
In ACM Transactions on Graphics (TOG), Volume 18, issue 3, August 1999.

Radiance Interpolants for
Accelerated Bounded-Error Ray Tracing

Kavita Bala, Julie Dorsey and Seth Teller

Laboratory for Computer Science

Massachusetts Institute of Technology

Ray tracers, which sample radiance, are usually regarded as off-line rendering algorithms that are
too slow for interactive use. In this paper, we present a system that exploits object-space, ray-
space, image-space and temporal coherence to accelerate ray tracing. Our system uses per-surface
interpolants to approximate radiance, while conservatively bounding error. The techniques we
introduce in this paper should enhance both interactive and batch ray tracers.

Our approach explicitly decouples the two primary operations of a ray tracer—shading and
visibility determination—and accelerates each of them independently. Shading is accelerated by
quadrilinearly interpolating lazily acquired radiance samples. Interpolation error does not exceed a
user-specified bound, allowing the user to control performance/quality tradeoffs. Error is bounded
by adaptive sampling at discontinuities and radiance non-linearities.

Visibility determination at pixels is accelerated by reprojecting interpolants as the user’s view-
point changes. A fast scan-line algorithm then achieves high performance without sacrificing image
quality. For a smoothly varying viewpoint, the combination of lazy interpolants and reprojection
substantially accelerates the ray tracer. Additionally, an efficient cache management algorithm
keeps the memory footprint of the system small with negligible overhead.

Categories and Subject Descriptors: I.3.3 [Computer Graphics]: Picture/Image Generation;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and Realism—Ray tracing, color,
shading, shadowing, textures; G.1.1 [Numerical Analysis]: Interpolation—Piecewise polynomial

interpolation; G.1.2 [Numerical Analysis]: Approximation—Linear Approximation

General Terms: Algorithms, Data Structures, Rendering Systems

Additional Key Words and Phrases: 4D interpolation, error bounds, interactive, interval arith-
metic, radiance approximation, rendering, visibility

1. INTRODUCTION

A primary goal of computer graphics is the rapid generation of accurate, high
quality imagery. Global illumination algorithms generate realistic images by eval-
uating radiance, a function over the five-dimensional space of rays. To achieve

Address: {kaybee,dorsey,seth}@graphics.lcs.mit.edu, http://graphics.lcs.mit.edu.
In ACM Transactions on Graphics (TOG), Volume 18, issue 3, August 1999.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 · Bala, Dorsey, Teller

reasonable performance, illumination systems trade freedom of viewer motion for
scene complexity and accuracy. At one end of the spectrum, ray tracers [Whitted
1980] support generalized geometric primitives and specular and diffuse reflectance
functions to produce high-quality view-dependent images; however, this quality is
achieved at the expense of interactivity. At the other end of the spectrum, radiosity
systems [Goral et al. 1984] support interactive viewing of pre-computed radiosity
values, but typically render only diffuse, polygonal environments. Hybrid systems
attempt to bridge the gap between these two extremes [Chen et al. 1991; Sillion and
Puech 1989; Sillion and Puech 1994; Wallace et al. 1987; Ward et al. 1988]. How-
ever, computing the view-dependent component of radiance is expensive; imagery
of ray-traced quality is traditionally produced by off-line rendering algorithms that
are too slow for interactive use.
In this paper, we present a system that accelerates ray tracing by exploiting
spatial and temporal coherence. The goal of our system is to provide an environment
in which the user moves around freely as the system renders images of ray-traced
quality. To achieve this goal, we decouple and independently accelerate the two
primary operations of a ray tracer: the visibility computation that determines the
closest visible object along an eye ray, and the shading computation for the visible
point so identified.
The key insight in accelerating shading is as follows: ray tracers sample the ra-
diance function at each ray from the viewpoint through every pixel of an image.
When the radiance function varies smoothly, a sparse set of samples can be interpo-
lated to approximate radiance. This set of radiance samples is called an interpolant.
When interpolation is possible, this approximation eliminates the expensive shad-
ing computation of the ray tracer. However, interpolation can introduce errors;
one important goal of our work is to characterize interpolation error. Radiance
is interpolated only when the interpolated radiance is guaranteed to be within a
user-specified error bound ε of the radiance computed by the base ray tracer.
Visibility computation is accelerated by exploiting frame-to-frame temporal co-
herence: when the viewpoint changes, objects visible in the previous frame are
still typically visible in the current frame. Therefore, interpolants from the previ-
ous frame are reprojected to the new viewpoint to rapidly determine visibility and
shading for pixels in the new frame.
In designing and building this system, we have made several contributions:

—Radiance interpolation: Radiance can be approximated rapidly by quadrilinear
interpolation of a set of samples stored in an interpolant.
—Linetrees: A hierarchical data structure called a linetree is used to store inter-
polants. The appropriate interpolant for a particular eye ray is located rapidly
by walking down the linetree. Linetrees are subdivided adaptively (and lazily),
thereby permitting greater interpolant reuse where radiance varies smoothly, and
denser sampling where radiance changes rapidly.
—Error-driven sampling: We have developed new techniques for bounding the error
introduced by interpolation. When radiance is approximated, the relative error
between interpolated and true radiance is less than a user-specified error bound
ε. The user can vary ε to trade performance for quality.
Interpolation error arises both from discontinuities and non-linearities in the ra-

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 3

diance function. Our error bounding algorithm automatically and conservatively
prevents interpolation in both these cases. Where the error bounding algorithm
indicates rapid variations in radiance, radiance is sampled more densely.
—Visibility by reprojection: Determination of the visible surface for each pixel
is accelerated by a novel reprojection algorithm that exploits temporal frame-
to-frame coherence in the user’s viewpoint, but guarantees correctness. A fast
scan-line algorithm uses the reprojected linetrees to further accelerate rendering.
—Memory management: Efficient cache management keeps the memory footprint
of the system small, while imposing a negligible performance overhead (1%).

The rest of the paper is organized as follows: Section 2 presents related work and
discusses how our system differs. Section 3 presents an overview of the interpolant
rendering algorithm. Descriptions of the interpolant building mechanism, error
bounding algorithm and reprojection follow in Sections 4, 5, and 6. Section 7
discusses the implementation and performance optimizations. Finally, Section 8
presents results and Section 9 concludes with a discussion of future work.

2. RELATED WORK

Many researchers have developed techniques that improve the performance of global
illumination algorithms: adaptive 3D spatial hierarchies [Glassner 1984], beam-
tracing for polyhedral scenes [Heckbert and Hanrahan 1984], cone-tracing [Ama-
natides 1984], and ray classification [Arvo and Kirk 1987]. A good summary of
these algorithms can be found in [Glassner 1989; Glassner 1995; Sillion and Puech
1994]. In this section, we discuss the related work most relevant to our approach.

2.1 Approximating shading

Systems that accelerate rendering by approximating radiance can be categorized
on the basis of the shading models they use, the correctness guarantees (if any)
provided for computed radiance, and their use of pre-processing. Some of these
systems also approximate visibility by polygonalizing the scene, or by using images
instead of geometry.
The Radiance system uses ray tracing to produce high quality images while
lazily sampling diffuse inter-reflections [Ward 1992; Ward et al. 1988]. Radiance

uses gradient information to guide the sparse, non-uniform sampling of the slowly
varying diffuse component of radiance [Ward and Heckbert 1992]. However, Radi-

ance does not bound the error incurred by interpolating diffuse radiance, nor does
it interpolate other components of radiance.
Diefenbach’s rendering system [Diefenbach and Badler 1997] uses multiple passes
of standard graphics hardware to acquire some of the realism of ray tracing. How-
ever, the system approximates visibility by discretizing the scene into polygons,
and has no correctness guarantees.
Image-based rendering (IBR) systems, such as the Light Field [Levoy and Hanra-
han 1996] and the Lumigraph [Gortler et al. 1996], have similarities to our system
in that they collect 4D radiance samples that are quadrilinearly interpolated to
approximate radiance. However, IBR systems typically have a data acquisition
pre-processing phase and are not intended to compute radiance on the fly. Light
Fields and Lumigraphs are uniformly subdivided 4D arrays whose fixed size is

4 · Bala, Dorsey, Teller

determined in the pre-processing phase. This fixed sampling rate does not guar-
antee that enough samples are collected in regions with high-frequency radiance
variations, and may result in over-sampling in regions where radiance is smooth.
Additionally, the viewpoint is constrained to lie outside the convex hull of the scene.
Recently, layered depth images have been used to reproject both diffuse and specu-
lar radiance for new viewpoints [Lischinski and Rappoport 1998]. For small scenes
this approach has better memory usage and visual results than the Light Field or
Lumigraph. Scenes with greater depth complexity could require excessive memory.
Also, though this technique alleviates artifacts for specular surfaces, it still relies on
sparse radiance sampling that is not error-driven. IBR techniques have also been
used to warp pre-rendered images in animated environments with moving view-
points [Nimeroff et al. 1995]. However, none of these image-based systems bounds
the error introduced by approximating visibility or radiance.
Several researchers exploit image coherence to accelerate ray tracing [Amanatides
and Fournier 1984]. Recently, systems for the progressive refinement of ray-traced
imagery have been developed [Guo 1998; Pighin et al. 1997]. Guo samples the im-
age sparsely along discontinuities to produce images for previewing. For polyhedral
scenes, Pighin et al. compute image-space discontinuities used to construct a con-
strained Delaunay triangulation of the image plane. This Delaunay triangulation
drives a sparse sampling technique to produce previewable images rapidly. The
traditional problem with screen-space interpolation techniques is that they may
incorrectly interpolate across small geometric details, radiance discontinuities, and
radiance non-linearities. While both these systems alleviate the problem of inter-
polation across discontinuities, neither system bounds error. Also, both systems
detect discontinuities in the image plane; therefore, when the viewpoint changes,
discontinuities have to be recomputed from scratch.

2.2 Approximating visibility

Algorithms that exploit temporal coherence to approximate visibility at pixels can
be categorized by the assumptions they make about the scene and the correctness
guarantees they provide. Chapman et al. assume the scene is polygonal and use
the known trajectory of the viewpoint through the scene to compute continuous in-
tersection information of rays [Chapman et al. 1990; Chapman et al. 1991]. Several
recent systems reuse pixels from the previous frame to render the current frame
without any prior knowledge of the viewpoint’s trajectory [Badt 1988; Adelson and
Hodges 1995; Mark et al. 1997; Chevrier 1997].
Adelson and Hodges apply a 3D warp to pixels from reference images to the cur-
rent image. This algorithm speeds up visibility for eye rays but does not accelerate
shading. Mark et al. also apply a 3D warp to pixels, but treat their reference image
as a mesh and warp the mesh triangles to the current image. Their system cannot
guarantee correct results for arbitrary movements of the eye. Additionally, both
these systems suffer from aliasing effects arising from the fact that pixels are not
warped to pixel centers in the current frame; i.e., neither system accurately deter-
mines visibility. Chevrier computes a set of key views used to construct a 3D mesh
that is interpolated for new viewpoints. If a pixel is not covered by one key view,
more key views are used. To handle specularity, one 3D mesh per specular surface
is built, and the specular coefficient is linearly interpolated from multiple key im-

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 5

ages. While this algorithm decreases some aliasing artifacts, it still may interpolate
across shadows or specular highlights; i.e., there are no bounds on error.

2.3 Discussion

In [Bala et al. 1998; Teller et al. 1996], we presented a preliminary algorithm that
accelerates shading for a Whitted ray tracer by building 4D interpolants that are
reused to satisfy radiance queries. We have added several new contributions to
this work: a complete algorithm for bounding error, a reprojection algorithm that
exploits temporal coherence, support for texturing, and several performance opti-
mizations. Our work differs from previous rendering systems in several respects:

—We introduce radiance interpolants to approximate radiance while bounding in-
terpolation error conservatively using linear interval arithmetic.
—The user can trade speed for rendering quality using error-driven subdivision.
—Interpolants are built on-line, lazily and adaptively; no pre-processing is required.
—Reprojection accelerates visibility determination by exploiting temporal coher-
ence without introducing aliasing artifacts.

3. ALGORITHM OVERVIEW

This section presents an overview of our interactive rendering system.

Base ray tracer. The base ray tracer is a classical Whitted ray tracer [Whitted
1980] extended to implement the Ward isotropic shading model [Ward 1992] and
textures. It supports convex primitives (spheres, cubes, polygons, cylinders and
cones) and the CSG union and intersection of these primitives [Roth 1982]. To
accelerate intersection computations several optimizations have been implemented;
these optimizations are discussed in Section 8.1.

Linetrees. Radiance samples are stored in a data structure called the linetree,
which is the 4D equivalent of an octree. Each object has a set of associated linetrees
that store its radiance samples. This hierarchical tree organization permits the
efficient lookup of interpolants for each eye ray. See Section 4 for details on linetrees.

Rendering Algorithm. Figure 1 depicts the three rendering paths of the inter-
polant rendering algorithm: the fast path, the interpolate path, and the slow path.
Along the fast path the system exploits temporal coherence by reprojecting line-
tree cells from the previous frame; this accelerates both visibility and shading for
pixels covered by reprojected linetree cells. Shading of other pixels is accelerated
by interpolating radiance samples from the appropriate linetree cells (interpolate
path). If both reprojection and interpolation fail for a pixel, the base ray tracer
renders the pixel (slow path).
The fast path, indicated by the thick green line, corresponds to the case when
reprojection succeeds. When a reprojected linetree cell is available for a pixel, the
system finds all consecutive pixels in that scanline covered by the same linetree cell,
and interpolates radiance for these pixels in screen-space. In our results, this fast
path is about 30 times faster than the base ray tracer (see Section 8).
If no reprojected linetree cell is available, the eye ray is intersected with the
scene to determine the object visible at that pixel. The system checks for a valid

6 · Bala, Dorsey, Teller

For every pixel p
in image

Yes

Visibility

Shading

Initialize
for all objects and facepairs
 linetrees = Ο
reprojection buffer = O

same
viewpoint?

No
Reproject linetrees cells

from previous frame

No

Intersect eye ray
with scene

Is there a reprojected linetree cell?

Hit object o

Yes No

Interpolate
pixel

Valid interpolant
in o’s linetree?

Yes No

Collect samples to
build interpolant

Interpolate pixel Base ray tracer

Interpolate
span

Interpolate path

Fast path

Slow path

Check interpolant validity
(error < ε)?

Fig. 1. Algorithm Overview.

interpolant for that ray and object; if it exists, the radiance for that eye ray (and the
corresponding pixel) is computed by quadrilinear interpolation. This interpolate
path, indicated by the medium-thick maroon line, is about 5 times faster than the
base ray tracer.
If an interpolant is not available, the system builds an interpolant by collecting
radiance samples for the appropriate new leaf linetree cell. The error bounding
algorithm checks the validity of the new interpolant. If the interpolant is valid, the
pixel’s radiance can be interpolated. If it is not valid, the linetree cell is subdivided,
and the system falls back to shading the pixel using the base ray tracer. This is
the slow path indicated by the thin black line.
The user’s viewpoint is tracked, and when it is stationary, the permitted inter-
polation error is gradually reduced to produce images of higher quality, until the
user-specified error bound is reached. When the user’s viewpoint changes, the sys-
tem renders the scene at the highest speed possible, while preventing interpolation
across radiance discontinuities.

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 7

4. RADIANCE INTERPOLANTS

Radiance is a function over the space of all rays. Our system lazily samples the
radiance function and stores these samples in an auxiliary data structure, called
the linetree. For each eye ray, the system finds and interpolates an appropriate set
of radiance samples, called an interpolant, to approximate radiance.
First, we require a coordinate system describing rays. In this section, we intro-
duce a per-object ray-space coordinate system that describes all rays intersecting
an object with four parameters. Then, we present the linetree data structure that
stores samples using their ray parameters as keys, and describe how interpolants
are built and stored in the linetree.

4.1 Ray parameterization

For simplicity, we first consider 2D rays, and then extend the discussion to 3D rays.

R

t

y

x
World Space

s

y = y1

y = y2

x = x1 x = x2

o

Fig. 2. A segment pair (green) and an
associated ray R (blue).

h

w

w + 2 h

h + 2 w

45
o

45
o

h

o

y

x

Fig. 3. Two segment pairs (green and maroon) and
some associated rays.

4.1.1 2D ray parameterization. Every 2D ray can be parameterized by the two
intercepts, s and t (see Figure 2), that it makes with two parallel lines (assuming
the ray is not parallel to the lines). For example, consider two lines parallel to the
y-axis at x = x1 and x = x2, on either side of an object o. Every ray R intersecting
o that is not parallel to the y-axis can be parameterized by the y-intercepts that R
makes with the two parallel lines; i.e., (s, t) = (y1, y2). There are three problems
with this parameterization: rays parallel to the y-axis cannot be represented; the
intercepts of rays nearly parallel to the y-axis are numerically imprecise; and the
orientation (right or left) of the ray is not specified by the parameterization.
Our representation avoids these problems by parameterizing each 2D ray with
respect to one of four segment pairs. A segment pair is defined by two parallel
line segments and a principal direction that is perpendicular to the line segments.

8 · Bala, Dorsey, Teller

The four segment pairs have the principal directions +x̂, −x̂, +ŷ, and −ŷ. In each
segment pair, the principal direction vector ‘enters’ one of the line segments (called
the front segment) and ‘leaves’ the other line segment (called the back segment).
The segment pairs with principal directions +x̂ and −x̂ have the same parallel line
segments and only differ in the designation of front and back line segments. The
same is true for the segment pairs with principal directions +ŷ and −ŷ.
Every ray intersecting o is uniquely associated with the segment pair whose prin-
cipal direction is closest to the ray’s direction: the principal direction onto which
the ray has the maximum positive projection. Once the segment pair associated
with a ray is identified, the ray is intersected with its front and back line segments
to compute its s and t coordinates respectively.
To ensure that every ray associated with a segment pair intersects both parallel
line segments, the line segments are sized as shown in Figure 3. In the figure, an
object o with a bounding rectangle of size w×h is shown with two of its four segment
pairs. The segment pairs with principal directions ±x̂ have line segments of length
(h+ 2w), while the segment pairs with principal directions ±ŷ have line segments
of length (w+2h). This sizing ensures that the most extreme rays (rays at an angle
of 45◦ to the principal direction) intersect the line segments of the segment pair
with which they are associated. The green segment pair with principal direction x̂
represents all rays r = (rx, ry) with |rx| > |ry| and sign(rx) > 0; i.e., all normalized
rays with rx in [1√

2
, 1] and ry in [− 1√

2
,+ 1√

2
]. The maroon rays are associated with

the maroon segment pair (principal direction ŷ).
The four segment pairs represent all rays intersecting the 2D object o. The
maximal component of the direction vector of a ray and its sign identify the segment
pair with which the ray is associated. The ray is intersected with this segment pair
to compute its intercepts (s, t); these (s, t) coordinates parameterize the ray.

h + 2w

l +
 2

w

w

h

l

b

a

d

c

(a,b)

(c,d)
o

Fig. 4. Ray parameterization in 3D. The face pair is shown in green. The green ray intersects
the front face at (a, b), and the back face at (c, d), and is parameterized by these four intercepts.

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 9

4.1.2 3D ray parameterization. The parameterization of the previous section is
easily extended to 3D rays. Every ray intersecting an object o can be parameterized
by the ray’s four intercepts (a, b, c, d) with two parallel bounded faces surrounding o
(see Figure 4). This parameterization is similar to some previous schemes [Gortler
et al. 1996; Levoy and Hanrahan 1996; Teller et al. 1996].
Six pairs of faces surrounding o are required to represent all rays intersecting o.
The principal directions of the six face pairs are +x̂, +ŷ, +ẑ, −x̂, −ŷ, and −ẑ.
As in the 2D case, the faces are expanded on all sides by the distance between the
faces, as shown in Figure 4. The dominant direction and sign of a ray determine
which of the six face pairs it is associated with. The ray is parameterized by its
four intercepts (a, b, c, d) with the two parallel faces of that face pair.

4.2 Interpolants and linetrees

We discuss how interpolants and linetrees are built and used to approximate radi-
ance when rendering a frame, again considering 2D rays first for simplicity.

R

s t

World Space

R00

R11

s−t Ray Space

s

t

R11

R00

R01

R10

R

R10

R01

Fig. 5. A segment pair and its associated s-t ray space.

4.2.1 2D ray space. Every 2D ray is associated with a segment pair and is pa-
rameterized by its (s, t) coordinates. In Figure 5, a segment pair in 2D world space
is shown on the left, and the corresponding s-t ray space is shown on the right. All
rays associated with the segment pair in world space are points that lie inside a
square in s-t space; the ray R, shown in blue, is an example. The extremal points
at the four corners of the s-t square, R00, R01, R10, and R11, correspond to the rays
in maroon shown on the left.
Radiance for any ray R inside the s-t square can be approximated by bilinearly
interpolating radiance samples associated with the four extremal rays. This set of
four radiance samples associated with the extremal rays is called an interpolant.
Radiance interpolants are stored in a hierarchical data structure called a linetree;
each segment pair has an associated linetree. In 2D, the linetree is a quadtree built
over ray space; the root of the linetree represents all the rays that intersect the
segment pair. An interpolant is built at the root of the linetree by computing the
radiance along the extremal rays, R00, R01, R10, and R11, that span the s-t square

10 · Bala, Dorsey, Teller

in ray space. An error bounding algorithm (described in Section 5) determines if
the interpolant is valid; i.e., if the interpolant can be used to approximate radiance
to within a user-specified error parameter. If the interpolant is valid, it is used
to bilinearly interpolate radiance for every eye ray R inside the s-t square. If the
interpolant is not valid, the 2D linetree is subdivided at the center of both the s
and t axes, as in a quadtree, to produce four children. Subdividing the s and t axes
in ray space corresponds to subdividing the front and back line segments of the
linetree cell in world space. The rays represented by the linetree cell can be divided
into four categories depending on whether the rays enter by the top or bottom
half of the front line segment and leave by the top or bottom half of the back line
segment. These four categories correspond to the four children of the linetree cell.
Therefore, rays that lie in the linetree cell are uniquely associated with one of its
four children.

s t

s−t Ray Space

s

tLinetree cell

Child 0 Child 1 Child 3Child 2

Fig. 6. A 2D segment pair and its children. Every ray that intersects the segment pair (repre-
sented as a point in s-t space) lies in one of its four subdivided children.

In Figure 6, a segment pair and its associated s-t ray space are depicted. On
the top left, the segment pair is shown with some rays that intersect it. The four
children of the subdivided segment pair are shown on the bottom. Each of the four
children is represented by the correspondingly colored region of ray space shown in
the top right. The dotted lines show the region of world space intersected by the
rays represented by that linetree cell.

4.2.2 4D ray space. Now consider rays in 3D, which are parameterized by four
coordinates (a, b, c, d). Each face pair corresponds to a 4D hypercube in ray space
that represents all the rays that pass from the front face to the back face of the
face pair. Each face pair has a 4D linetree associated with it that stores radiance

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 11

(a1,b0)

(a0,b0)

(c1,d1)

(a0,b1)

(a1,b1)

b

b b

b

(c1,d1)

(c0,d0)

d

c

(c1,d1)

(c0,d0)

d

c

(c0,d0)

d

c

(c1,d1)

(c0,d0)

d

c
a

a a

a

Fig. 7. 4D linetree cell and its sixteen extremal rays.

interpolants. The root of the linetree represents all rays associated with the face
pair. When an interpolant is built for a linetree cell, samples for the sixteen extremal
rays of the linetree cell are computed. In ray space, these sixteen rays are the
vertices of the 4D hypercube represented by the linetree cell, and in world space
they are the rays from each of the four corners of the front face of the linetree cell
to each of the four corners of its back face. Figure 7 shows a linetree cell and its
sixteen extremal rays.
If the error bounding algorithm (see Section 5) determines that an interpolant is
valid, the radiance of any eye ray represented by that linetree cell is quadrilinearly
interpolated using the stored radiance samples. If the interpolant is not valid, the
linetree cell is subdivided adaptively; both the front and back faces of the linetree
cell are subdivided along the a, b and c, d axes respectively. Thus, the linetree cell
is subdivided into sixteen children; each child represents all the rays that pass from
one of its four front subfaces to one of its four back subfaces. A ray that intersects
the linetree cell uniquely lies in one of its sixteen children. This subdivision scheme
is similar to that in [Teller and Hanrahan 1993].

4.3 Using 4D linetrees

Linetrees are used to store and look up interpolants during rendering. When an
eye ray intersects an object, its four intercepts (a, b, c, d) are computed with respect
to the appropriate face pair. The linetree stored with the face pair is traversed
to find the leaf cell containing the ray. This leaf cell is found by walking down
the linetree performing four interval tests, one for each of the ray coordinates. If
the leaf cell contains a valid interpolant, radiance for that pixel is quadrilinearly
interpolated. If a valid interpolant is not available, an interpolant for the leaf cell
is built by computing radiance along the sixteen extremal rays of the linetree cell.
The error bounding algorithm determines if the samples collected represent a valid
interpolant. If so, the interpolant is stored in the linetree cell.
If the interpolant is not valid, the front and back faces of the linetree cell are

12 · Bala, Dorsey, Teller

subdivided. Interpolants are lazily built for the child that contains the eye ray.
Thus, linetrees are adaptively subdivided; this alleviates the memory problem of
representing 4D radiance by using memory only where necessary. More samples
are collected in regions with high frequency changes in radiance. Fewer samples are
collected in regions with low frequency changes in radiance, saving computation
and storage costs. Section 8 discusses a linetree cache management scheme that
further bounds the memory usage of the system.
Figure 13 shows the linetree cells that contribute to the image of the sphere. A
linetree cell can be shown as a shaft from its front face to its back face; however,
this visualization is cluttered. To simplify the visualization, we show only the front
and back face of each linetree cell. Each subdivision of a linetree cell corresponds
to a subdivision of its front and back face. Therefore, highly subdivided front and
back faces in the visualization correspond to highly subdivided linetree cells.

5. BOUNDING ERROR

Rendering systems trade accuracy for speed by using error estimates to determine
where computation and memory resources should be expended. Radiosity systems
use explicit error bounds to make this trade-off [Hanrahan et al. 1991; Lischinski
et al. 1994]. Ray tracers typically use super-sampling and stochastic techniques to
estimate error in computed radiance [Cook 1986; Painter and Sloan 1989]. This
section describes how linear interval arithmetic can be used to bound interpolation
error for the Ward isotropic shading model [Ward 1992]. It is straightforward to
extend these results to handle surfaces with non-isotropic BRDFs as well.

Interpolant Validation

The error bounding algorithm receives as input the sixteen radiance samples of a
linetree leaf cell and their associated ray trees, and answers the following question
conservatively:

Using quadrilinear interpolation, is the interpolated radiance within ε of
the base radiance for every ray represented by that linetree leaf cell?

where the base radiance for a ray is the radiance computed by the base ray tracer.
If the answer is yes, the interpolant is valid; otherwise, the linetree cell is adaptively
subdivided.
Interpolation error could arise in two ways:

—Interpolation over a radiance discontinuity (due to shadows, occluding objects or
total internal reflection).

—Interpolation over regions of ray space in which radiance varies non-linearly (for
example, due to diffuse or specular peaks).

In Section 5.1, we present techniques to detect and avoid interpolation over dis-
continuities, while in Section 5.2, we discuss how linear interval analysis is used to
bound interpolation error. Together these techniques completely specify the error
bounding algorithm.

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 13

5.1 Radiance discontinuities

An interpolant is invalid if it interpolates radiance over a radiance discontinuity.
We first consider the reasons why radiance is discontinuous in an image, and then
we present techniques to detect these discontinuities.

Scene Geometry
(a)

Occlusions
(b)

B

L

B

Shadows
(c)

Fig. 8. Radiance discontinuities. Interpolation for the ray marked with the × would be erroneous.

5.1.1 Causes. Radiance discontinuities arise because the scene is composed of
multiple geometrical objects that occlude and cast shadows on each other. Figures 8
and 9 show interpolants that are invalid due to radiance discontinuities in 2D. The
black rays are the four extremal interpolant rays for a 2D linetree cell, and the
green ray is a query ray that is represented by the linetree cell. In Figure 8-(a)
the extremal (black) rays hit different objects while the query (green) ray misses
the objects completely. In Figure 8-(b) the extremal rays all hit the same object,
but the query ray hits an occluding object. In Figure 8-(c), the extremal rays and
the query ray all hit the same object, but the blue circle B casts a shadow on the
maroon rectangle. While the four extremal rays are illuminated by the light L, the
query ray is not. In each of these three cases, it would be incorrect to interpolate
radiance using the samples associated with the extremal rays.

Sparse

(a) (b)

Dense Dense

Fig. 9. Erroneous interpolation due to total internal reflection.

14 · Bala, Dorsey, Teller

Figure 9 depicts discontinuities that arise due to total internal reflection (TIR).
For a ray traversing different media, TIR occurs when the angle θ between the
incident ray and normal is greater than the critical angle θc which is determined
by the relative indices of refraction of the media. All rays outside the TIR cone
(rays with θ > θc) undergo total internal reflection. In Figure 9-(a), the extremal
rays lie in the TIR cone but the query ray does not; in Figure 9-(b), the extremal
rays lie outside the TIR cone while the query ray lies in the cone. In both cases,
interpolation would produce incorrect results [Teller et al. 1996].

5.1.2 Detecting discontinuities. The error bounding algorithm detects disconti-
nuities by maintaining additional geometric information per extremal ray of the
interpolant: ray trees [Séquin and Smyrl 1989]. These ray trees are used to de-
tect self-shadows, occlusions, and visibility changes which could potentially cause
incorrect interpolation.
A ray tree tracks all objects, lights, and occluders that contribute to the radiance
of a particular ray: both direct contributions and indirect contributions through
reflections and refractions. A ray tree node associated with a ray stores the object
intersected by the ray in addition to the lights and occluders visible at the point of
intersection. The children of the node are pointers to the ray trees associated with
the corresponding reflected and refracted rays.
A crucial observation is that radiance changes discontinuously over a linetree

cell only when the ray trees associated with the rays represented by the linetree cell
differ. Therefore, to guarantee that interpolants do not erroneously interpolate over
a radiance discontinuity, the error bounding algorithm must check that all rays in
the 4D hypercube represented by a linetree cell have the same ray tree.
Textured surfaces are an exception to the observation above because radiance
can change discontinuously across the texture. However, the argument above can
be made about the incoming radiance at the textured surface: it changes discontin-
uously when the associated ray trees change (see Section 7.5). Therefore, to allow
interpolation over textured surfaces, texture coordinates are interpolated separately
from incoming radiance at the textured surface.
Erroneous interpolation over object edges is prevented by requiring that each
primitive be built of a finite number of smooth (possibly non-planar) faces. For
example, a cube has six faces, a cylinder has three faces, and a sphere has one
face. This face index is also stored in the ray tree node and used in ray tree
comparisons. Note that a ray tree stores only position-independent information,
such as the identity of the objects intersected; the exact points of intersection are
not stored in the tree [Brière and Poulin 1996].
The error bounding algorithm conservatively determines interpolant validity for
each possible discontinuity by testing the following conditions:

Geometry changes and shadows. If the ray trees of the sixteen extremal rays are
not the same, the interpolant is not valid.

Occluders. The previous condition is necessary but not sufficient: it does not
guarantee that all rays in the linetree cell have the same ray tree. There could be
occluding objects between the sixteen extremal rays. These occluders are detected
using a variant of shaft-culling [Haines and Wallace 1994; Teller et al. 1996].

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 15

Total internal reflections. A conservative test for TIR is to invalidate an inter-
polant if its extremal ray trees include an edge representing rays traveling between
different media. However, this rule prevents interpolation whenever there is refrac-
tion, which is too conservative. The main problem is that the extremal rays do not
indicate whether or not a query ray could undergo TIR. In the following section,
we describe how linear interval arithmetic can be used to conservatively bound the
angle θ between the normal and incident ray to a range [θ−, θ+]. If θc (the critical
angle at which TIR occurs) is outside this range, the interpolant is valid: either all
rays represented by the linetree cell undergo TIR or none do.

Reflections and Refractions. Discontinuities can arise recursively through reflec-
tions or refractions. These discontinuities are detected by conservatively computing
reflected (or refracted) rays that bound the original reflected (or refracted) rays and
then recursively testing for discontinuities against these new rays (for details see
[Bala 1999]).

5.2 Non-linear radiance variations

Quadrilinear interpolation approximates radiance well in most regions of ray space
that are free of discontinuities. However, quadrilinear interpolation is not sufficient
where there are significant higher-order radiance terms; for example, at specular
highlights and diffuse peaks. In this section, we show how to conservatively bound
the deviation between interpolated radiance and base radiance for all rays repre-
sented by a linetree cell.

N
L

I

H

p

eye

light

Fig. 10. Ray geometry.

5.2.1 Shading model. The total error bound for a linetree cell is computed using
its associated ray trees. Since there are no radiance discontinuities in the linetree
cell, the sixteen extremal ray trees of the cell are the same; that is, the sixteen rays
hit the same objects, are illuminated by the same lights, and are blocked by the
same occluders. The radiance associated with a ray tree node is computed as a local
shading term plus a weighted sum of the radiance of its children. Therefore, error in
the radiance of the ray tree node is bounded by the error in its local shading term
plus the weighted sum of the error bounds for its children, which are computed
recursively. We now discuss how to bound error in the local shading computation.
Error in the local shading term can arise from the approximation of both diffuse
and specular radiance. Given an incident ray I (Figure 10) that intersects an object

16 · Bala, Dorsey, Teller

at a point �p, the diffuse radiance for that ray is:

Rd = ρd(N · L) (1)

and the specular radiance, using the Ward isotropic shading model [Ward 1992], is:

Rs =
ρs

4σ2
e

1
σ2 (1− 1

(N·H)2
)

√
N · L

N · (−I)
(2)

where N is the normal to the surface at �p, L is the vector to the light source at
�p, I is the incident ray direction, and H is the half-vector (H = L−I

‖L−I‖) [Foley and
van Dam 1982]. For an infinite light source, the light vector L is independent of
�p and is given as L = (lx, ly, lz), where l2x + l

2
y + l

2
z = 1. For a local light source,

L = Lp−�p
‖Lp−�p‖ , where Lp is the position of the light source.

5.2.2 Methodology. We describe our methodology for computing error bounds
by considering a one-dimensional function f(x). A smooth function f(x) can be
approximated around the point x0 by its Taylor expansion:

f(x) = f(x0) + f ′(x0)(x− x0) + f ′′(x0)
(x− x0)2

2!
+ . . .

According to Taylor’s Theorem, when n terms of the Taylor series are used to
approximate f(x) over a domain D = [x0 −∆x, x0 + ∆x], the remainder Rn+1 is
the error that results from using this truncated approximation:

∀x∃ξ∈D f̃(x) = f(x0) + f ′(x0)(x− x0) + . . .+ fn(x0)
(x− x0)n

n!
+Rn+1(x)

Rn+1(x) = fn+1(ξ)
(x − x0)n+1

(n+ 1)!

where ξ is some point in the domain D for each x.
Consider a linear interpolation function f̃(x) that approximates f(x) by only its
constant and linear terms (n = 1). Our goal is to bound the maximum difference
between f(x) and f̃(x), as shown in Figure 11. By Taylor’s Theorem, the maximal
value of the quadratic remainder term R2(x), where x varies over the domain D,
conservatively bounds the error due to this approximation. Assuming x0 = 0
without loss of generality:

∀x∃ξ∈Df(x) = f(0) + xf ′(0) +
x2

2
f ′′(ξ)

f(x)− f̃(x) ≤ max
x∈D,ξ∈D

x2

2
f ′′(ξ)

f(x)− f̃(x) ≥ min
x∈D,ξ∈D

x2

2
f ′′(ξ)

There are several ways in which this error can be bounded, including the fol-
lowing: standard interval arithmetic [Moore 1979], Hansen’s linear interval arith-
metic [Hansen 1975] and variants [Tupper 1996], and affine arithmetic [Andrade
et al. 1994]. Standard interval arithmetic can be used to bound the interpolation
error by bounding the minimum and maximum value of f(x) over the domain of

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 17

εC

εL

εR

f(x)

f(x)
~

k0

k1

slope = m0

slope = m1

Domain D

Fig. 11. Interpolation error. The gray curve is the base radiance function f(x). The blue circles
at the end-points of the domain D are the samples that are interpolated, and the blue line at the
bottom of the curve is the interpolated radiance function f̃(x). εR is the interpolation error, εC

is the error computed by standard (constant) interval arithmetic, and εL is the error computed
by linear interval arithmetic.

interpolation D. However, this error bound is typically too conservative because
it does not take into account the ability of linear interpolation to approximate the
linear component of the function f . Linear interval arithmetic, described in greater
detail below, generalizes standard interval arithmetic by constructing linear func-
tions that bound f over its domain D. Because the interpolating function f̃(x) lies
between these linear functions, the maximum difference between these bounding lin-
ear functions conservatively bounds the interpolation error maxx∈D |f(x)− f̃(x)|.
In Figure 11, the bounds computed by standard and linear interval arithmetic are
εC and εL respectively, while the real error bound is εR. As can be seen, linear
interval arithmetic can bound error more tightly than standard interval arithmetic,
and is never worse.
In this section, we show how Hansen’s linear interval arithmetic can be used to
bound error for quadrilinear interpolation. We chose Hansen’s technique over other
variants of interval arithmetic because of its simplicity. In Hansen’s linear interval
arithmetic, the value of f(x) is bounded at each x by the interval F (x) =Mx+K,
where F is an interval-valued function and M,K are simple intervals [m0,m1] and
[k0, k1]. The addition of Mx and K is performed using interval arithmetic. This
representation states that for any x′ ∈ D, f(x′) lies in the interval [m0,m1]x′ +
[k0, k1]. The maximum linear interpolation error, εR = maxx∈D |f(x) − f̃(x)|,
is bounded by the maximum interval computed by F (x), which occurs at either
the right-hand or left-hand side of the domain D. In general, the linear interval
F (x) represents four linear functions bounding radiance: line y = m0x + k0, line
y = m1x + k0, line y = m0x + k1, and line y = m1x + k1. As x varies over its
domain D, different pairs of these four lines bound f(x). In Figure 11, we have
shown a special case where m0 = m1; therefore, the two linear functions bounding
radiance are: the line y = m0x+ k0 and the line y = m0x+ k1.
Extending this discussion to functions of several variables, linear intervals must
be determined for each of the variables. For example, radiance is a function of

18 · Bala, Dorsey, Teller

four variables (a, b, c, d), so the interval that bounds interpolation error has four
linear intervals (Ma,Mb,Mc,Md) and a single constant interval K. When radiance
R(a, b, c, d) is expressed in terms of its multi-variate Taylor expansion, linear inter-
vals can be used to bound the error of a simple interpolation function R̃(a, b, c, d)
consisting of just the constant and linear terms of the Taylor expansion. Quadrilin-
ear interpolation approximates radiance at least as well as R̃(a, b, c, d). Therefore,
a bound on the error of linear interpolation conservatively bounds the error of
quadrilinear interpolation.
The shading computation performed by the ray tracer can be broken down into
a series of simple operations, and constant and linear intervals can be propagated
through each of these operations. For example, consider the product of two func-
tions f(x) and g(x) where x is a four-tuple (xa, xb, xc, xd) and each of the variables
xi varies over the domain [−∆xi,∆xi]. The functions f and g are represented con-
servatively by interval functions F (x) = Kf +Mf · x and G(x) = Kg +Mg · x,
where bothMf andMg are vectors of four intervalsMf = (Mfa,Mfb,Mfc,Mfd)
andMg = (Mga,Mgb,Mgc,Mgd). The product h(x) = f(x)g(x) is represented by
its terms Kh and Mh. These terms are computed as follows [Hansen 1975]:

Kh = Kf ·Kg +
∑

i∈[a,d]

[0,∆x2
i]MfiMgi

Mhi = Kf ·Mgi +Kg ·Mfi +Mfi

∑
j �=i

[−∆xj ,∆xj] ·Mgj

Similar rules are derived for the other operations needed to compute shading:
1

f(x) ,
√
f(x), and ef(x). For example, the reciprocal of a linear interval h(x) = 1

f(x)

is computed as follows:

Kh = 1/Kf

Mhi =
−Mfi

Kf · (Kf +
∑

j [−∆xj ,∆xj]Mfj)

For general functions such as ex, linear intervals can be computed by considering
the Taylor expansion of the function and bounding its second-order terms over the
domain D. According to Taylor’s Theorem,

min
ξ∈D,x∈D

x2

2
f ′′(ξ) ≤ f(x)− f̃(x) ≤ max

ξ∈D,x∈D

x2

2
f ′′(ξ)

Therefore, a conservative linear interval for a general function f is:

[f(0) + min
ξ∈D,x∈D

x2

2
f ′′(ξ),f(0) + max

ξ∈D,x∈D

x2

2
f ′′(ξ)] + [f ′(0),f ′(0)]x

For most functions, the minima and maxima in this equation are computed with-
out difficulty. This approach also can be extended straightforwardly to the multi-
variate case. The mixed second-order terms that result can be folded into either the
constant intervals, as above, or into the linear intervals, as in Hansen’s formula for
multiplication. Both approaches yield similar results for the radiance computation.

5.2.3 Application to the shading computation. Linear interval arithmetic can be
used to derive error bounds for interpolated radiance. The first step is to compute

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 19

linear intervals for the various inputs used in the computation of radiance: the
incident ray I, the light ray L, and the normal N. These intervals are propagated
by evaluating diffuse and specular radiance, using the operations on linear interval
arithmetic described above, to produce a linear interval for radiance. Relative or
absolute interpolation error is then computed using this linear interval.

N0

(−X0 ,−Y0 ,−W)

P0

a

b

h0

h1

d

c

(X0 ,Y0 ,W)

Fig. 12. A linetree cell for a surface patch.

Consider a linetree cell associated with a surface for which an interpolant is being
constructed (shown in Figure 12). Without loss of generality, the principal direction
of the linetree cell is −ẑ, and the origin is located in the center of the cell; in other
words, the cell’s front face is centered on (X0, Y0,W) and its back face is centered
on (−X0,−Y0,−W).

Incident ray I. Since the front and back faces of the linetree cell are at z = W
and z = −W respectively, a ray parameterized by (a, b, c, d) represents a ray in 3D
space from (a+X0, b+Y0,W) to (c−X0, d−Y0,−W). Therefore, the unnormalized
incident ray is:

I = (c− a− 2X0, d− b− 2Y0,−2W)
Each component of I is a simple linear function of the variables (a, b, c, d) and
the corresponding linear intervals are computed trivially. For example, the linear
interval representation for the x-component of I is [−2X0,−2X0]+[−1,−1]a+[1, 1]c.
The incident ray is normalized by computing the linear interval for 1√

I2
x+I2

y+I2
z

,

where each of the operations — division, square, square root, and addition — are
the linear interval operations defined in the previous section.

Light ray L. For an infinite light source, the light vector is L = (lx, ly, lz), where
l2x + l2y + l2z = 1. The linear interval representation for the x-component of L is
computed trivially as [lx, lx]. For a local light source, L =

Lp−�p
‖Lp−�p‖ , where Lp is the

position of the light source. The linear interval representation for L is computed
from �p using the interval operations described in the previous section. Now we
explain how the linear interval representation for �p is computed.

20 · Bala, Dorsey, Teller

Point of intersection. The point of intersection �p of the incident ray I with the
surface lies on I, and can be parameterized by its distance t from the front face:

�p = (X0 + a, Y0 + b,W) + t I (3)

A conservative linear interval for the components of �p can be constructed in
several ways with varying degrees of precision. First, we describe a simple way of
conservatively bounding the intersection point for any convex surface. Consider the
ray R0 from the middle of the linetree’s front face to the middle of its back face.
R0 intersects the surface at the point P0, and the normal at that point is N0 (see
Figure 12). The plane h0 tangent to the surface at P0 is defined by the equation:

N0 · (x, y, z)− P0 · N0 = 0

Another plane h1 can be constructed parallel to h0 that passes through the
farthest point of intersection of any ray covered by the interpolant. Since the
object is convex, the point of intersection of one of the sixteen extremal rays is
guaranteed to be this farthest point. Let P1 be this farthest point of intersection
of the sixteen extremal rays; that is, the point with the most negative projection
on the normal. The equation of h1 is:

N0 · (x, y, z)− P1 · N0 = 0

If the points of intersection of the incident ray I with planes h0 and h1 are at
t = tnear and t = tfar respectively, then we have t ∈ [tnear, tfar], where:

tnear =
N0 · (P0 − (X0 + a, Y0 + b,W))

N0 · I
tfar =

N0 · (P1 − (X0 + a, Y0 + b,W))
N0 · I

These equations for tnear and tfar are converted into a linear interval representa-
tion using the rules described in the previous section, and used to compute a linear
interval for the parameter t:

t = tnear + [0, 1] · (tfar − tnear) (4)

The linear interval for �p is computed by substituting Equation 4 into Equation 3.
There is another option for computing linear intervals for �p when the point of
intersection can be computed analytically. For example, consider a general quadric
surface in three dimensions, defined by the following implicit equation:

Ax2 +By2 + Cz2 +Dxy + Eyz + Fxz +Gx+Hy + Iz + J = 0 (5)

Substituting �p = (x, y, z) = (X0 + a, Y0 + b,W) + t I, we obtain a quadratic in
t. The solution to the quadratic is converted to a linear interval using the Taylor
series technique described earlier, in which the solution is expanded to second order
and the second-order term is bounded.

Normal. The vector N normal to the surface at the intersection point is used in
the computation of diffuse and specular radiance: it appears in the terms N · I,
N · L, and N · H. The surface normal at the intersection point varies across the
linetree cell; it is a function of (a, b, c, d). There are various options for constructing

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 21

the linear intervals that conservatively approximate N. If little information about
the surface within the linetree cell is available, the normal can be bounded using a
constant interval bound. While this characterization is not precise, it will bound
error conservatively. This approach to bounding the normal is similar to that taken
in our earlier work [Teller et al. 1996], where the convexity of the surface allows
information about the surface normals at the extremal intersection points to be
used to bound the surface normal throughout the linetree cell.
For quadric surfaces and other surfaces that can be characterized analytically,
tighter bounds can be obtained for the normal by taking the gradient of the implicit
equation defining the surface and normalizing. For the quadric surface described
by Equation 5, the unnormalized normal vector is:

(2Ax+Dy + Fz +G, 2By +Dx+ Ez +H, 2Cz + Ey + Fx+ I)

As described earlier, the point of intersection �p = (x, y, z) can be expressed as a
linear interval. This solution is substituted into the normal vector formula, allowing
the normal vector to be bounded by linear intervals.
This approach can be extended to support spline patches. The surface intersec-
tion point can be bounded by the two-plane technique. Normals can be bounded
to varying degrees of precision. A simple approach is to use constant intervals to
bound the normals; a more accurate approach is to compute linear intervals for
the surface parameters (u, v) using interval-based root finding [Hansen 1975]. The
normal can then be computed using these parameters.

5.2.4 Error refinement. Figures 13 and 14 demonstrate the error refinement pro-
cess for a specular sphere and a diffuse plane. The top row of each figure shows
the sphere and plane rendered without testing for non-linearity; visible artifacts
can be seen around the specular and diffuse highlights. The bottom row shows the
sphere and plane rendered with non-linearity detection enabled and ε = 0.2 and
0.1 respectively. The system automatically detects the need for refinement around
highlights and refines interpolants that exceed the user-specified error bound. The
image quality improves (bottom row) and the linetrees are increasingly subdivided,
as shown in the linetree visualization on the right. Figure 15 shows a more complex
scene containing many primitives (described in Section 8). Non-linearity detection
substantially reduces error and eliminates visual artifacts (shown in the bottom
row). The difference images in the right column show the error in interpolated ra-
diance for the images on the left. Because this error is subtle, the difference images
have been scaled by a factor of 4 for the purpose of visualization.
An interesting observation is that the error intervals can be used to subdivide
linetree cells more effectively. The error bound computed for an interpolant specifies
intervals for each of the four axes; the axes with larger intervals (that is, more error)
are subdivided preferentially. This error-driven subdivision is discussed further in
Section 7.
Figure 16 depicts actual and bounded error for one scanline of the image in Fig-
ure 14. This scanline passes through the diffuse peak of that image. The x-axis
represents the pixels of the scanline, and the y-axis measures error in radiance. The
image was generated with a user-specified error of 0.1, as shown by the horizontal
dashed line in the figure. The blue trace is the actual error for each pixel in the

22 · Bala, Dorsey, Teller

Fig. 13. Error refinement for specular highlight. A visualization of the front (blue) and

back (pink) faces of the sphere’s linetrees is shown on the right (the eye is off-screen to the right).
Notice the error-driven adaptive subdivision along the silhouette and at the specular highlight.
Top row: without non-linearity detection. Bottom row: with non-linearity detection and ε = 0.2.

Fig. 14. Error refinement for diffuse highlight. A visualization of the front (blue) and back
(pink) faces of the plane’s linetrees is shown on the right (the eye is off-screen to the left). Notice
the error-driven adaptive subdivision along the silhouette and at the diffuse highlight. Top row:
without non-linearity detection. Bottom row: with non-linearity detection and ε = 0.1.

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 23

Fig. 15. Error refinement for museum scene. Top row: without non-linearity detection.
Bottom row: with non-linearity detection and ε = 0.5. Right column: scaled difference images.

0 100 200 300 400

pixel number

0.00

0.05

0.10

0.15

er
ro

r

User-specified error
Constant error bound
Linear error bound
Radiance error

Fig. 16. Actual and conservative error bounds for one scanline of the image in Figure 14.

24 · Bala, Dorsey, Teller

scanline, computed as the difference between interpolated and base radiance. The
green trace is the error bound computed by linear interval analysis for the inter-
polants contributing to the corresponding pixels in the scanline. The red trace is
the error bound computed by constant interval analysis. Since each linetree cell
contributes to multiple consecutive pixels, both the linear and constant interval
traces are piece-wise constant. Notice that both linear and constant interval anal-
ysis conservatively bound error for the pixels. However, linear interval analysis
computes tighter error bounds than constant interval analysis.
Several factors make linear interval error bounds more conservative than neces-
sary:

—The error bound is computed for the entire linetree cell, whereas any scanline is
a single slice through the linetree cell and usually does not encounter the point
of worst error in the interpolant.
—The bound is computed assuming simple linear interpolation, but the actual
interpolation technique is quadrilinear interpolation, which interpolates with less
error.
—Linear interval analysis is inherently conservative.

Several measures are taken to increase the precision of the linear interval analysis.
One important technique is to treat the function e

1
σ2 (1− 1

x2) as a primitive operator.
This function, used in the computation of radiance with x = N ·H, is well behaved
even though its constituent operators (exponentiation and division) tend to amplify
error. The linear interval computation rule for this function is determined using the
second-order Taylor expansion technique described in Section 5.2.2. This approach
yields a tighter error bound than simple composition of the linear interval rules for
exponentiation and division does.

6. ACCELERATING VISIBILITY

Interpolants eliminate a significant fraction of the shading computations and their
associated intersections; however, they do not reduce the number of intersections
computed for determining visibility. Once interpolants accelerate shading, the cost
of rendering a frame is dominated by the following three operations:

—Determining visibility at each pixel, i.e., constructing a ray from the eye through
the pixel and intersecting that ray with the scene to find the closest visible object.
—For pixels that can be interpolated, computing the 4D intercepts for the ray and
evaluating radiance by quadrilinear interpolation.
—For pixels that cannot be interpolated (because valid interpolants are unavail-
able), evaluating radiance using the base ray tracer.

In this section, we present techniques to accelerate visibility determination and
interpolation by further exploiting temporal and image-space coherence.

6.1 Temporal coherence

For complex scenes, determining visibility at each pixel is expensive. However, for
small changes in the viewpoint, objects that are visible in one frame are often vis-
ible in subsequent frames. This temporal coherence occurs because rays from the

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 25

new viewpoint through the image plane are similar to eye rays from the previous
viewpoint. For the same reason, linetree cells that contribute to one frame typically
contribute to subsequent frames. In this section, we present a reprojection algo-
rithm that exploits this temporal coherence to accelerate visibility determination,
while guaranteeing correctness.
If an object o is visible at some pixel, and the ray from the viewpoint through
that pixel lies in a linetree cell with a valid interpolant, the radiance for the pixel
is interpolated using the interpolant. In this case, the linetree cell is said to cover
the pixel. A linetree cell typically covers a number of adjacent pixels on the image
plane. Linetree cells that contribute to the previous frame are reprojected to the
new viewpoint to determine which pixels in the new frame are covered by these
cells. If a pixel in the new frame is covered by a cell, it is not necessary to compute
visibility for that pixel: the radiance of the pixel can be computed directly from the
interpolant associated with that cell. Since a cell typically covers multiple pixels,
the cost of reprojecting the cell is amortized across many pixels. Reprojection also
enables scan-line interpolation, further accelerating rendering (see Section 6.2).
The reprojection algorithm never incorrectly assigns a linetree to a pixel, i.e., it
is conservative. To guarantee that the correct linetree cell is assigned to a pixel,
cell faces are shaft-culled with respect to the current viewpoint. Reprojection accel-
erates visibility by replacing intersect operations for many pixels by a single shaft
cull against the cell that covers those pixels. We will now discuss two important
issues for the reprojection algorithm: how to reproject linetree cells efficiently, and
how to use shaft-culling to guarantee that a cell is reprojected to a pixel only if it
covers that pixel in the new frame; i.e., how to guarantee correctness.

New Image Plane

eye

eye’

Pixels covered
by L

back segment

front segment

Image Plane

eye

Old Image Plane

L L

Fig. 17. A linetree cell with its front face (light blue) and back face (dark blue). The projections
of the front and back faces on the image plane are shown as thick light and dark blue lines
respectively. The linetree cell covers exactly those pixels onto which both its front and back face
project (shown in purple). On the right, the viewpoint has changed from eye to eye’. Different
pixels are covered by the cell in the new image plane (shown in purple).

26 · Bala, Dorsey, Teller

Pixels covered
by linetree cell

back segment

front segment

Image Plane

eye

projected front
segment

clipped back
segment

Fig. 18. Reprojection in 2D. The front seg-
ment is projected on and clipped against the
back segment. The purple segment shows the
pixels covered by the linetree cell.

front face

back face

eye

projected front face

clipped back
face

pixels covered
by linetree cellImage Plane

Fig. 19. Reprojection in 3D. The front face
is projected on and clipped against the back
face. The purple region shows the pixels
covered by the linetree cell.

6.1.1 Reprojecting linetrees. First, let us consider reprojecting linetrees in 2D.
In 2D, each linetree cell represents all the rays that enter its front line segment
and leave its back line segment. For a given viewpoint, a cell covers some set of
pixels; the rays from the viewpoint through these pixels are a subset of the rays
represented by the linetree cell. Given a viewpoint, we will discuss how to efficiently
find the subset of rays (and their corresponding pixels) covered by a linetree cell.
On the left in Figure 17, one linetree cell, L, of an object is shown; the front
segment of L is shown in light blue and its back segment is shown in dark blue. In
this frame the viewpoint is at the point eye. A ray from the viewpoint that lies in
L must intersect both its front and back segment. Consider the projection of the
front segment of L on the image plane with eye as the center of projection (shown
as the thick light blue line on the image plane). Similarly, the pixels that the back
segment projects onto are shown by the thick dark blue line on the image plane.
The pixels covered by L are the pixels onto which both the front and back segment
of L project; this is because a pixel is covered by L only if the eye ray through that
pixel intersects the front and back segments of L. Therefore, the pixels covered by
L are the intersection of the pixels covered by both the front and back segment
(shown by the purple segment in the figure). On the right in Figure 17, the same
cell is shown projected onto the image plane from a new viewpoint, eye’. Notice
that L covers different (in fact, more) pixels in the new frame.
To determine which pixels are covered by L we should compute the intersection
of pixels covered by its front and back segments. Using the viewpoint as the center
of projection, the front segment of L is projected onto the line containing its back
segment, and is then clipped against the back segment. When this clipped back
segment is projected onto the image plane it covers exactly the same pixels that L
covers. This is clear from the geometry in Figure 18.

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 27

back segment

front segment

Old Image Plane

eye

eye’
New Image Plane

Fig. 20. Yellow ellipse occludes visibility to the linetree cell from the new viewpoint eye’ but
not from eye. Therefore, it would be incorrect to reproject the linetree cell to the new viewpoint.

We now extend this discussion to rays in 3D as depicted in Figure 19. Each
linetree cell represents all the rays that enter its front face and leave its back face.
To determine the pixels covered by a linetree cell L, the front face of L is projected
onto the plane of the back face of L and clipped against the back face. This clipping
operation is inexpensive because the projected front face and back face are both
axis-aligned rectangles. The pixels covered by the projection of the clipped back
face onto the image plane are exactly the pixels covered by L: in the figure, the
purple shaded region on the image plane.
When a new frame is rendered, the system projects and clips the faces of all the
linetree cells visible in the previous frame. To accelerate this process, we exploit the
projection capabilities of standard polygon-rendering hardware. These clipped back
faces are rendered from the new viewpoint using a unique color for each linetree
cell; the color assigned to a pixel then identifies the reprojected linetree cell that
covers it. The frame buffer is read back into a reprojection buffer which now stores
the reprojected linetree cell, if any, for each pixel in the image. A pixel covered
by a linetree cell is rendered using the interpolant of that cell; no intersection or
shading computation is done for it.

6.1.2 Reprojection Correctness. Reprojection, as described in the previous sec-
tion, is necessary but not sufficient to guarantee correct visibility determination
at each pixel. Figure 20 illustrates a problem that can arise due to changes in
visibility; an object that was not visible in the previous frame (the yellow ellipse)
occludes reprojected linetrees in the current frame.
To guarantee that the correct visible surface is found for each pixel, we conser-
vatively determine visibility by suppressing reprojection of linetree cells that might
be occluded. This condition is detected by shaft-culling [Haines and Wallace 1994]
each clipped back face against the current viewpoint. The shaft consists of five
planes: four planes extend from the eye to each of the edges of the clipped back
face, and the fifth plane is the plane of the back face of the linetree cell. If any ob-
ject is found inside the shaft, the corresponding linetree cell is not reprojected onto
the image plane. If no object lies in the shaft, reprojecting the linetree’s clipped

28 · Bala, Dorsey, Teller

back face correctly determines the visible surface for the reprojected pixels. Note
that in other systems this visibility determination is complicated by non-planar
silhouettes. They are not a problem in our system because while objects may have
non-planar silhouettes, the error bounding algorithm guarantees that linetree cells
with valid interpolants do not include these silhouettes.
Reprojection accelerates visibility computation by correctly assigning a linetree
cell to each pixel. For pixels covered by reprojection, no visibility or shading
operation is needed. Only one shaft-cull is required per linetree cell, which, for
reasonably-sized linetree cells, is faster than intersecting a ray for each covered
pixel. In Section 7, an additional optimization is described that amortizes the cost
of shaft-culling over multiple linetree cells by clustering.

6.2 Image-space coherence

Using the reprojected linetree cells, a simple scan-line algorithm further accelerates
the ray tracer. The reprojection buffer, which stores the reprojected linetree cell (if
any) associated with a pixel, is checked when rendering the pixel. If a reprojected
linetree cell is available, a span is identified for all subsequent pixels on that scanline
with the same reprojected linetree cell. The radiance for each pixel in the span
is then interpolated in screen space. Using screen-space interpolation eliminates
almost all of the cost of ray-tracing the pixels in the span. No intersection or shading
computations are required, and interpolation can be performed incrementally along
the span in a tight loop. One effect of screen-space interpolation is that speedup is
greater for higher resolution images because reprojected linetree cells extend over
larger spans of pixels.
The current perspective projection matrix can be considered by the error bound-
ing algorithm (see Section 5), yielding an additional screen-space error term. For
linetree cells that are not close to the viewpoint, the additional error is negligible
and can be ignored. In practice, we have not been able to observe any artifacts
from screen-space interpolation. Unlike other systems that exploit image coherence
[Amanatides and Fournier 1984; Guo 1998], our error bounding algorithm allows
us to exploit image coherence while producing correct results.
Figure 21 shows the reprojection buffer and the pixels covered by reprojection
for the museum scene. The color-coded image in the top right shows how image
pixels are rendered: purple pixels are span-filled (fast path), blue-gray pixels are
interpolated (interpolate path), green and yellow pixels are not accelerated (slow
path). The pale lines in the span-filled regions mark the beginning and end of spans.
Note that objects behind the sculpture are conservatively shaft-culled, resulting in
a significant number of pixels around the sculpture not being reprojected. Better
shaft-culling techniques would improve the reprojection rate.

7. OPTIMIZATIONS

In this section, we present some important performance optimizations and features
of our system.

7.1 Error-driven subdivision

The error analysis presented in Section 5 suggests that uniformly subdividing a
linetree cell along all four axes is too aggressive. A better approach is to use the

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 29

Fig. 21. Museum scene. Top row (left to right): reprojection buffer, color-coded image. Middle
row: span-filled pixels, span-filled and interpolated pixels. Bottom: final image.

30 · Bala, Dorsey, Teller

error bounding algorithm to determine the appropriate axes to split. We have im-
plemented a four-way split algorithm that splits each linetree cell into four children,
using the error bounding algorithm to guide subdivision. The split algorithm uses
the sixteen ray trees associated with the interpolant to subdivide either the a and
c axes or the b and d axes. This error-based adaptive subdivision results in fewer
interpolants being built for the same number of successfully interpolated pixels.
For the museum scene, building fewer interpolants using error-driven subdivision
resulted in a 35% speedup. Currently our algorithm adaptively subdivides only
across radiance discontinuities. However, this technique could also be applied to
adaptive subdivision across regions with non-linear radiance variation.

7.2 Linetree depth

Our adaptive algorithm builds interpolants only if the benefits of interpolating
radiance outweigh the cost of building interpolants. It achieves this by evaluating a
simple cost model when deciding whether to subdivide a linetree cell. Linetree cells
are subdivided on the basis of the number of screen pixels that they are estimated
to cover. This estimate is computed using an algorithm similar to that used for
reprojection (see Section 6). The front face of the linetree cell is projected onto its
back plane, and clipped against its back face. The area of this clipped back face
projected on the image plane estimates the number of pixels covered by the linetree
cell. Thus, when the observer zooms in on an object, interpolants for that object
are built to a greater resolution if required by the error bounding algorithm; if an
observer is far away from an object, the interpolants are coarse, saving memory.
This cost model ensures that the cost of building interpolants is amortized over
several pixels. For the results in this paper, an interpolant is built only if it is
expected to cover at least twelve pixels on the image plane. This setting delivers
the best performance because building an interpolant is roughly twelve times more
expensive than shooting a single ray (four of the sixteen samples associated with the
interpolant have already been computed for its parent linetree cell and are reused).

7.3 Unique interpolant rays

The cost of building interpolants can be decreased by noticing that linetree cells
share many rays. In the four-way split algorithm, each child of a linetree cell shares
four rays with its parent. Similarly, siblings in the linetree share common rays;
for example, two sibling linetree cells that have the same front face but different
back faces share eight of the sixteen extremal rays. Therefore, when building in-
terpolants, we use hash tables indexed by the ray’s four parameters to guarantee
that each ray is only shot once. This optimization reduces the total number of rays
used to build interpolants by about 65%.

7.4 Unique ray trees

Storing radiance samples and their associated ray trees could result in substantial
memory usage. However, all valid interpolants and a large number of invalid in-
terpolants are associated with similar ray trees. Therefore, we use hash tables to
avoid storing duplicate ray trees, resulting in substantial memory savings.

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 31

7.5 Textures

Our system supports textured objects by separating the texture coordinate com-
putation from texture lookup. Texture coordinates and incoming radiance at the
textured surface are both quadrilinearly interpolated. In general, multiple textures
may contribute to the radiance of an interpolant. The texture coordinates of every
contributing texture, and the appropriate weighting of each texture by the incoming
radiance are recorded in the interpolant for each of the sixteen extremal rays and
are separately interpolated. For reflected textures, an additional ray must be shot
for each contributing texture from the point of reflection to compute the texture
coordinates used in interpolation.

7.6 Adaptive shaft culling

The reprojection algorithm applies shaft culling to linetree cells from the previous
frame. However, for large linetree cells that are only partially occluded, these shaft
culls are too conservative. On the other hand, for small linetree cells it is wasteful
to shaft-cull all the linetree cells of the object if the object is completely visible.
To address this problem, we cluster all the linetree cells of an object and shaft-
cull the cluster. If the shaft cull succeeds, a significant performance improvement
is achieved by eliminating the shaft cull for each individual cell. If the shaft cull
fails, we recursively subdivide the cluster spatially along its two non-principal axes,
and shaft-cull the four smaller clusters that result. This recursive subdivision is
repeated until the cluster size is reduced to a single linetree cell. Then, using a cost
model similar to that used for subdividing linetrees themselves, the contribution of
this single cell to the image is evaluated. If the contribution of the cell is significant,
it in turn is recursively subdivided and shaft-culled. The portions of the faces that
are not blocked are then reprojected. For the museum scene, clustering decreases
the number of shaft culls by about a factor of four.

8. PERFORMANCE RESULTS

This section evaluates the speed and memory usage of our system.

8.1 Base ray tracer

We compare our system to a base ray tracer that implements classical Whitted ray
tracing with textures and uses the isotropic Ward local shading model. The base
ray tracer is also used by our system for non-interpolated pixels.
To make the comparison between the ray tracers fair, optimizations were applied
to both the base ray tracer and to our interpolant ray tracer when possible. There
were a number of such optimizations. To speed up intersection computations, the
ray tracers use kd-trees for spatial subdivision of the scene [Glassner 1989]. March-
ing rays through the kd-tree is accelerated by associating a quadtree with each face
of the kd-tree cell. The quadtrees also cache the path taken by the most recent ray
landing in that quadtree; this cache has a 99% hit rate. Therefore, marching a ray
through the kd-tree structure is very fast. Also, shadow caches associated with ob-
jects accelerate shadow computations for shadowed objects. Other extensions such
as adaptive shadow testing [Ward 1994] and Light Buffers [Haines and Greenberg
1986] might improve performance further.

32 · Bala, Dorsey, Teller

8.2 Test scene

The data reported below was obtained for the museum scene shown in Figures 15,
21, and 22. In Figure 22, rendered images from the scene appear on the left, and on
the right error-coded images show the regions of interpolation success and failure.
In the error-coded images, interpolation success is indicated by a blue-gray color;
other colors indicate various reasons why interpolation was not permitted. Green
pixels correspond to interpolant invalidation due to radiance discontinuities such
as shadows and occluders. Yellow pixels correspond to interpolants that are invalid
because some sample rays missed the object. Pink pixels correspond to interpolant
invalidation because of non-linear radiance variations.
The scene has more than 1100 convex primitives such as cubes, spheres, cylin-
ders, cones, disks and polygons, and CSG union and intersection operations on
these primitives. A coarse tesselation of the curved primitives requires more than
100k polygons, while more than 500k polygons are required to produce compara-
bly accurate silhouettes. All timing results are reported for frames rendered at
1200×900 resolution. The camera translates and rotates incrementally from frame
to frame in various directions. The rate of translation and rotation are set such
that the user can cross the entire length of the room in 300 frames, and can rotate
in place by 360◦ in 150 frames. These rates correspond to walking speed.

8.3 Rendering paths

There are three paths by which a pixel is assigned radiance:

(1) Fast path: reprojected data is available and used with the span-filling algorithm.
(2) Interpolate path: no reprojected data is available, but a valid interpolant exists.
A single intersection is performed to find the appropriate linetree cell, and
radiance is computed by quadrilinear interpolation.

(3) Slow path: no valid interpolant is available, so the cell is subdivided and inter-
polants are built if deemed cost-effective. If the built interpolant is invalid, the
pixel is rendered by the base ray tracer.

8.4 Performance results

Table 1 shows the costs of each of the three rendering paths. The data for this table
was obtained by using the cycle counter on a single-processor 194 MHz Reality
Engine 2, with 512 MB of main memory.
In a 60-frame walk-through of the museum scene, about 75% of the pixels are
rendered through the fast path, which is approximately thirty times faster than the
base ray tracer for this scene. In this table, the entire cost of reprojecting pixels to
the new frame is assigned to the fast path.
Pixels that are not reprojected but can be interpolated must incur the penalty
of determining visibility. This interpolation path accounts for about 17% of the
pixels. Quadrilinear interpolation is much faster than shading; as a result, the
interpolation path is five times faster than the base ray tracer.
A pixel that is not reprojected or interpolated goes through the slow path, which
subdivides a linetree, builds an interpolant, and shades the pixel. This path is
approximately 40% slower than the base ray tracer. However, this path is only
taken for 8% of the pixels and does not impose a significant penalty on overall

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 33

Fig. 22. Museum scene. Radiance is successfully interpolated for the blue-gray pixels. The
error bounding algorithm invalidates interpolants for the green, yellow, and pink pixels. Non-
linearity detection is enabled for the bottom row. Green pixels: occluders/shadows. Yellow pixels:
silhouettes. Pink pixels: excessive non-linear radiance variation. Note the reflected textures in
the base of the sculpture.

34 · Bala, Dorsey, Teller

Path Cost for path Average fraction
(µsecs) of pixels covered

Fast path Span fill 1.9 75.2%
Reproject 3.9 75.2%
Total 5.8 75.2%

Interpolate path Intersect object 24.1 16.88%
Find linetree 4.5 16.88%
Quad. interpolation 4.2 16.88%
Total 32.8 16.88%

Slow path Intersect object 24.1 7.92%
Find linetree 4.5 7.92%

Test subdivision 11.9 7.49%
Build interpolant 645.5 0.43%
Shade pixel (base) 160.6 7.92%
Weighted total 235.9 7.92%

Interpolant ray tracer 28.5 100.0%

Base ray tracer 166.67 100.0%

Table 1. Average cost and fraction of pixels for each path over a 60 frame walk-through. The
total time for the interpolant ray tracer, shown in the second to last row, is the weighted average
of the time for each of the three paths. The last row reports the time taken by the base ray tracer.

performance. Much of the added cost results from building interpolants. As ex-
plained in Section 7, interpolants are adaptively subdivided only when necessary.
On average, interpolants are built for only 0.4% of the pixels (about 5% of the
pixels that fail); the cost model is very effective at preventing useless work. This
cost could be further reduced in an off-line rendering application through judicious
pre-processing.

50

100

150

Base Ray
Tracer
(time)

Interpolant Ray Tracer

T
im

e
(s

ec
) # pixels

(#pixels)(time)

Fast path

Interpolate

Base ray trace

200

1080k

270k

86k

 0k

Fig. 23. Performance breakdown by rendering path and time.

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 35

In Figure 23, we compare the average performance of the interpolant ray tracer
with that of the base ray tracer. The bar on the left shows the time taken by
the base ray tracer, which for the museum scene is a nearly constant 180 seconds
per frame. The middle bar shows the time taken by the interpolant ray tracer,
classified by rendering paths. The bar on the right shows the number of pixels
rendered by each path. Note that most of the pixels are rendered quickly by the
fast path. Including the cost of reprojection, on average the fast path renders 75%
of the pixels in 15% of the time to render the frame. Building interpolants accounts
for 19% of the time, and the remaining 66% of the time is spent ray tracing pixels
that could not be interpolated.

0 20 40 60

Frame number

0

50

100

150

200

R
en

de
ri

ng
 t

im
e

(s
ec

)

Base ray tracer
Interpolant ray tracer

Fig. 24. Timing comparisons for 60 frames.

In Figure 24, the running time of the base ray tracer and interpolant ray tracer
are plotted for each frame. After the first frame, the interpolant ray tracer is 4 to
8.5 times faster than the base ray tracer. Note that even for the first frame, with
no pre-processing, the interpolant ray tracer exploits spatial coherence in the frame
and is faster than the base ray tracer.
The time taken by the interpolant ray tracer depends on the scene and the amount
of change in the user’s viewpoint. Moving forward, for example, reuses interpolants
very effectively, whereas moving backward introduces new non-reprojected pixels
on the periphery of the image, for which the fast path is not taken. The museum
walk-through included movements and rotations in various directions.

8.5 Memory usage and linetree cache management

One concern about a system that stores and reuses 4D samples is memory usage.
The Light Field [Levoy and Hanrahan 1996] and Lumigraph [Gortler et al. 1996]
make heavy use of compression algorithms to reduce memory usage. Our work
differs in several important respects. Our system uses an on-line algorithm that
adaptively subdivides linetrees only when the error bounding algorithm indicates
that radiance does not vary smoothly in the enclosed region of ray space. Since we
do not store much redundant radiance information, we do not expect our data to be
as compressible. However, the memory requirements of our system are quite modest
when compared to these 4D radiance systems. During the 60-frame walk-through,

36 · Bala, Dorsey, Teller

the system allocates about 75 MB of memory. As the walk-through progresses, new
memory is allocated at the rate of about 1MB per frame.
Since our system uses an on-line algorithm—it does no pre-processing, and in-
terpolants are built lazily—the system memory usage can be bounded by a least-
recently-used (LRU) cache management strategy that reuses memory for linetrees
and interpolants. We have implemented a linetree cache management algorithm
similar to the UNIX clock algorithm for page replacement [Tanenbaum 1987],
though it manages memory at the granularity of linetree cells rather than at page
granularity. The system allocates memory for linetrees and interpolants in large
blocks. When the system memory usage exceeds some user-specified maximum
block count, the cache management algorithm scans through entire blocks of mem-
ory at a time to evict any contained interpolants that have not been used recently.
Each linetree cell has a counter that stores the last frame in which the cell was
touched. If the linetree cell scanned for eviction is a leaf, and it has not been
touched for n frames, where n is a user-specified age parameter, it is evicted. If all
the children of a cell have been evicted, it too is evicted. Once the system recovers
a sufficient amount of memory, normal execution resumes. Since scanning operates
on coherent blocks of memory, the algorithm has excellent memory locality, which
is important for fine-grained cache eviction strategies [Castro et al. 1997].

0 20 40 60 80

Memory Usage (MB)

0.9

1.0

1.1

N
or

m
al

iz
ed

 a
ve

ra
ge

 r
un

 t
im

e

RT without linetree cache eviction
RT with linetree cache eviction
Memory used for first frame

Fig. 25. Impact of linetree cache eviction on performance.

In Figure 25, we present the results of our LRU linetree cache management
algorithm. The x-axis shows the user-specified maximum memory limit. The gray
vertical dashed line shows the memory required by the first frame (17 MB). The
y-axis shows the average run time of the interpolant ray tracer, normalized with
respect to the average run time in the absence of memory usage restrictions (shown
as a flat blue line). The green trace shows that the cache management algorithm is
effective at preventing performance degradation when memory usage is restricted.
Even when memory is restricted to 20 MB, the performance penalty is only 5%; at
45 MB, the penalty is only 0.75%. For long walk-throughs, the benefits of using
cache management far outweigh this small loss in performance. Furthermore, it
should be possible to hide the latency of the cache management algorithm by using
idle CPU cycles when the user’s viewpoint is not changing.

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 37

9. CONCLUSIONS AND FUTURE WORK

Our system exploits object-space, ray-space, image-space and temporal coherence
to accelerate ray tracing. We have introduced 4D radiance interpolants that are
quadrilinearly interpolated to approximate radiance. A fast, conservative reprojec-
tion algorithm accurately determines visibility as the user’s viewpoint changes.

Our error bounding algorithm detects radiance discontinuities and prevents in-
terpolation across them. We have introduced the use of linear interval arithmetic
to compute conservative error bounds for radiance interpolation, thus guaranteeing
the quality of the radiance approximation. The maximum error bound ε can be
used to control performance-quality tradeoffs.

The combination of lazy interpolants and reprojection achieves significant per-
formance improvements (4 to 8.5 times faster than the base ray tracer) for complex
scenes and smoothly varying viewpoints. For the museum scene, 92% of the pixels
are accelerated and only 8% of the pixels are rendered using the base ray tracer. An
efficient cache management algorithm bounds memory usage, keeping the memory
requirements of our system modest.

There are many opportunities for applying the new techniques described here.
Ray tracing is often used to produce high-quality imagery in large off-line anima-
tions. Our techniques should be useful in accelerating both these pre-programmed
animations and interactive walk-throughs. For an animation, the user could spec-
ify the camera path completely; for a walk-through, the user could indicate areas
of the scene through which the viewpoint could move. Our system could use this
information about camera position to guide the sampling of interpolants. The error
bounding algorithm, which identifies regions of non-linear radiance variation, could
also be used to guide intelligent super-sampling.

Another useful application of these techniques is interactive scene manipula-
tion [Brière and Poulin 1996]. In such systems, the user interactively manipu-
lates material properties, lights and scene geometry with ray-traced imagery. Such
systems would be more useful if the user’s viewpoint were permitted to change.
Integrating radiance interpolants with scene manipulation permits both dynamic
scene editing and dynamic viewing [Bala et al. 1999].

We would also like to extend the shading model of our ray tracer and its support
for complex primitives; both of these would require extending the error bound-
ing algorithm, though the interpolant-building mechanism described in this paper
should be directly applicable. Our system samples the view-dependent component
of radiance; we would like to extend it to support a more complete shading model,
including diffuse inter-reflection, generalized BRDFs, and area light sources. We
would also like to expand the support for textures to include more general tex-
turing techniques such as bump maps and displacement maps. Information about
perturbed surface positions and normals can be applied to the linear interval anal-
ysis equations in Section 5.2. Finally, our current technique assumes that object
surfaces are convex. Relaxing this assumption to support polygon meshes, or para-
metric patches, would be useful. In Section 5.2, we have described how our linear
interval analysis techniques could be extended to support spline patches.

38 · Bala, Dorsey, Teller

ACKNOWLEDGMENTS

We would like to thank Andrew Myers for many helpful discussions and his fast
hash table implementation. We would also like to thank Greg Ward Larson and the
anonymous reviewers for their in-depth suggestions, and Michael Capps and Ulana
Legedza for their comments on early drafts. This work was supported by an Alfred
P. Sloan Research Fellowship (BR-3659), an NSF CISE Research Infrastructure
award (EIA-9802220), an ONR MURI Award (SA-15242582386), and a grant from
Intel Corporation.

REFERENCES

Adelson, S. J. and Hodges, L. F. 1995. Generating exact ray-traced animation frames by
reprojection. IEEE Computer Graphics and Applications 15, 3 (May), 43–52.

Amanatides, J. 1984. Ray tracing with cones. In Computer Graphics (SIGGRAPH 1984
Proceedings) (July 1984), pp. 129–135.

Amanatides, J. and Fournier, A. 1984. Ray casting using divide and conquer in screen

space. In Intl. Conf. on Engineering and Computer Graphics. Beijing, China.

Andrade, A., Comba, J., and Stolfi, J. 1994. Affine arithmetic. In Interval (St. Peters-
burg, Russia, March 1994).

Arvo, J. and Kirk, D. 1987. Fast ray tracing by ray classification. In Computer Graphics
(SIGGRAPH 1987 Proceedings) (July 1987), pp. 196–205.

Badt, S., Jr. 1988. Two algorithms for taking advantage of temporal coherence in ray
tracing. The Visual Computer 4, 3 (Sept.), 123–132.

Bala, K. 1999. Radiance Interpolants for Interactive Scene Editing and Ray Tracing. Ph.
D. thesis, Massachusetts Institute of Technology.

Bala, K., Dorsey, J., and Teller, S. 1998. Bounded-error interactive ray tracing. Tech-
nical Report Laboratory for Computer Science TR-748 (Aug.), Massachusetts Institute of
Technology.

Bala, K., Dorsey, J., and Teller, S. 1999. Interactive ray-traced scene editing using ray
segment trees. In Tenth Eurographics Workshop on Rendering (June 1999), pp. 39–52.

Brière, N. and Poulin, P. 1996. Hierarchical view-dependent structures for interactive
scene manipulation. In Computer Graphics (SIGGRAPH 1996 Proceedings) (August 1996),
pp. 83–90.

Castro, M., Adya, A., Liskov, B., and Myers, A. C. 1997. Hac: Hybrid adaptive caching
for distributed storage systems. In Symposium on Operating Systems (SOSP) 1997 (Oct.
1997), pp. 102–115.

Chapman, J., Calvert, T. W., and Dill, J. 1990. Exploiting temporal coherence in ray
tracing. In Proceedings of Graphics Interface 1990 (Toronto, Ontario, May 1990), pp. 196–
204. Canadian Information Processing Society.

Chapman, J., Calvert, T. W., and Dill, J. 1991. Spatio-temporal coherence in ray trac-
ing. In Proceedings of Graphics Interface 1991 (Calgary, Alberta, June 1991), pp. 101–108.
Canadian Information Processing Society.

Chen, S. E., Rushmeier, H. E., Miller, G., and Turner, D. 1991. A progressive multi-
pass method for global illumination. In Computer Graphics (SIGGRAPH 1991 Proceedings)
(July 1991), pp. 165–74.

Chevrier, C. 1997. A view interpolation technique taking into account diffuse and specular
inter-reflections. The Visual Computer 13, 7, 330–341.

Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Transactions on Graph-
ics 5, 1 (Jan.), 51–72.

Cragg, T. 1998. Pillars of salt. Sculpture of Goodwood.

Diefenbach, P. and Badler, N. 1997. Multi-pass pipeline rendering: Realism for dynamic
environments. In Proceedings of the 1997 Symposium on Interactive 3D Graphics (April
1997), pp. 59–70.

Radiance Interpolants for Accelerated Bounded-Error Ray Tracing · 39

Foley, J. and van Dam, A. 1982. Fundamentals of Interactive Computer Graphics.

Addison-Wesley.

Glassner, A. S. 1984. Space subdivision for fast ray tracing. IEEE Computer Graphics
and Applications 4, 10, 15–22.

Glassner, A. S. 1989. An Introduction to Ray Tracing. Academic Press, London.

Glassner, A. S. 1995. Principles of Digital Image Synthesis. Morgan Kaufmann Publish-
ers, Inc., San Francisco, CA.

Goral, C. M., Torrance, K. E., Greenberg, D. P., and Battaile, B. 1984. Modeling
the interaction of light between diffuse surfaces. In Computer Graphics (SIGGRAPH ’84
Proceedings) (July 1984), pp. 213–222.

Gortler, S., Grzeszczuk, R., Szeliski, R., and Cohen, M. 1996. The Lumigraph. In
Computer Graphics (SIGGRAPH ’96 Proceedings) (Aug. 1996), pp. 43–54.

Guo, B. 1998. Progressive radiance evaluation using directional coherence maps. In Com-
puter Graphics (SIGGRAPH 1998 Proceedings) (Aug. 1998), pp. 255–266.

Haines, E. and Greenberg, D. 1986. The light buffer: A shadow-testing accelerator. IEEE
Computer Graphics & Applications 6, 9 (Sept.), 6–16.

Haines, E. A. and Wallace, J. R. 1994. Shaft culling for efficient ray-traced radiosity. In
Photorealistic Rendering in Computer Graphics (Proceedings of the Second Eurographics
Workshop on Rendering) (New York, 1994). Springer-Verlag.

Hanrahan, P., Salzman, D., and Aupperle, L. 1991. A rapid hierarchical radiosity algo-
rithm. In Computer Graphics (SIGGRAPH ’91 Proceedings) (July 1991), pp. 197–206.

Hansen, E. R. 1975. A generalized interval arithmetic. In Interval Mathematics: Proceed-
ings of the International Symposium (Karlsruhe, West Germany, May 1975), pp. 7–18.
Springer-Verlag. Also published in Lecture Notes in Computer Science Volume 29.

Heckbert, P. S. and Hanrahan, P. 1984. Beam tracing polygonal objects. In Computer
Graphics (SIGGRAPH 1984 Proceedings) (July 1984), pp. 119–127.

Levoy, M. and Hanrahan, P. 1996. Light field rendering. In Computer Graphics (SIG-
GRAPH ’96 Proceedings) (Aug. 1996), pp. 31–42.

Lischinski, D. and Rappoport, A. 1998. Image-based rendering for non-diffuse synthetic
scenes. In Rendering Techniques 1998 (June 1998), pp. 301–314.

Lischinski, D., Smits, B., and Greenberg, D. P. 1994. Bounds and error estimates for
radiosity. In Computer Graphics (SIGGRAPH ’94 Proceedings) (July 1994), pp. 67–74.

Mark, W., McMillan, L., and Bishop, G. 1997. Post-rendering 3d warping. In Proceed-
ings of the 1997 Symposium on Interactive 3D Graphics (April 1997), pp. 7–16.

Moore, R. E. 1979. Methods and Applications of Interval Analysis. Studies in Applied
Mathematics (SIAM), Philadelphia.

Nimeroff, J., Dorsey, J., and Rushmeier, H. 1995. A framework for global illumination
in animated environments. In 6th Annual Eurographics Workshop on Rendering (June
1995), pp. 223–236.

Painter, J. and Sloan, K. 1989. Antialiased ray tracing by adaptive progressive refine-
ment. In Computer Graphics (SIGGRAPH 1989 Proceedings) (July 1989), pp. 281–288.

Pighin, F., Lischinski, D., and Salesin, D. 1997. Progressive previewing of ray-traced im-
ages using image-plane discontinuity meshing. In Rendering Techniques 1997 (June 1997),
pp. 115–126.

Roth, S. D. 1982. Ray casting for modeling solids. Computer Graphics and Image Pro-
cessing 18, 2 (Feb.).

Séquin, C. H. and Smyrl, E. K. 1989. Parameterized ray tracing. In Computer Graphics
(SIGGRAPH 1989 Proceedings) (July 1989), pp. 307–314.

Sillion, F. and Puech, C. 1989. A general two-pass method integrating specular and
diffuse reflection. In Computer Graphics (SIGGRAPH 1989 Proceedings) (July 1989), pp.
335–44.

Sillion, F. and Puech, C. 1994. Radiosity and Global Illumination. Morgan Kaufmann
Publishers, Inc., San Francisco, CA.

40 · Bala, Dorsey, Teller

Tanenbaum, A. S. 1987. Operating Systems: Design and Implementation. Prentice-Hall,

Inc.

Teller, S., Bala, K., and Dorsey, J. 1996. Conservative radiance interpolants for ray
tracing. In Seventh Eurographics Workshop on Rendering (June 1996), pp. 258–269.

Teller, S. and Hanrahan, P. 1993. Global visibility algorithms for illumination compu-
tations. Computer Graphics (Proc. Siggraph ’93), 239–246.

Tupper, J. A. 1996. Graphing equations with generalized interval arithmetic. Master’s
thesis, University of Toronto.

Wallace, J. R., Cohen, M. F., and Greenberg, D. P. 1987. A two-pass solution to
the rendering equation: A synthesis of ray tracing and radiosity methods. In Computer
Graphics (SIGGRAPH 1987 Proceedings) (July 1987), pp. 311–20.

Ward, G. and Heckbert, P. 1992. Irradiance gradients. In Rendering in Computer Graph-
ics (Proceedings of the Third Eurographics Workshop on Rendering) (May 1992). Springer-
Verlag.

Ward, G. J. 1992. Measuring and modeling anisotropic reflection. In Computer Graphics
(SIGGRAPH 1992 Proceedings) (July 1992), pp. 265–272.

Ward, G. J. 1994. Adaptive shadow testing for ray tracing. In Photorealistic Rendering
in Computer Graphics (Proceedings of the Second Eurographics Workshop on Rendering)
(1994). Springer-Verlag.

Ward, G. J., Rubinstein, F. M., and Clear, R. D. 1988. A ray tracing solution for
diffuse interreflection. In Computer Graphics (SIGGRAPH 1988 Proceedings) (Aug. 1988),
pp. 85–92.

Whitted, T. 1980. An improved illumination model for shaded display. CACM 23, 6, 343–
349.

