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Abstract
Recent studies of irregular applications such as finite-element mesh
generators and data-clustering codes have shown that these appli-
cations have a generalized data parallelism arising from the use
of iterative algorithms that perform computations on elements of
worklists. In some irregular applications, the computations on dif-
ferent elements are independent. In other applications, there may
be complex patterns of dependences between these computations.

The Galois system was designed to exploit this kind of irregular
data parallelism on multicore processors. Its main features are
(i) two kinds of set iterators for expressing worklist-based data
parallelism, and (ii) a runtime system that performs optimistic
parallelization of these iterators, detecting conflicts and rolling
back computations as needed. Detection of conflicts and rolling
back iterations requires information from class implementors.

In this paper, we introduce mechanisms to improve the execu-
tion efficiency of Galois programs: data partitioning, data-centric
work assignment, lock coarsening, and over-decomposition. These
mechanisms can be used to exploit locality of reference, reduce
mis-speculation, and lower synchronization overhead. We also ar-
gue that the design of the Galois system permits these mechanisms
to be used with relatively little modification to the user code. Fi-
nally, we present experimental results that demonstrate the utility
of these mechanisms.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming—Parallel Programming; D.3.3
[Programming Languages]: Language Constructs and Features—
Data types and structures

General Terms Languages
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1. Introduction
A pessimist sees the difficulty in every opportunity;
an optimist sees the opportunity in every difficulty.

—Sir Winston Churchill

Most multicore applications are irregular programs that manip-
ulate pointer-based data structures like trees and graphs, but little is
known about the nature of concurrency in these programs, let alone
how to exploit this concurrency effectively on multicore processors.

Recent case studies have shown that irregular programs have a
generalized data parallelism that manifests itself as iterative com-
putations over worklists of various kinds [17]. Consider 2-D Delau-
nay mesh refinement, an important irregular code used in graphics
and finite-element solvers. The input to the algorithm is an initial
triangulation of a region in the plane, as shown in Figure 1. Some
of the triangles in this mesh may be badly shaped (these are shown
in black in Figure 1(a)); if so, an iterative refinement procedure,
shown in Figure 2, is used to eliminate them from the mesh. In
each step, the refinement procedure (i) picks a bad triangle from
the worklist, (ii) collects a bunch of triangles in the neighborhood
of that bad triangle (called its cavity, shown in dark grey in Fig-
ure 1(a)), and (iii) re-triangulates that cavity (shown in light grey
in Figure 1(b)). If this re-triangulation creates new (smaller) badly-
shaped triangles in the cavity, they are added to the worklist. The
shape of the final mesh depends on the order in which bad triangles
are processed, but it can be shown that every processing order will
produce a final mesh without badly shaped elements. From this de-
scription, it is clear that bad triangles whose cavities do not overlap
can be processed in parallel; moreover, since each bad triangle is
processed identically, this is a form of data parallelism. Abstractly,
the worklist implements a set, and the data parallelism arises from
computations performed on each element of that set.

Exploiting this kind of data parallelism in irregular programs
can be more complex than exploiting data parallelism in array pro-
grams. Data parallelism in array programs usually manifests itself
as FOR-ALL loops (that is, FORTRAN-style DO loops over inte-
ger intervals in which the iterations can be proven statically to be
independent). Data parallelism in irregular programs manifests it-
self as iteration over sets, but the iterations are not necessarily inde-
pendent. Although static analysis techniques such as points-to and
shape analysis [8, 10, 18, 24] can be used in some cases to prove
independence, there may be complex dependences between com-
putations with different set elements, as in Delaunay mesh genera-
tion. Static analysis fails to discover the potential data parallelism
in these cases.

One solution is to use a BSP-style bulk-synchronous model
of computation [30], and execute maximally independent subsets
of iterations in each super-step. Recently, Gary Miller et al. per-
formed a theoretical study of such an execution scheme for Delau-
nay mesh refinement [11]. A different solution is to exploit specula-
tive or optimistic parallelism [17]. In the Galois system, described



(a) Unrefined Mesh (b) Refined Mesh

Figure 1. Mesh refinement.

1: Mesh m = /* read in initial mesh */
2: WorkList wl;
3: wl.add(mesh.badTriangles());
4: while (wl.size() != 0) {
5: Element e = wl.get(); //get bad triangle
6: if (e no longer in mesh) continue;
7: Cavity c = new Cavity(e);
8: c.expand();
9: c.retriangulate();
10: mesh.update(c);
11: wl.add(c.badTriangles());
12:}

Figure 2. Pseudocode of the mesh refinement algorithm

briefly in Section 2, data parallelism is expressed using set itera-
tors, and these iterators are executed concurrently by some num-
ber of threads that pull elements one at a time from the underlying
worklist and perform the appropriate computations on that element.
Shared-memory is implemented as a collection of concurrent ob-
jects. To ensure that the results of the concurrent execution are con-
sistent with the sequential semantics of the program, it is necessary
to have a runtime system that detects conflicting method accesses
made by different concurrently executing iterations. If a conflict
is detected, it is necessary to roll back one of the conflicting it-
erations and undo any effects it may have had on shared objects.
This is accomplished by using commutativity assertions and undo
methods specified by the class implementor, as described briefly in
Section 2 [17].

We have used the Galois system to successfully parallelize a
number of irregular applications, including complex applications
that perform refinement and coarsening. However, one of the main
lessons from the past twenty years of parallel programming is that
exploiting parallelism in a scalable way requires attending to lo-
cality. Unfortunately, the current Galois system does not attempt
to exploit locality of reference. Sequential implementations of De-
launay mesh refinement often implement the worklist as a stack
because doing so improves locality. When a cavity is retriangu-
lated, a number of small bad triangles may be created in the cavity,
and working on these bad triangles right away is obviously good
for locality. However, using a LIFO worklist in the parallel imple-
mentation causes the abort ratio to increase dramatically because
it is likely that bad triangles created within some cavity will be
scheduled for execution contemporaneously. Therefore, in the cur-
rent Galois system, a core is given randomly chosen elements from
the worklist, which can be good for load balancing and for avoid-
ing speculation conflicts [17] but bad for locality since the core may
end up working on bad triangles from all over the mesh. Another
problem with the current Galois system is that it does fine-grain
synchronization for conflict detection, which can be inefficient.

In this paper, we introduce four interlocking mechanisms for
addressing these problems: data partitioning, data-centric work
assignment, lock-coarsening, and over-decomposition. Partitioning
assigns elements of data structures to cores. For example, in De-
launay mesh refinement, the mesh is partitioned by assigning tri-
angles to cores. When a core goes to the worklist to get work, the
data-centric work assignment policy ensures that the core is always
given a triangle in its partition. If mesh partitions are contiguous re-
gions of the mesh, this work assignment strategy promotes locality.

In the context of optimistic parallelization, this data-centric par-
allel execution strategy has another significant advantage: the prob-
ability of conflicts between concurrent, speculatively executing it-
erations can be dramatically reduced. In Delaunay mesh refine-
ment, different cores work on different regions of the mesh, and
conflicts can happen only when cavities cross partitions, which is
rare if partitions are contiguous regions of the mesh.

To reduce overheads further, we also replace fine-grain synchro-
nization on data structure elements with coarser-grain synchroniza-
tion on data structure partitions. A core can work on its own ele-
ments without synchronization with other cores, but when it needs a
“foreign” element, it must acquire the lock on the appropriate parti-
tion. Therefore, in Delaunay refinement, synchronization is needed
only if a cavity crosses partition boundaries.

Finally, to ensure that a core has work to do even if some of its
data is locked by other cores, data structures are over-decomposed,
that is, we create more data partitions than there are cores so that
each core has multiple partitions mapped to it. Thus, even if one or
more partitions assigned to a core are locked by other cores, that
core may still have work to do.

The rest of this paper is organized as follows. In Section 2, we
give a high-level description of the Galois system, which is the ba-
sis for the work described in this paper. In Section 3, we describe
how the key mechanisms of data partitioning, over-decomposition,
and data-centric assignment of work are implemented within the
Galois system. In Section 4, we discuss the implementation of
lock coarsening. In Section 5, we present experimental results that
show the performance improvements from using these mechanisms
for four applications: Delaunay mesh refinement, the Boykov-
Kolmogorov algorithm (used in image segmentation) [1], a graph-
cuts code that uses the preflow-push algorithm [5], and agglomera-
tive clustering [29]. For each application, we describe the algorithm
and key data structures as well as opportunities for exploiting par-
allelism and data partitioning. We conclude in Section 6 with a
discussion of related work and future research directions.

2. The Galois system
In this section, we describe the Galois system at a high level to pro-
vide background for the rest of the paper. The Galois programming
model [17] is a concurrent, object-based shared-memory model that
can be implemented on top of an object-oriented language like Java.
The design is based on the belief that most programmers should
write code with well-understood sequential semantics (we call this
client code), while the complexity of parallel programming is hid-
den within library code and the runtime system.

There are three main aspects to the Galois system: (1) a small
number of syntactic constructs for packaging optimistic parallelism
as iteration over ordered and unordered sets, (2) assertions about
methods in class libraries, and (3) a runtime scheme for detecting
and recovering from potentially unsafe accesses to shared memory
made by an optimistic computation. Each of these aspects is sum-
marized below. A detailed description can be found in [17].

2.1 Constructs for optimistic parallelism
The client code is not explicitly parallel. Instead, data parallelism
is implicit and is packaged into two constructs called optimistic set
iterators.

• Set iterator: for each e in Set S do B(e)
The loop body B(e) is executed for each element e of set S.
Since set elements are not ordered, this construct asserts that in
a serial execution of the loop, the iterations can be executed in
any order. There may be dependences between the iterations, as
in the case of Delaunay mesh refinement, but any serial order of



1: Mesh m = /* read in initial mesh */
2: Set wl;
3: wl.add(mesh.badTriangles());
4: for each e in wl do {//optimistic set iterator
5: if (e no longer in mesh) continue;
6: Cavity c = new Cavity(e);
7: c.expand();
8: c.retriangulate();
9: m.update(c);
10: wl.add(c.badTriangles());
11:}

Figure 3. Delaunay mesh refinement using set iterator

executing iterations is permitted. When an iteration executes, it
may add elements to S.

• Ordered-set iterator: for each e in Poset S do B(e)
This construct iterates over a partially-ordered set (Poset) S. It
is similar to the Set iterator above, except that any execution
order must respect the partial order imposed by the Poset S.

Figure 3 shows client code for Delaunay mesh refinement. The
sequential semantics of the set iterators make it easier to write,
understand, and debug the client code.

Although the semantics of Galois iterators can be specified
without appealing to a parallel execution model, these iterators pro-
vide hints from the programmer to the Galois runtime system that
it may be profitable to execute the iterations in parallel. Of course
any parallel execution must be faithful to the sequential semantics.
The Galois concurrent execution model is the following. A master
thread begins the execution of the program and also executes the
code outside iterators. When this master thread encounters an it-
erator, it enlists the assistance of some number of worker threads
to execute iterations concurrently with itself. The assignment of
iterations to threads is under the control of a scheduling policy im-
plemented by the runtime system. For now, we assume that this as-
signment is done dynamically to ensure load-balancing. All threads
are synchronized using barrier synchronization at the end of the it-
erator.

Given this execution model, the main technical problem is to
ensure that the parallel execution respects the sequential semantics
of the iterators. This is a non-trivial problem because each iteration
may invoke methods of objects in shared memory, so we must
ensure that these method invocations are properly coordinated.
Section 2.2 describes the information that must be specified by
the Galois class writer to enable this coordination. Section 2.3
describes how the Galois runtime system uses this information to
ensure that the sequential semantics of iterators are respected.

2.2 Commutativity assertions and undo methods
A simple way to ensure serializability of iteration execution is to
implement strict two-phase locking [2]. Every object in shared-
memory has a lock associated with it, and this lock must be ac-
quired before any of the methods of that object can be invoked.
Locks are held until the iteration completes. This ensures serializ-
ability, provided deadlocks are handled by some other mechanism.

Unfortunately, two-phase locking is too restrictive for our ap-
plications because it can limit parallelism. The iterator that imple-
ments the worklist in Delaunay mesh refinement must have some
variable that points to the next bad triangle to be handed out. Since
this variable is read and written by a thread when it acquires work, it
must be guarded by a lock. Two-phase locking requires the thread
to hold this lock until the processing of the bad triangle is com-
pleted, which prevents other threads from accessing the worklist
concurrently.

One solution is to introduce explicit concurrency into the pro-
gramming model and to use notions like open nested transactions
to address this problem [21]. As mentioned before, one of the de-
sign philosophies of the Galois system is that the client should have
a simple sequential semantics, so this solution is not appropriate.
In Galois, we solve the problem by exploiting the commutativity
of method invocations. Intuitively, it is obvious that method invo-
cations to a given object from two iterations can be interleaved
without losing serializability provided that these method invoca-
tions commute. This ensures that the final result is consistent with
some serial order of iteration execution. In the Delaunay example,
each iteration removes one element from the current set of bad tri-
angles in the beginning and may add some number of bad triangles
at the end. Since set insertions and deletions of distinct elements
commute, exploiting commutativity of set operations allows mul-
tiple iterations of the set iterator to be executed in parallel without
loss of serializability.

It is important to note that what is relevant for our purpose
is commutativity in the semantic sense. The internal state of the
object may actually be different for different orders of method
invocations even if these invocations commute in the semantic
sense. For example, if a set is implemented using a linked list
and two elements are added to this set, the concrete state of the
linked list will depend in general on the order in which these
elements were added to the list. However, what is relevant for
parallelization is that the state of the set abstract data type, which
is being implemented by the linked list, is the same for both orders.
In other words, we are not concerned with concrete commutativity
(that is, commutativity with respect to the implementation type of
the class), but with semantic commutativity (that is, commutativity
with respect to the abstract data type of the class).

Because iterations are executed in parallel, it is possible for
commutativity conflicts to prevent an iteration from completing.
Once a conflict is detected, some recovery mechanism must be in-
voked to allow execution of the program to continue despite the
conflict. Because our execution model uses the paradigm of op-
timistic parallelism, our recovery mechanism rolls back the exe-
cution of the conflicting iteration. To permit this, every method
of a shared object that may modify the state of that object must
have an associated inverse method that undoes the effects of that
method invocation. For example, for a set, the inverse of add(x)
is remove(x), and the inverse of remove(x) is add(x). As
in the case of commutativity, what is relevant for our purpose is an
inverse in the semantic sense; invoking a method and its inverse in
succession may not restore the concrete data structure to its original
state.

Since we are interested in semantic commutativity and undo, it
is necessary for the Galois class designer to specify this informa-
tion.

2.3 Runtime system
The runtime system is responsible for (i) assigning iterations to
threads, (ii) detecting conflicts between concurrently executing it-
erations, (iii) rolling back iterations when conflicts occur and (iv)
ensuring that iterations commit in an order that respects the order-
ing constraints of the iterator [17].

When a thread goes to the runtime system for work, there may
be many elements in the worklist of that iterator, so the runtime
system needs to implement some policy for determining which
element to hand out. The Galois system uses a random assignment
policy as the default.



3. Data partitioning and data-centric work
assignment

In this section, we describe how data and computations are par-
titioned between cores to promote inter-core locality. As an extra
benefit, this partitioning can also reduce the probability of specu-
lative conflicts. There are a number of requirements that any such
scheme should satisfy.

• Some applications may use a mixture of partitioned and non-
partitioned data structures, so any scheme for adding partitioned
data structures to the Galois system must work smoothly with
non-partitioned data structures.

• The programmer must be able to choose whether to partition a
data structure or not, and if so, how it should be partitioned. The
system should provide default partitioners for important data
structure classes but the programmer must be able to override
these.

• The client code should change as little as possible when a
non-partitioned data structure is replaced with a partitioned
data structure (compare this with distributed-memory program-
ming).

Figure 4 illustrates how partitioning works in our implementa-
tion. In this figure, the data structure is a regular grid, which is the
key data structure used in image segmentation applications such as
the Boykov-Kolmogorov code described in Section 5. In our ap-
proach, partitioning this grid is done in two stages: the nodes of
the grid are mapped to abstract processors in an abstract domain,
and then the abstract domain is mapped to the actual cores. As we
discuss in Section 3.1, this two-level partitioning approach has sev-
eral advantages over the more obvious approach of mapping data
structure elements directly to cores. We note that a similar two-
level mapping approach is used in HPF [14]. Section 3.2 describes
the mapping of data structures to abstract domains. Finally, Sec-
tion 3.3 describes how the runtime system performs data-centric
assignment of work to cores.

3.1 Abstract Domains
The use of abstract domains simplifies the implementation of over-
decomposition. The basic idea of over-decomposition is to partition
data and computation into more partitions than the number of cores
in the machine, so that multiple partitions are mapped to each core.
For example, in Figure 4, there are four partitions, each of which is
mapped to one abstract processor, and each core has two abstract
processors mapped to it.

Over-decomposition is the basis for several important mecha-
nisms such as work-stealing and multi-threading. Work-stealing is
an implementation of dynamic load-balancing in which idle cores
are allowed to steal work from overloaded cores. To promote lo-
cality of reference, it is useful to package work together with its
associated data, and move both when the work is stolen. Over-
decomposition enables this to be implemented as a remapping of
abstract processors to cores, which simplifies the implementation.
Another use of over-decomposition is multithreading: if the cores
support multi-threading, each abstract processor can be executed as
a thread on the core it is mapped to, and core utilization may im-
prove. Finally, over-decomposition enables an important optimiza-
tion in our system called lock coarsening, described in Section 4.

Formally, an abstract domain is simply a set of abstract proces-
sors, which may optionally be related by some topology (e.g., a grid
or a tree). Abstract domains are implemented as objects in the Ga-
lois system, which expose a distribute method that takes as an
argument the number of cores that the abstract processors should
be mapped to. Invoking this method assigns abstract processors to
cores.

Graph
Abstract
Domain

Physical
Cores

Figure 4. Data partitioning in the Galois system

3.2 Logical and physical partitioning of data structures
In discussing data structure partitioning, it is useful to distinguish
between two kinds of data partitioning that we call logical parti-
tioning and physical partitioning.

In logical partitioning, data structure elements are mapped to
abstract processors, but the data structure itself is a single entity
that is not partitioned in any way. Logical partitioning can be
implemented very simply by using an extra field in each data
structure element to record the identity of the abstract processor
that owns that element, as is shown graphically in Figure 4.

Logical partitioning is useful for many problems — for exam-
ple, it can be used to perform data-centric scheduling of iterations
in Delaunay mesh refinement. When a core goes to the commit pool
to get a bad triangle to work on, the commit pool can examine the
worklist of bad triangles and return a bad triangle mapped to that
core. If mesh partitions are contiguous regions of the mesh, cores
may end up working mostly in their own partitions, improving lo-
cality and reducing synchronization. Note that this idea does not
require any modification to the client code; only the graph class
and the runtime system need to be modified to implement this ap-
proach.

Physical partitioning takes this one step further and re-implements
each partition as a separate data structure that can be accessed in-
dependently of other partitions. The main reason for doing this is
to reduce contention for shared data structures. For example, in
Delaunay mesh refinement, the worklist of bad triangles is modi-
fied by all cores and there can be a lot of contention. If this data
structure is partitioned, each core can manipulate its own portion of
the global worklist without interference from other cores. Note that
while the underlying implementation of the worklist changes, the
interface to the worklist remains the same. From the perspective of
the client code, the worklist is still a single object, and the client
code accessing it does not have to change. The “root” of this object
is read-only and ends up getting cached at all the cores, reducing
contention. Note that physical partitioning in the Galois system is
not the same as the data structure partitioning that is performed in
distributed memory programming. In the latter case, the data struc-
ture is fully partitioned and a processor cannot directly access data
assigned to other processors.

The Galois class library provides implementations of common
data structures with both logical and physical partitioning. Applica-
tion programmers can override methods in these classes to modify
partitioning algorithms. This is important because it is unlikely that
any one partitioning function for an abstract data type is adequate
for all applications. Consider, for example, the Graph class. Three
of the four applications discussed in Section 5 use graphs, but in
the image segmentation applications, the graph is a regular grid,
while in Delaunay mesh refinement, the graph is irregular and has
no particular structure. Many algorithms have been developed for
irregular graph partitioning [13, 15, 28]. One of the simplest ap-
proaches for graph bisection is to perform a breadth-first traversal
of the graph, starting from some arbitrary node and stopping when
half the nodes have been traversed. This process can be applied



recursively to partition the mesh further. Kernighan and Lin pro-
posed a local refinement heuristic to reduce the number of cross-
partition edges, a useful measure of partition quality in some appli-
cations (the set of cross-partition edges is called the graph separa-
tor) [15]. At the other extreme in complexity are spectral methods
that perform eigenvalue computations to determine good graph par-
titions [28]. However, these partitioning methods are not necessary
for regular grids and may even produce poor results compared to a
simple block-based partitioning.

At present, the Galois class library provides a simple irregular
graph partitioner based on breadth-first graph traversal starting
from a boundary node of the graph. It also supports block-block
partitioning of two and three-dimensional rectangular grids. These
partitioners can be overridden by the application programmer if
necessary.

Finally, it may also be useful to cache boundary information
for a data structure’s partitions. For example, graph nodes that
are adjacent to nodes assigned to another core may be labeled
as boundary nodes. This exposes some significant optimization
opportunities, described in Section 4. This is easily implemented
by adding an extra field in each data structure element to record
this value, which is set when the data structure is partitioned.

3.3 Computation partitioning
The final step is to ensure that the assignment of work to cores is
data-centric. When the Galois system starts up, it spawns a thread
for each core. In Java, the virtual machine maps these threads to
kernel threads, which the OS is then responsible for mapping to
physical cores. Threads spawned by the Galois system rarely sleep,
and remain alive until the parallel execution is complete. Hence
each thread is effectively “bound” to a specific core. Thus, if data
structure elements mapped to a core are only ever touched by the
thread mapped to that core, we will achieve significant inter-core
locality: very little data will move back and forth between the
various cores’ caches.

During parallel execution of an iterator, the scheduler in the run-
time system assigns work to cores dynamically, but in a partition-
sensitive way. If the set being iterated over is not partitioned,
the scheduler returns a random element from the current work-
list, as in the old Galois system. Otherwise, it returns an element
that is mapped to that core. This ensures that worklist elements
in a given abstract processor will only be worked on by a single
thread. Furthermore, because other data structures in the system
may be mapped to the same abstract processor, making the sched-
uler partition-aware can lead to inter-core locality benefits for other
structures as well. For example, in Delaunay mesh generation, this
data-centric scheduling policy ensures that different cores work on
triangles from different partitions of the mesh, reducing data con-
tention and the likelihood of speculation conflicts.

It is not clear that data-centric scheduling is always the best
scheduling policy when using partitioned data structures. However,
the number of possible scheduling policies is legion, and imple-
menting and evaluating them is beyond the scope of this paper. We
leave it to future work.

3.4 Discussion
Some applications (e.g., Delaunay mesh generation) add new ele-
ments to data structures during execution, and these elements must
be mapped to abstract processors as well. The mutator methods
of the data structure (primarily add methods) must be modified
slightly to handle this. Deciding how this mapping is done is a
policy issue, rather than one of correctness. The Galois system’s
default policy is to map newly added elements to the abstract pro-
cessor executing the iteration that invoked the mutator method. In
Delaunay mesh refinement, this policy means that new triangles

created in the cavity of a bad triangle get assigned to the same ab-
stract processor as that bad triangle, which is the right policy. Of
course, the application programmer can override the add method
of the Graph class to change this policy.

3.5 Implementation in the Galois system
Abstract domains are implemented as objects in the Galois system,
which expose a distributemethod, which takes as an argument
the number of cores that the abstract processors should be mapped
to. Invoking this method performs the distribution of abstract pro-
cessors to cores.

The implementation of partitioning in the Galois system is
straightforward. Data structures that can be logically partitioned
implement the Partitionable interface, which exposes a
method called partition. This method accepts as an argument
an abstract domain and applies a partitioning function to the data
structure, assigning elements of the structure to abstract proces-
sors in the specified domain. To change the partitioning function, a
programmer simply overrides the partition method.

The objects of the data structure that are assigned to abstract
processors (such as nodes and edges in a graph) implement the
PartitionObject interface, which provides simple methods
to set and query the abstract processor that the object is assigned
to. If boundary information is tracked, objects also implement the
BoundaryObject interface, which allows the maintenance of
this information.

Physically partitioned data structures implement the same inter-
faces as logically partitioned structures, but also subclass the data
structure to provide a partitioned implementation. As mentioned
previously, this does not require changing any client code that in-
teracts with the data structure.

Computation partitioning is accomplished purely by a change to
the Galois run-time system. When iterating over a partitioned set,
the run-time uses partition-aware scheduling rather than random
scheduling. This requires no intervention from the programmer
(aside from using a partitioned set), and does not change the client
code.

4. Lock coarsening: an optimization
A significant source of overhead in the Galois system is the time
spent in performing commutativity checks. There are two issues:
(i) the code for commutativity checks is complex and (relatively)
expensive; and (ii) even if the data structure is partitioned, the
conflict logs are not partitioned and thus can become a bottleneck
when multiple concurrent iterations access the structure. Data and
computation partitioning enable a new optimization that we call
lock coarsening, which addresses this problem.

4.1 Locks on abstract processors
When a data structure is partitioned, we can often take advantage
of the partitioning to replace Galois commutativity checks with
two-phase locking based on locking entire partitions. A lock is
associated with each abstract processor in the abstract domain.
Methods acquire locks on relevant partitions before accessing any
elements mapped to these partitions. If any of those locks are
already held by other iterations, a conflict is detected and the
runtime system rolls back one of the iterations, as before. All locks
are held until the iteration completes or aborts.

We implement two optimizations to improve the performance
of this basic locking scheme. First, locks on abstract processors
are cached by the iteration that holds them. If an iteration accesses
multiple elements of a data structure and all of them are mapped to
the same abstract processor, the lock on that abstract processor is
acquired only once. Furthermore, elements of other data structures



that are also mapped to that abstract processor can be accessed
without synchronization. We call this optimization lock caching.

Second, if boundary information is provided by a data structure,
we can elide several of the lock acquires entirely. If an element x
accessed by a method is not marked as a boundary, the only way it
could have been reached is if the iteration had already accessed the
abstract processor that element is mapped to. Hence, the iteration
does not need not attempt to acquire the lock on that abstract
processor. In other words, we need only attempt to acquire locks
when accessing boundary objects.

Lock coarsening thus replaces expensive commutativity checks
with simple lock acquires and releases, which can dramatically re-
duce overhead. Furthermore, by using locks to detect conflicts, the
burden of conflict checking is no longer centralized in a single con-
flict log, eliminating a significant concurrency bottleneck. The up-
shot of lock coarsening, when combined with the two optimizations
(lock caching and synchronization on boundaries) is that while an
iteration is working on elements mapped to a single abstract proces-
sor, no synchronization is required beyond the initial lock acquire.
Synchronization instead only occurs when an iteration must cross
partition boundaries. In many problems, boundary size grows sub-
linearly with data structure size (e.g., in a planar graph, boundary
size grows as the square root of graph size), and hence synchro-
nization overheads decrease as problem size increases.

4.2 Need for over-decomposition
While lock coarsening can lead to a significant improvement in run-
time overheads, it comes at the cost of concurrency. Conceptually,
when a thread accesses a partition of a data structure, it “owns”
all the elements in that partition, preventing any other thread from
accessing them. If a thread crosses partition boundaries and hence
must access two partitions, it will own an even greater portion of
the data structure.

This problem can be addressed by over-decomposition. Map-
ping multiple abstract processors to a core makes it more likely that
a thread can continue to do useful work even if one or more of its
abstract processors are locked by threads executing other iterations.

We do not yet have a good understanding of how much over-
decomposition is appropriate. Beyond some level of over-decomposition,
conflicts become sufficiently rare that further over-decomposition
will not improve performance. In fact, excessive over-decomposition
may reduce performance. A simple reductio ad absurdum shows
this to be the case: if we overdecompose until there is a only sin-
gle element mapped to each abstract processor, we will essentially
be performing fine-grained locking. While this will minimize con-
flicts, it will result in many more synchronization operations be-
cause each new object accessed will require that a new lock be
acquired, leading to higher overhead. We leave the subject of de-
termining the right level of over-decomposition for future work.

4.3 Implementation in the Galois system
Over-decomposition is trivially implemented by using abstract do-
mains with more abstract processors than physical cores in the sys-
tem.

Commutativity checks in the Galois system are implemented by
wrapping shared objects in Galois wrappers. The wrapper contains
the conflict log for the wrapped object and performs commutativity
checks when a method is invoked. If the check is successful, the
appropriate method of the wrapped object is called. Because lock
coarsening is a replacement for commutativity checks, it is imple-
mented by providing a second Galois wrapper for a data structure.
Rather than performing commutativity checks, the new wrapper
uses the lock coarsening approach for conflict detection. Because
both the old and new Galois wrappers provide the same interface,

the client code is agnostic to which form of conflict detection is
being used and does not need to change.

5. Experimental results
We evaluated our approach on four applications from the graphics
domain. Although some regular graphics applications are stream-
ing applications that can be executed efficiently on GPUs, the ap-
plications we consider in this section are very irregular, and we
believe they are better suited for execution on multicore processors
than on GPUs.

The machine we used in our studies is a dual-processor, dual-
core 3.0 GHz Xeon system with 16KB of L1 cache per core and
4MB of L2 cache per processor. In our initial experiments, we
found performance anomalies arising from automatic power man-
agement within the processor. At the suggestion of researchers at
Intel, we down-clocked the processor to 2.0 GHz, which eliminated
the performance anomalies.

We implemented the Galois system, with the enhancements dis-
cussed in this paper, in Java 1.6. Given the relatively small number
of cores, we found there was no need for multi-threading or work
stealing in our applications, so we did not evaluate these mech-
anisms. They are likely to be more important on larger numbers
of cores. To take into account variations in parallel execution as
well as the overhead of JIT compilation, each experiment was run
5 times under a single JVM instance, and the fastest execution time
was recorded. Garbage collection can also have a significant im-
pact on performance; to reduce its effects, a full GC was performed
before each execution. We used a 2GB heap.

5.1 Delaunay mesh refinement
This application is the running example used in this paper, and it is
described briefly in Section 1. Pseudocode is shown in Figure 2.

Opportunities for exploiting parallelism. The natural unit of
work for parallel execution is the processing of a bad triangle. Be-
cause a cavity is typically a small neighborhood of a bad triangle,
two bad triangles that are far apart on the mesh may have cavities
that do not overlap and therefore can be processed concurrently.

Partitioning strategy Meshes are usually represented as graphs
in which nodes represent mesh triangles and edges represent adja-
cency of triangles in the mesh. Partitioning the nodes of this graph
creates a partition of mesh triangles. The Galois Graph class uses
an adjacency list representation of graphs. A partitioner based on a
breadth-first walk of the graph is provided in this class, as described
in Section 3.

Experiments We implemented and evaluated 5 different versions
of the Delaunay benchmark:

• meshgenseq – this is a sequential implementation of Delaunay
mesh refinement. It contains no threading or synchronization.

• meshgengal – a Galois version of the benchmark that employs
the original Galois model. It uses the unordered set Galois
iterator, and commutativity checks to detect conflicts.

• meshgenpar – a version that partitions the worklist and the
graph. It uses commutativity checks for conflict detection, but
uses partition-aware scheduling as discussed in Section 3.

• meshgenlco – a version that implements lock coarsening as
well as partitioning.

• meshgenovd – a version that implements partitioning, lock
coarsening and over-decomposition. This version overdecom-
poses by a factor of 4 (i.e., four partitions per core)

In all these versions, the worklist is implemented as a stack to
promote locality (when the worklist is partitioned, each partition is



a stack). For meshgengal and meshgenpar , the code for commu-
tativity checks was written by hand. The input data was generated
using Jonathan Shewchuck’s Triangle program [27]. It had 100,364
triangles and boundary segments, of which 47,768 were bad.

Table 1 shows the wallclock time (in seconds) for the 5 bench-
marks. Figure 5 shows the speedup of the four parallel bench-
marks, relative to the running time of the best sequential ver-
sion meshgenseq . We see that meshgengal, the version that uses
the original Galois system achieves a speedup of only 1.2 on 4
cores1. meshgenovd, the version that combines partitioning, lock-
coarsening and over-decomposition, achieves the best speedup of
3.26 on 4 cores.

To understand the performance of the different versions, it is
useful to consider first the running times of these versions on a sin-
gle core (shown in the first column of Table 1). Table 2 presents
the same data and shows the overheads as a percentage of the ex-
ecution time of meshgenseq . The overheads for meshgengal and
meshgenpar are high because they perform full commutativity
checks to detect conflicts when running in parallel. These are pre-
cise but expensive checks. On the other hand, both meshgenlco

and meshgenovd use locks on partitions to perform conflict detec-
tion. These are less precise but also significantly less expensive, as
the overheads show.

Benchmark 1 core 2 cores 4 cores
meshgenseq 11.316 — —
meshgengal 13.956 9.935 9.433
meshgenpar 13.865 7.510 5.315
meshgenlco 11.924 6.629 3.925
meshgenovd 11.437 6.186 3.474

Table 1. Execution time (in seconds) for Delaunay mesh refine-
ment.
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Figure 5. Speedup vs. # of cores for Delaunay mesh refinement

Benchmark Overhead Abort Ratio (4 cores)
meshgengal 23.33% 85.22%
meshgenpar 22.53% 0%
meshgenlco 5.37% 56.47%
meshgenovd 1.07% 7.08%

Table 2. Uniprocessor overheads and abort ratios

Another important factor in overall performance is the abort ra-
tio (i.e., the ratio of aborted iterations to completed iterations, ex-
pressed as a percentage). A high abort ratio indicates significant
contention in the program, which may reduce performance. How-
ever, not all aborts are equally expensive since iterations that abort
soon after starting do not contribute as much to the overhead as it-
erations that abort close to the end do. Therefore, a high abort ratio
does not necessarily correlate to poor performance.

Table 2 shows the abort ratio for each of the parallel implemen-
tations when run on 4 cores. meshgengal has a very high abort
ratio. This is because the worklist is implemented as a stack, which

1 In PLDI 2007, we presented results for a Galois version of Delaunay mesh
refinement, but the worklist used in those experiments implemented random
choice, not LIFO order [17].

leads to high abort ratios for this application, as mentioned in Sec-
tion 1. When a cavity is re-triangulated, a number of bad triangles
may be created in the interior of the cavity. If the worklist is a stack,
all these bad triangles are adjacent to each other in the worklist, and
it is likely that they will be refined contemporaneously, leading to
conflicts. We experimented with a different scheduling policy for
meshgengal, selecting triangles at random from the worklist. This
dropped the abort ratio to zero, but the loss of locality attenuated
the benefits from concurrency. In spite of having uniprocessor over-
head similar to that of meshgengal, meshgenpar performs much
better because it has a very low abort ratio.

However, the abort ratio does not tell the full story, as meshgenlco

outperforms meshgenpar , achieving a speedup of 2.88 on 4 cores.
This version of the benchmark performs better for two reasons:
(i) lower overheads due to much simpler conflict checks and (ii)
the elimination of Galois conflict logs as a bottleneck, improving
concurrency. Thus we see that meshgenlco is not only faster than
meshgenpar but also scales better. Interestingly, the fairly high
abort rate does not hurt this implementation much. This is because
the lock-coarsened conflict detection triggers aborts at the very
beginning of an iteration, and most of the aborts are due to busy
waiting. Furthermore, because the aborted iteration is immediately
retried, the abort ratio is misleadingly high. These results suggest
that some kind of exponential back-off scheme may be appropriate
to reduce the abort ratio, although it is not clear that there will be
commensurate improvements in performance.

Finally, the over-decomposed version meshgenovd combines
the benefits of coarse-grain locking with a low abort ratio. Its abort
ratio is higher than that of meshgenpar because it is performing
coarser-grain locking, but its synchronization overhead is lower for
the same reason. Since a core has other partitions to work on if
one of its partitions is locked by another core, it does not keep
trying to reacquire the lock on its partition, and the abort ratio is
lower than it is for meshgenlco. It achieves a speedup of 3.26 on
4 cores, and thus has the best absolute performance as well as the
best scalability.

5.2 Image segmentation using the Boykov-Kolmogorov
algorithm

The Boykov-Kolmogorov algorithm is a maxflow algorithm used in
image segmentation problems [1] (abbreviated from here on as “B-
K algorithm”). Like the standard augmenting paths algorithm [4],
it performs a breadth-first walk over the graph to find paths from
the source to the sink in the residual graph. However, once an
augmenting path has been found and the flow is updated, the current
search tree is updated to reflect the new flow, and then used as
a starting point for computing the next search tree. In addition,
the algorithm computes search trees starting from both the source
and the sink. Experiments show that on uniprocessors, the B-K
algorithm outperforms other maxflow algorithms for graphs arising
from image segmentation problems [1].

The B-K algorithm is naturally a worklist-style algorithm: each
node at the frontier of a search tree is on the worklist. When a node
is removed from the worklist, its edges are traversed to extend the
search, and newly discovered nodes are added to the worklist. If
an augmenting path is found, the capacities of all edges along the
path are decremented appropriately. Nodes that are disconnected
as a result of this augmentation are added back to the worklist.
The pseudocode for this algorithm is given in Figure 6. For lack
of space, only the code for extending the search tree rooted at the
source is shown; the code for extending the search tree rooted at
the sink is similar.

Opportunities for exploiting parallelism As in the other applica-
tions, the order in which elements are processed from the work-
list is irrelevant to proper execution, although different orders will



1: worklist.add(SOURCE);
2: worklist.add(SINK);
3: for each Node n in worklist {

//n in SourceTree or SourceTree
4: if (n.inSourceTree()) {
5: for each Node a in n.neighbors() {
6: if (a.inSourceTree())
7: continue; //already found
8: else if (a.inSinkTree()) {

//decrement capacity along path
9: int cap = augment(n, a);

//update total flow
10: flow.inc(cap);

//put disconnected nodes onto worklist
11: processOrphans();
12: } else {
13: worklist.add(a);
14: a.setParent(n); //put a into SourceTree
15: }
16: }
17: } else { //n must be in the SinkTree
18: ... //similar to code for when n in Source Tree
19: }
20:}

Figure 6. Pseudocode for Boykov-Kolmogorov algorithm

produce different search trees. Therefore, we can process nodes in
the worklist concurrently, provided there are no conflicts. There are
two sources of potential conflicts: (i) concurrent traversals that grab
the same node for inclusion in the tree (so two threads try to set
the parent field of the same node concurrently (line 14)), and (ii)
augmenting paths that have one or more edges in common (line
9). Whether or not these potential conflicts manifest themselves as
actual conflicts at runtime depends on the structure of the graph
and the evolution of the computation, so optimistic parallelization
seems appropriate.

Partitioning strategy The Boykov and Kolmogorov algorithm
works for arbitrary graphs, but it is intended to be used for maxflow
problems that arise in image segmentation. Graphs arising in this
application have a regular grid structure, which can be partitioned
into rectangular blocks trivially. Moreover, the structure of the
graph does not change during execution (only the capacities of
edges are modified). Therefore, the partitioning can be done once
at the beginning, and no effort is needed to maintain appropriate
boundary information in the graph. Note that the flow variable
cannot be partitioned.

Experiments We ported a C implementation of Boykov and Kol-
mogorov’s augmenting paths algorithm to Java and used it to cre-
ate 5 different versions of the benchmark: pathsseq , pathsgal,
pathspar , pathslco and pathsovd. In all versions, the worklist is
implemented as a queue, matching the C implementation. The in-
put data is a 1024x1024 grid representing a checkerboard pattern.
Table 3 shows the wallclock time of the 5 benchmarks. Figure 7
shows speed-ups relative to the sequential version. Table 4 shows
the uniprocessor overheads and abort ratios of the four parallel ver-
sions on 4 cores.

Benchmark 1 core 2 cores 4 cores
pathsseq 384 — —
pathsgal 1200 1822 1779
pathspar 1203 738 463
pathslco 458 423 279
pathsovd 459 253 155

Table 3. Execution time (in milliseconds) for B-K maxflow.

We note that pathsgal actually slows down when run on mul-
tiple cores. This is due to the nature of the algorithm: much of the
work in an iteration is simply adding and removing elements from
the worklist. However, when dealing with non-partitioned data
structures, these operations must be synchronized. Even though the
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Figure 7. Speedup vs. # of cores for B-K maxflow

Benchmark Overhead Abort ratio
pathsgal 212.5% 16.68%
pathspar 213.3% 0%
pathslco 19.27% 55.88%
pathsovd 18.53% 0.04%

Table 4. Uniprocessor overheads and abort ratios

data structure used is the highly efficient ConcurrentLinkedQueue
from Java 1.6, this is sufficient to slow down pathsgal. Further-
more, the queue implementation of the worklist leads to poor lo-
cality. Multiple cores are often manipulating the same region of the
graph, leading to contention for data. This also manifests itself in
a fairly high abort rate despite the fine-grained contention manage-
ment afforded by Galois, leading to further performance degrada-
tion.

Once we begin partitioning the data structures, these bottlenecks
disappear. There is no longer contention for the worklist, and cores
are largely confined to disjoint regions of the graph, as can be
seen from the negligible abort ratio. We thus begin to see perfor-
mance improvements as the number of cores increases. However,
in pathspar , the Galois overhead overwhelms this speedup and
the benchmark on 4 cores is still slower than the sequential code.
We see the effects of eliminating this overhead when moving to
pathslco, which, on four cores, beats the sequential code, running
38% faster. However, the high abort rates, as seen in Table 4, keep
this implementation from scaling (as in Section 5.1, the abort rate
reflects busy-waiting). With the addition of over-decomposition in
pathsovd (this time by a factor of 16), the abort ratio once again
becomes negligible. Thus, pathsovd has low overhead and scales,
executing 2.48 times faster on four cores than the sequential code.

5.3 Image segmentation using preflow-push
Although experiments on uniprocessors have shown that the Boykov-
Kolmogorov algorithm outperforms other maxflow algorithms for
graphs arising from image segmentation problems [1], it is not
known whether this holds for parallel implementations. There-
fore, we also implemented the Goldberg-Tarjan preflow-push al-
gorithm [5], which is known to perform well on general graphs
both in an asymptotic sense and in practice. The word “preflow”
refers to the fact that nodes are allowed to have excess flow at in-
termediary stages of the algorithm, unlike the augmenting paths
algorithm, which maintains a valid flow at all times.

The basic idea is to maintain a height value at each node that
represents a lower bound on the distance to the sink node. The
algorithm begins with h(t) = 0 and h(s) = |V |, the number of
vertices in the graph, where s is the source and t is the sink. First,
every edge exiting the source is saturated with flow, which deposits
excess at all of the source’s neighbors. Any node with excess flow is
called an active node. Then, the algorithm performs two operations,
push and relabel, on the active nodes. The push operation takes
excess flow at a node and attempts to move as much as possible
to a neighboring node, provided the edge between them still has
capacity and the height difference is 1. The relabel operation raises



a node’s height so that it is at least high enough to push flow to
one of its neighbors. Forcing flow to move in height steps of 1
makes it impossible for a node at height |V | to ever reach the
sink. Therefore, this phase of the computation terminates when the
height of all active nodes is |V |, signifying that all possible flow
has reached the sink. Finally, the remaining excess is drained back
to the source. This is typically very fast and can be done in a variety
of ways (we do it by running preflow-push a second time).

Opportunities for parallelism Preflow-push is also a worklist
algorithm since all active nodes can be placed on a worklist and
processed in any order. Since the operations on a node are purely
local in nature, nodes can be operated on in parallel provided they
are not adjacent to each other.

Partitioning For image processing applications, input graphs typ-
ically have a grid-like structure. Therefore, as in the B-K algorithm,
we can trivially partition the grid into rectangular blocks.

Experiments We wrote a Java implementation of preflow push
and used that as a base to generate five versions of the benchmark,
along the same lines as the other benchmarks: prfseq , prfgal,
prfpar , prflco and prfovd. We evaluated these five implementa-
tions on a 128x128 graphcuts instance. Table 5 gives wallclock ex-
ecution times for the five benchmark versions (in seconds), while
Figure 8 shows speedups over the sequential code. Table 6 gives the
overheads for the four parallel versions running on a single core,
and the abort ratios on four cores.

Benchmark 1 core 2 cores 4 cores
prfseq 4.93 — —
prfgal 5.68 3.06 6.09
prfpar 5.68 2.96 2.26
prflco 5.44 2.83 2.24
prfovd 5.29 2.77 1.97

Table 5. Execution time (in seconds) for preflow push.
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Figure 8. Speedup vs. # of cores for preflow push

Benchmark Overhead Abort ratio (4 cores)
prfgal 15.2% 83.99%
prfpar 15.2% 0.02%
prflco 10.3% 43.46%
prfovd 7.30% 10.31%

Table 6. Uniprocessor overheads and abort ratios

We see that the overheads are reasonable for all four versions
of the benchmark, but that the lock-coarsened versions are slightly
better than the standard Galois versions. This suggests that com-
mutativity checks are a small portion of the overhead in this appli-
cation. In fact, most of the overhead in this benchmark comes from
accesses to the worklist.

Table 6 shows the abort ratios for the four parallel versions
of preflow push. As expected, prfgal has a high abort ratio, as
the scheduling is not partition aware. Similarly, we note very high
abort ratios for prflco, as the iterations of preflow push often cross
partition boundaries and thus lead to many aborts without over-
decomposition.

These abort ratios and overheads are reflected in the actual per-
formance, shown in Figure 8. We see that prfgal slows down when
run on four cores. This is due largely to contention for the worklist.
This bottleneck is removed in prfpar , which achieves a speedup of
2.26 over sequential on four cores. Lock coarsening, as expected,
does not provide a benefit, due to the very high abort ratios, and
prflco performs no better than prfpar . Over-decomposition is able
to reduce contention significantly, while still providing overhead
benefits. Thus, prfovd performs the best of all the parallel ver-
sions, achieving a speedup of 2.50 over sequential execution on
four cores.

5.4 Agglomerative clustering
The final application is agglomerative clustering, a well-known
data-mining algorithm [29]. This algorithm is used in graphics
applications for handling large numbers of light sources [31]. The
input to the clustering algorithm is (1) a data-set and (2) a measure
of the “distance” between items in the data-set. Intuitively, this
measure is an estimate of similarity — the larger the distance
between two data items, the less similar they are believed to be. The
goal of clustering is to construct a binary tree called a dendrogram
whose hierarchical structure exposes the similarity between items
in the data-set.

Agglomerative clustering can be performed by an iterative al-
gorithm: at each step, two points are examined. If each point agrees
that the other is its nearest neighbor, the two points are clustered
together and replaced by a single new point that represents the new
cluster. The location of this new point may be determined heuristi-
cally [29]. The algorithm terminates when there is only one point
left in the data set2. We accelerate the computation of a point’s
nearest neighbor by utilizing a hierarchical spatial decomposition
structure called a kd-tree, which is similar to an oct-tree.

Opportunities for exploiting parallelism In this application, it-
erations are largely independent, as long as they access different
points. A second source of conflict arises in the calculation of the
nearest neighbor: one iteration may insert a new point that would
change the result of the nearest neighbor computation of another
iteration, breaking sequential semantics. Dealing with this scenario
requires a complex commutativity condition. In the absence of
these conflicts, the iterations can easily be executed in parallel.

Partitioning We would like to partition the points in the input set
spatially. This can be easily accomplished as the kd-tree already
captures a spatial partitioning of points. Furthermore, the natural
partitioning of the kd-tree allows it to be easily physically parti-
tioned.

Experiments We modified the Java implementation of agglomer-
ative clustering used in [31] to use Galois iterators and commuta-
tivity checks. We generated three versions of the benchmark along
the same lines as the other applications: clusterseq , clustergal

and clusterpar . Due to the complex nature of the commutativity
checks in this application, we could not perform the lock coars-
ening optimization. We evaluated these three implementations on
an input set containing 20,000 points. Table 7 gives wallclock ex-
ecution times for the three benchmark versions (in seconds), while
Figure 9 shows speedups over the sequential code. Table 8 gives
the overheads for the two parallel versions running on a single core
and the abort ratios on four cores.

Here we again see the efficacy of partitioning: clusterpar out-
performs clustergal, achieving a speedup of nearly 2 on four

2 Note that this is a variant of the clustering algorithm presented in [17].
Due to the nature of the “distance” metric used in clustering, the unordered
algorithm presented here produces the same result as the ordered variant
given in [17]



Benchmark 1 core 2 cores 4 cores
clusterseq 5.62 — —
clustergal 6.19 3.83 3.51
clusterpar 6.21 3.54 2.94

Table 7. Execution time (in seconds) for agglomerative clustering.
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Figure 9. Speedup vs. # of cores for agglomerative clustering

Benchmark Overhead Abort ratio (4 cores)
clustergal 10.1% 1.47%
clusterpar 10.5% 0.13%

Table 8. Uniprocessor overheads and abort ratios

processors over clusterseq . The improvement of clusterpar over
clustergal is partially attributable to a lower abort ratio, but as the
abort ratios for both versions are low, we believe most of the im-
provement is due to better locality, especially in the kd-tree, which
is traversed multiple times in each iteration.

The overhead of both parallel versions is low, suggesting that
lock coarsening is not necessary to lower overheads. However,
we see the deleterious effects of the centralized conflict log used
for the commutativity checks; clusterpar does not significantly
outperform the sequential version. The low abort ratio indicates
that the problem is not due to mis-speculation. Rather, the fact
that most of the speedup is achieved by the time clusterpar is
run on two processors points to contention for the conflict log as
the bottleneck. This pattern is exhibited by the par versions of the
other benchmarks, as well, pointing to a significant optimization
opportunity: improving the concurrency of commutativity checks.
We leave this to future work.

6. Related work and conclusions
Data and computation partitioning were explored by HPF and re-
lated efforts [14, 23]. However, the focus there was on data-parallel
array programs on distributed-memory computers, so problems like
data-centric dynamic computation partitioning, lock coarsening, in-
teractions with speculation conflicts, etc. did not arise. Müller and
Rühl proposed an extension to High Performance Fortran that al-
lowed for its alignment and distribution idioms to be applied to ir-
regular structures but their focus was on sparse arrays [20]. Recent
work by Gordon et al. has focused on exploiting data and task par-
allelism in stream programs [6]. This approach seems well-suited
for signal processing programs, but not for the kinds of applications
considered in this paper.

When considering optimistic execution of a parallel program, a
commonly proposed mechanism is Transactional Memory (TM),
with many implementations both in hardware [9, 19] and soft-
ware [7, 25]. We distinguish between optimistic synchronization,
where an existing parallel program uses optimistic techniques for
synchronization, and optimistic parallelization, which is a model
for parallelizing sequential programs. While we feel that TM is
well-suited to the former, the role of TM in optimistic paralleliza-
tion is more limited. In particular, TM is not concerned with locality
issues, which is one of the main concerns in this paper.

One common approach that does use optimistic parallelization
is Thread Level Speculation (TLS) [16, 22]. Like most TLS sys-
tems, Galois looks to loops for parallelization opportunities (al-
though parallel iterators allow the Galois system to handle more
general loops). The substantive difference between TLS systems
and Galois is that we take advantage of data structure semantics
when determining whether speculative parallel execution is incor-
rect. In contrast, current TLS systems examine read/write sets of
speculative computations, which is far more restrictive. The exten-
sions we propose in this paper rely on data structure partitioning,
and they require a runtime system that has the freedom to change
the schedule of parallel execution as well as use data-structure spe-
cific information for conflict detection. TLS systems are bound to
one specific execution schedule (loop order), and one conflict de-
tection scheme (read/write sets) and hence cannot leverage data-
structure partitioning effectively.

Recently, Michael Scott et al. have studied the use of parti-
tioning in optimistic parallel execution of Delaunay mesh gen-
eration [26]. Their partitioned code is written manually, and the
approach is customized for Delaunay mesh generation. In con-
trast, our approach uses general-purpose mechanisms implemented
within the Galois system, so it is not customized to a particular
problem. In addition, they use transactional memory for synchro-
nization between cores, so they do not use locks or lock coarsening.

In the context of task-parallelism, Chen et al. [3] schedule
threads on CMPs to promote cache-sharing: threads that access
similar portions of data should use the same cache. They apply a
scheduling heuristic to promote this behavior. Our scheduling is in-
formed by the data partitioning, rather than based on a heuristic,
and not only promotes locality in a single core but reduces con-
tention across cores.

Intel has recently released its Thread Building Blocks (TBB)
[12], which provide a programming model and toolkit for paral-
lelizing programs. The toolkit supports the partitioning of work but
only for structured loops such as for loops where the iteration
space is defined before the loop begins. They provide a parallel
while construct similar to Galois’ unordered Set iterator. How-
ever, they provide no support for work partitioning or scheduling to
promote locality.

6.1 Conclusions
The goal of the Galois system is to make it easier to exploit data
parallelism in irregular programs. The data parallelism arises from
the use of iterative algorithms organized around worklists of vari-
ous kinds. In our earlier work, we introduced set iterators to express
this parallelism and showed how this parallelism can be exploited
on multicore machines.

In this paper, we described how data partitioning can be ex-
ploited by Galois programs. The key is to perform a logical par-
titioning of data structures and to assign work to cores in a data-
centric way so as to promote locality. In addition, fine-grain syn-
chronization on data structure elements is replaced with coarse-
grain synchronization on data partitions, thus reducing the cost of
conflict detection. Finally, over-decomposition is used to improve
core utilization. We found, across several important benchmarks,
that this approach is practical and is successful in exploiting both
parallelism and inter-core locality of reference, while keeping par-
allel overheads low.

The extended Galois system presented in this paper is the first
optimistic parallelization system that uses (i) partitioning of irregu-
lar data structures and (ii) data-centric work assignment to promote
locality, reduce mis-speculation and lower parallel overheads, en-
abling the exploitation of parallelism in a scalable way.
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