 output textures on a
machine similar to ours. By comparison, CMS focuses on
detail synthesis and image analogies applications, and can
synthesize textures as large as 470 × 1265 in roughly 5 min-
utes. Kwatra et. al. acknowledge that their new optimization
algorithm is more susceptible to getting stuck in local minima
than graphcut minimization.

V. RESULTS

Example Output size CMS IA IQ
Carpet (Fig 7A) 350 × 433 79 1119 7413
Brick 5× (not shown) 609 × 609 146 9340 11091
Brick 10× (Fig 7B) 609 × 609 402 * *
Cloth (Fig 7C) 470 × 1265 312 12775 13714
Freud (Fig 8B) 640 × 500 217 1035 25016
Weave (Fig 8C) 366 × 554 44 368 1090
Rice (Fig 8D) 231 × 281 9 103 516
Cloth TBN (Fig 8A) 512 × 512 297 656 6599
Arch TBN (Fig 8E) 320 × 462 131 406 5163
Melody TBN (Fig 8F) 640 × 666 239 ** 3689

TABLE I
PERFORMANCE RESULTS OF THE CMS, IA, IQ ALGORITHMS. TIMES ARE

GIVEN IN SECONDS. *ONLY CMS CAN RUN THE BRICK 10× EXAMPLE

BECAUSE IT SUPPORTS MULTIPLE CONSTRAINTS. **THIS EXAMPLE DID

NOT RUN ON THE PUBLICLY AVAILABLE IA CODE.

We show results of our CMS algorithm and compare with
Image Analogies [3] (IA), Image Quilting [4] (IQ), and Schödl
[13] in Figures 7 and 8. Figure 9 shows additional results.
Parameters of our algorithm are given in the figure captions.

A. Performance
We used the publicly available version of IA from NYU’s

Media Research Lab, and our own implementation of IQ. CMS
graphcut minimization was implemented using code from the
authors of [26]. All patch searching operations in IQ and CMS
used the convolution and summed area table optimizations
of [2]. Results were obtained on a Pentium Xeon 3.6 GHz
machine with 2 GB RAM.

Table I shows detailed timing results. In general, CMS
is able to quickly generate high quality output which other
algorithms require a far longer running time to create (Brick
5× detail is an extreme example). For the majority of the
examples, CMS is 5-45× faster than IA, and 14-115× faster
than IQ. IA’s running time tends to be much greater in detail
synthesis problems, and in cases where the running time of IA
is the same as CMS, such as in Figure 8A, the CMS output
is significantly better. IQ’s running time is much greater when
very small patches are required to closely match the constraint
(see Section IV-D), and even with this greater running time
it is not always able to match the quality of CMS, such
as in Figure 7A. The running time of Schödl’s algorithm is
dependent on the number of iterations chosen by the user,
so for fair comparisons to CMS we ran Schödl for a similar
amount of time as CMS. Schödl’s results have considerable
artifacts in examples with highly structured constraints, such
as Figure 7A and Figure 8A. On other examples, it is more
comparable to CMS (Figure 8B, submitted images).
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(A) Detail Synthesis: Reconstruction of carpet image

(closeup)

(i) Sources S

(ii) Constraint C (v) Image Quilting

Zoomed in

(vi) Schödl

Zoomed in

(iv) Image Analogies

Zoomed inZoomed in

(iii) CMS

(B) Detail synthesis: Brick 10x linear zoom

with multiple constraints

(iii) CMS

(C) Detail Synthesis: Cloth 3x linear zoom

(i) Source S
(scaled)

(ii) Constraint C
(scaled)

(closeup of C)(closeup of S)

(iii) CMS

Mapped Sources Q11, Q12

(i) Source S1
(scaled),

(ii) Constraints C1, C2

(closeup of C1)

Fig. 7. CMS for detail synthesis, with parameters K = 7, N = 7 (for (C), N = 3 due to curves). In all figures, (i) source S, (ii) constraint C, (iii) CMS
output, and, if present, (iv) image analogies output, (v) image quilting output, (vi) Schödl output. (A) Carpet image is restored from a blurry constraint. (B)
10× linear magnification of brick with multiple constraints. Close examination shows how well the output matches subtle color and shadow changes in the
low resolution image. (C) 3× linear magnification of cloth weave pattern (part of the output shown). CMS is able to adapt to variability in the leaf shapes.

B. Detail synthesis

We demonstrate the ability of CMS to synthesize detail
in Figure 7A, where we enhance a blurred carpet (7A-(iii)).
For comparison, we used the IA, IQ, and Schödl algorithms
to generate similar results (Figure 7A-(iv-vi)). The original
constraint image is much larger; only 2 medallions are shown
(see submitted images). The IA output is much better than

that published in their original paper, because we provided
better example data and tweaked some parameters. Even so,
CMS performs better than IA and the other techniques as well.
Schödl’s algorithm performs particularly poorly on the bottom
carpet medallion, and IQ has difficulty matching a medallion
that is not exactly the same shape as the medallions in the
source (see zoom-in). Figure 7C shows 3× linear zoom of
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(B) Artistic Filtering - Freud Painting

(iii) CMS (iv) Image Analogies(ii) Constraint C (v) Image Quilting (vi) Schödl

(C) Texture Transfer - Weave to Face (D) Texture Transfer - Rice to Face

(E) Texture-by-Numbers - Arch (F) Texture-by-Numbers - Melody

(A) Texture-by-Numbers - Cloth

(iii) CMS (iv) Image Analogies
(ii) Constraint C

(i) Source S, 

Mapped Source Q

(v) Image Quilting (vi) Schödl

(i) Source S

(ii) Constraint C

Nostril zoom in Nostril zoom in

(iii) CMS (iv) Image Analogies (v) Image Quilting

Nostril zoom in

(iii) CMS (v) Image Quilting

Mouth zoom in Mouth zoom in

(i) Source S

(ii) Constraint C

(i) Source S, 

Mapped Source Q

(ii) Constraint C (iv) Image Analogies (v) Image Quilting(iii) CMS

(i) Source S, 

Mapped Source Q

(ii) Constraint C

(iii) CMS (iv) Image Analogies

Zoom in Zoom in

(i) Source S, 

Mapped Source Q

Fig. 8. Analogy examples (parameters in parenthesis). (A) Cloth texture-by-numbers. (K = 0.5, N = 9) CMS produces good output, while IA is under-
constrained and synthesizes incorrectly. IQ’s fixed patch size makes it hard to capture large and small structures in a seamless texture. (B) Artistic filter.
(K = 20.0, N = 5) Results are comparable, but CMS matches fine details like the thin trees better. (C) Weave texture transfer. (K = 0.4, N = 4) CMS is
able to both match the constraint and synthesize a coherent weave texture. Note the comparisons of the nostril. (D) Rice texture transfer (K = 0.2, N = 5).
Again, CMS matches the constraint closely while finding better patch seams. (E) Arch texture-by-numbers. (K = 10.0, N = 2) CMS avoids synthesizing
streaks in the water (improvement over IA) and adapts to the smooth inner contours of the arch without blocky artifacts (improvement over IQ) (F) Melody
texture-by-numbers. (K = 0.6, N = 1) Challenging case. CMS is not as flexible at matching the thin strokes in the constraint.
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(A) Stroke and stipple pattern texture transfer

(i) Constraint:

woman’s face

(ii) Constraint:

butterfly

(iii) Source S1,

Mapped Source Q1

(stroke pattern)

(iv) S1, Q1 applied to

woman’s face

(v) S1, Q1 applied to butterfly (vii) S2, Q2 applied to

woman’s face

(vi) Source S2,

Mapped Source Q2

(stipple pattern)

(viii) S2, Q2 applied to butterfly

(B) Pottery texture transfer (C) Waterfall texture-by-numbers

(i) Source S,

Mapped Source Q (ii) Applied to woman’s face (iii) Applied to butterfly

(ii) Constraint

C1

(iii) Constraint

C2

(iv) Output using C1 (v) Output using C2(i) Source S,

Mapped Source

Q

(i) Constraint C

(iv) Source S2,

Mapped Source Q2

(pastel)

(v) S2, Q2 applied to C

(D) Impressionist and pastel artistic filters

(ii) Source S1,

Mapped Source Q1

(impressionist)

(iii) S1, Q1 applied to C

(E) Detail Synthesis: Reconstruction of forest

(ii) Constraint C (closeup) (iii) Output O

(i) Sources S (F) Detail Synthesis: Rug 8x linear zoom

(iii) Output O

(i) Source S

(ii) Constraint C
(closeup of C)

Fig. 9. Additional results showing the scope of our technique (parameters and running times given for each). (A) (iii) Run with K = 2.0, N = 5. (iv) 159
seconds; (v) 401 seconds. (vi) Run with K = 4.0, N = 5. (vii) 93 seconds; (viii) 271 seconds. (B) (i) Run with K = 0.5, N = 5. (ii) 36 seconds; (iii)
80 seconds. (C) (iv) K = 0.5, N = 5, 44 seconds. (v) K = 1.0, N = 5, 64 seconds. (D) (iii) K = 1, N = 5, 59 seconds. (v) K = 0.5, N = 1.0, 112
seconds. (E) K = 7, N = 7, 154 seconds. (F) K = 7, N = 7, 26 seconds.
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woven cloth. It adds weave detail to the high resolution output
while matching the constraint, including the small red spot
in the leaf/stalk pattern and various irregularities in the leaf
contours (submitted images).

C. Multiple constraints
In Figure 7B we demonstrate the use of multiple constraints

for dramatic 10× linear magnification of brick (i.e., |O| =
100|C|). The low-resolution brick wall provides one con-
straint, and the black lines provide a second constraint guiding
where the grout should be. CMS maintains the brick color
variations and shadows cast by bricks on grout, while also
keeping the brick/grout edges reasonably straight, as dictated
by the second constraint. This mechanism is different from that
of Liu et. al. [28] because CMS has no implicit knowledge of
grid structure apart from what is explicitly specified in the
constraint.

D. Artistic filters
For the Freud painting example we first use the simple

luminance matching technique of Image Analogies to bring
the S and Q color spaces into correspondence with C (Figure
8B). We show outputs of the IA, IQ, and Schödl algorithms.
The results are comparable, but CMS better preserves details
like the thin trees in the center and right, and IQ suffers from
some repetitive block copying.

E. Texture transfer
Texture transfer involves a tension between matching the

constraint and generating convincing texture. Figure 8C shows
that CMS can match the constraint well and generate a nicer
weave texture than IA and IQ. IA’s output is less coherent
than the original weave texture, and IQ’s output has visible
horizontal / vertical boundaries (see closeup). For the rice
texture in Figure 8D, CMS does less repetitive copying and
generates better seams than IQ in the mouth region. Note that
in these examples, both S and Q are the same image, so only
S is shown in the figures.

F. Texture-by-numbers
Some texture-by-numbers examples are shown in Figures

8A, 8E, and 8F. The cloth example (8A) benefits greatly from
patch-based techniques. CMS handles the distortion of the
cloth border by synthesizing the confluence of the line pat-
terns; IA produces a much less coherent texture. IQ performs
better than IA, but due to the sensitivity of its patch size
parameter, it is unable to capture all structures in the output
seamlessly (the cloth border in particular). In Figure 8E, CMS
avoids synthesizing unnatural streaks in the water that arise in
the IA output from “garbage” growing [29], a phenomenon
where the synthesis algorithm gets stuck in one part of the
search space. It also captures the inner contours of the arch
better than IQ, which demonstrates noticeable block artifacts
from raster-scan square patch refinement.

Figure 8F shows a challenging case for CMS. For this
example, the mapped source image Q does not have many

N = 3, K = 1 N = 7 N = 11

K = 0.05 K = 0.01N = 3, K = 0.1

(A) Effect of varying the constraint match parameter K

(B) Effect of varying the neighborhood size parameter N

Fig. 10. Effect of varying synthesis parameters, demonstrated on rice texture
transfer example. (A) As the constraint match parameter K tends to zero,
CMS gives less and less weight to the structure of the face, degenerating into
normal texture synthesis. (B) As N is increased, CMS starts favoring large
structures over small features. The face is preserved, but the details are lost.

regions matching the exact curves of C, so while CMS
generates reasonable output, there is still some irregularity in
the edges of the symbol in the field.

G. Additional results
Figure 9 shows additional results demonstrating the versa-

tility of our technique. Due to space constraints, we could not
include comparisons to all of the other competing algorithms;
however, we feel our comparisons in Figure 7 and Figure 8
are representative.

H. Discussion
We now discuss strengths and weaknesses of CMS and com-

pare patch-based and pixel-based synthesis with constraints.
Correspondence between Q and C: For CMS, IA, and IQ
to make sense as actual analogy computations, there must be
some correspondence between Q and C; otherwise, the com-
parisons between these two images become counterintuitive.
Therefore, for applications such as artistic filtering, it is hard
to define success. Although CMS supports these applications,
the algorithm is intended for use in situations where Q and
C actually represent the same type of data, such as in detail
synthesis or texture-by-numbers.
Ensuring B has the right properties: The B function
(Equation 5) is not a metric, and thus it often violates a
condition known as regularity [26]. If B is not regular, then
the max-flow/min-cut operation in a single minimization step
can actually cause the overall energy to go up, because certain
flow graph edges will have negative weights. To prevent this
from happening, we delete these negative edges from the graph
prior to each α-expansion move computation. It can be shown
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that this modified graph will never result in an expansion move
that increases the total energy; for details, refer to [30].
Synthesis parameters: CMS synthesis is controlled primarily
by N , the neighborhood size, and K, the constraint match
parameter; the settings for our outputs are given in Figures 7,
8, and 9. For a user who has experience with CMS, it usually
takes 2-3 tries to find a good set of parameters for a given
example. Figure 10 shows the effects of parameter changes
on the rice texture transfer example (Figure 8D). In general:

• Large N captures larger coherent structures. Small N
adapts better to curves and other smaller features, espe-
cially when the source data does not have exact matches
for them.

• Large K forces a closer constraint match, which is
important for detail synthesis and some filters. Small K
enforces texture seamlessness, which is important in more
loosely constrained applications like texture transfer, at
the cost of capturing the structure of the constraint.

Advantage of pixel-based methods: Patches do a very good
job of preserving local coherence, but pixels are much better
at adapting to radical changes in structure (Figure 8F), which
typically cannot be seamlessly composed of multiple patches,
even if color variations across the structure are only subtle.
Wu et. al. [31] and Liu et. al. [28] introduce warping, which
works quite well in small amounts, but heavy deformation
causes unwanted blurring. This is an area for future work.
Good source data is needed: If the sources S are chosen
such that that Q matches poorly with C, then the resulting
output will suffer. For best results, analogy-based synthesis
algorithms require enough example data to account for all
structures present in C.

VI. CONCLUSIONS

Constrained texture synthesis is a powerful capability with
many applications. This work shows how to cast constrained
synthesis as energy minimization and optimize it using graph-
cut minimization. The resulting synthesis algorithm respects
constraints and yields high-quality results much faster than
existing algorithms. Therefore it should have significant impact
on the use of image analogy techniques in practice.

We make the following contributions: we formulate con-
strained texture synthesis in a principled way as a minimiza-
tion problem that requires simultaneous optimization of both
the agreement between the output and constraint image, and
the seamlessness of the patches making up the output. We
show how to approximate this energy minimization so that
a graphcut minimization algorithm can be used to efficiently
find solutions. Finally, we show the particular utility of this
algorithm in solving the problem of detail synthesis.

We have demonstrated CMS on a range of applications:
detail synthesis, texture-by-numbers, artistic filters, and other
image analogies. We have also demonstrated a novel use of
multiple constraints for dramatic detail synthesis (10× zoom).

In future work, more general patch and color transfor-
mations would extend the power of this technique. Another
interesting avenue is using the energy minimization framework
to implement perceptual measures of texture quality.
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