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Figure 1: By analyzing indirectly scattered light, our approach can recover reflectance from a single viewpoint of a camera and a laser
projector. (a) To recover reflectance of patches on the back wall, we successively illuminate points on the left wall to indirectly create a range
of incoming directions. The camera observes points on the right wall which in turn are illuminated by a range of outgoing directions on
the patches. (b) Using space-time images (“streak images”) from a time-of flight camera, we recover the reflectances of multiple patches
simultaneously even though multiple pairs of patch and outgoing-direction contribute to the same point on the right wall. The figure shows
a real streak image captured with two patches on the back wall. (c) We render two spheres with the simultaneously recovered parametric
reflectance models of copper (left) and jasper (right) in simulation.

Abstract

This paper introduces the concept of time-of-flight reflectance esti-
mation, and demonstrates a new technique that allows a camera to
rapidly acquire reflectance properties of objects from a single view-
point, over relatively long distances and without encircling equip-
ment. We measure material properties by indirectly illuminating
an object by a laser source, and observing its reflected light indi-
rectly using a time-of-flight camera. The configuration collectively
acquires dense angular, but low spatial sampling, within a limited
solid angle range - all from a single viewpoint. Our ultra-fast imag-
ing approach captures space-time “streak images" that can separate
out different bounces of light based on path length. Entanglements
arise in the streak images mixing signals from multiple paths if they
have the same total path length. We show how reflectances can be
recovered by solving for a linear system of equations and assuming
parametric material models; fitting to lower dimensional reflectance
models enables us to disentangle measurements.

We demonstrate proof-of-concept results of parametric reflectance
models for homogeneous and discretized heterogeneous patches,
both using simulation and experimental hardware. As compared
to lengthy or highly calibrated BRDF acquisition techniques, we
demonstrate a device that can rapidly, on the order of seconds, cap-
ture meaningful reflectance information. We expect hardware ad-
vances to improve the portability and speed of this device.
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reflectance acquisition, global illumination, time of flight
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1 Introduction

Acquiring material properties of real-world materials has a long
and rich history in computer graphics; existing techniques di-
rectly image the sample being measured to acquire different proper-
ties including tabulated reflectance functions, spatially varying re-
flectances, and parametric models (see [Weyrich et al. 2009] for a
survey of state-of-the-art techniques.). These reflectance functions,
are necessary for relighting, material editing, and rendering, as well
as for matching and material identification.

In this paper, we present a new acquisition approach to reflectance
measurement. Our approach is unique in two ways: we exploit
ultra-fast time-of-flight (ToF) imaging to achieve rapid acquisition
of materials; and we use indirect observation to acquire many sam-
ples simultaneously, and in fact, even permit around-the-corner
measurement of reflectance properties. The key insight of this re-
search is to exploit ultra-fast imaging to measure individual light
transport paths, based on the distance traveled at the speed of light.
This capability uniquely lets us separately measure the direct (0-
bounce), 1-bounce, 2-bounce, and more, light paths; in comparison,
traditional approaches use controlled laboratory settings to mini-
mize the impact of multi-bounce light transport, or must explicitly
separate direct and indirect lighting from all bounces.

We make the following contributions:

a) We present a new technique for reflectance acquisition by sep-
arating light multiplexed along different transport paths. Our ap-
proach uses indirect viewing with 3-bounce scattering coupled
with time-of-flight imaging to capture reflectances. Our proof-of-
concept system demonstrates first steps towards rapid material ac-
quisition.
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b) We exploit space-time images captured by a time-of-flight cam-
era, that image different light transport paths over time. The inher-
ent challenge is to decode material measurements in the presence of
mixing over angular and spatial dimensions (we call this “entangle-
ment"), where light arrives along multiple paths at the same point
at the same time.

c) When there is no entanglement, it is possible to directly pick out
the specular peak from streak images, enabling easy measurement
of a material’s gloss parameters. In the presence of entanglement,
we show how fitting parametric models to our data successfully
disentangles measurements.

d) Using time-of-flight (ToF) principles and indirect measurement,
ours is the first solution to rapidly and remotely recover reflectance,
even when the surface is not directly visible (around-the-corner).
To the best of our knowledge this is the first approach to use light
transport measurements in this manner. Our approach allows for
remote reflectance capture without having to be close, or in contact,
with the target material. No special instrumentation of the target
material or scene is required.

There are several limitations to the current work. The acquisition
is limited to a subset of the 4D space of a reflectance function ex-
pressed via lower-order parametric fits. The signal to noise ratio
is not very high because the energy received after three bounces
can be low. There are limits to the spatial and temporal resolution
of the device, thus limiting the size of patches and the maximum
sharpness of the reflectance function. For simplicity, we have as-
sumed that the source and receiver surfaces (left and right walls)
have a known diffuse reflectance; though this is not a fundamental
limitation. Currently we use only a single wavelength laser, due
to cost reasons, but getting lasers with different wavelength would
permit spectral measurements.

Acquiring material properties enables a range of applications in-
cluding image relighting, material editing, and material classifica-
tion. We expect that improvements in laser technologies and time-
resolved imaging will improve the stability, efficiency, and portabil-
ity of this approach. We believe this design could in the future en-
able rapid, “in-the-wild” measurement of real-world scenes, with-
out instrumentation.

2 Related Work

Nicodemus et al. [1977] introduced the Bidirectional Reflectance
Distribution Function (BRDF), which characterizes light reflection
from surfaces. BRDF acquisition has received much attention with
efforts to acquire isotropic and anisotropic BRDFs, and spatially
varying BRDFs and BTFs (bidirectional texture functions)[Ward
1992; Marschner et al. 1999; Dana et al. 1999; Lensch et al. 2001;
Lensch et al. 2003; Matusik et al. 2003; Ngan et al. 2005; Lawrence
et al. 2006; Ghosh et al. 2009; Ghosh et al. 2010a; Dong et al. 2010;
Wang et al. 2009]. These acquisition processes are often lengthy,
requiring extensive laboratory settings with calibration, and hours
or even days of acquisition. Weyrich et al. [2009] present a detailed
survey of the state of the art, and introduce a taxonomy of six major
designs for material acquisition.

Capturing BRDFs requires measuring a large number of lighting–
viewing combinations for the material. To decrease acquisition
costs, many techniques focus on matching to parametric models
(e.g., [Sato et al. 1997; Yu et al. 1999; Lensch et al. 2001; McAl-
lister 2002; Gardner et al. 2003; Lensch et al. 2003; Goldman et al.
2010]). Various approaches decrease acquisition costs and increase
coverage by exploiting properties of BRDFs including reciprocity,
separability, spatial smoothness, and compressibility [Zickler et al.
2005; Sen et al. 2005; Garg et al. 2006; Wang et al. 2008; Dong

et al. 2010]. Lighting configurations and variations have been con-
sidered including polarization and structured illumination[Wenger
et al. 2005; Sen et al. 2005; Ma et al. 2007; Ghosh et al. 2010b].

Most BRDF techniques directly, or indirectly through a mirror sur-
face [Weyrich et al. 2009], view and image the material sample
with some notable exceptions [Han and Perlin 2003; Hawkins et al.
2005; Kuthirummal and Nayar 2006]. Hawkins et al. [2005] de-
veloped the dual light stage, and imaged a diffuse environment to
increase angular measurements.

There has been a long line of research in computer vision
in modeling interreflections to accurately model shape and re-
flectance [Forsyth and Zisserman 1990; Nayar et al. 1991]. Re-
cently there has been interest in recovering scene properties such as
geometry and albedo from multiple bounces of light [Nayar et al.
2006; Seitz et al. 2005; Sen et al. 2005; Kirmani et al. 2009; Liu
et al. 2010; Bai et al. 2010], and also on recovering shape and ma-
terial simultaneously [Holroyd et al. 2008].

In contrast to prior techniques we do not directly image the surface
sample, but rather, indirectly image a diffuse surface and use time-
of-flight principles to detect and measure all the bounces of light
arriving at the diffuse surface, after interacting with the samples
we want to measure. This approach enables rapid (on the order
of seconds) acquisition of reflectances of multiple patches (tens of
materials) simultaneously, over a range of angular measurements.

3 Time-of-flight Reflectance Acquisition

We now describe our time-of-flight acquisition system. We first de-
scribe the geometry of our setup. We derive the terms for acquiring
a single patch, introduce streak images, and the problem of entan-
glements. We show how to generalize our acquisition to multiple
patches, and discuss the coverage of our acquisition device.

3.1 Geometry of acquisition

We describe the canonical geometric setup to acquire reflectances
in Figure 2-(a). The source S and receiver R are both assumed to
be known Lambertian materials, and P is the patch being measured.
In our equations, s, r, p indicate points on S,R, P , respectively. In
addition, the laser illuminates the source S, and a camera views the
surface R. Thus, we do not image P directly, but rather measure it
indirectly.

Around the corner viewing: In the second configuration shown
in Figure 2-(b) the patch being measured P is not directly visible
to the camera. In this case, the source and the receiver are the same
real-world surface (and of course, have the same reflectance prop-
erties). The laser shines on a part of the surface that is not being
imaged by the camera (to avoid dynamic range issues). Depending
on the orientation of the patch P , the angular coverage of directions
is quite similar to the configuration in Figure 2-(a).

Mathematically, this configuration works in exactly the same way
as the previous configuration, with the appropriate setting of an-
gles and distances. In the following text, we illustrate our ideas us-
ing Figure 2-(a), but our physical experimental setup more closely
matches Figure 2-(b).

3.2 Imaging a single patch

For each s, light is reflected from P to R. A camera captures the
light reflected along the path: s → p → r. As shown in Figure 2-
(a), given a point p with normal Np, θps is the angle made by s at
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Figure 2: We explore two acquisition setups, left: canonical setup,
right: around-the-corner setup. To measure the patch P , the laser
illuminates S, and the camera images R.

p with respect to Np, namely cos θps = Np · (s−p)
||(s−p)|| . Similarly,

we define θpr for each r.

Ignoring time, a regular camera viewing R would measure:

I0 ρS ρR
π

fr(s,p, r)
cos θps cos θpr cos θrp
‖s− p‖2 ‖r− p‖2 (1)

where fr(s,p, r) is the BRDF at p along path s→ p→ r, I0 is the
laser intensity, and ρS and ρR are the diffuse reflectance of S and
R respectively. We introduce the geometry term g(s,p, r), which
entirely depends on the geometry of the patches, and the known
reflectances:

g(s,p, r) =
I0 ρS ρR

π

cos θps cos θpr cos θrp
‖s− p‖2 ‖r− p‖2 (2)

Given a patch P with finite extent, a regular camera imaging the
patch at location r would capture:∫

p∈P
g(s,p, r)fr(s,p, r) dp (3)

Using a time-of-flight camera: The availability of an ultra-fast
lighting and imaging system is one of the key differences of our
approach with respect to traditional measurement approaches. A
fast laser switches rapidly, enabling fast scanning of S. The time-
of-flight camera measures light at picosecond time intervals; thus,
light traversing different path lengths arrive at different instants
of time that are measurable by the imaging device. The distance
traveled in 1 picosecond is 300 micrometers (speed of light is
3× 108m/second).

Consider a point r: as light from the laser follows different paths,
reflecting off different points p, it will arrive at different times at
the receiver. Apart from the spatial image, our camera is able to
capture images over time (Currently, our camera captures images
with only 1 spatial dimension and the temporal dimension.). We
call these images “streak images”. See Figure 3 for an illustrative
streak image for a small patch P . Note the shape of the curve,
depending on the path lengths of light from S, reflecting off P, to
R. Note that with the time-of-flight camera it is possible to observe
the specular peak directly from the streak image.

In comparison with a regular camera image we note that if we add
all the image data across time for a single point r and a single source
location s we obtain the regular camera image value for that (s, r)
combination.
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Figure 3: This figure illustrates a simple setup (left) and the corre-
sponding streak image (right). Red and blue colors on the curve in-
dicate regions with higher and lower brightness, respectively. The
bright region on the streak image contains information about the
shape of the specular lobe of the BRDF of P .

3.2.1 Streak image

We define the streak image to be a 2D image, Q. With an ultra-fast
camera, we image R capturing the photon arrivals at R, and use
this information to estimate the reflectances of P . Given the laser
illumination s, the point r at a time t measures the following:

Qs(r, t) =

∫
k∈K′

g(s,p, r)fr(s,p, r) dp (4)

where, K′ ⊆ P consists of all points p such that the path length
d for the laser light to arrive at r is the same. That is, at a given
instant t light arrives at r from all points p which have an equal
path length along s→ p→ r:

d = ‖s− p‖+ ‖r− p‖ = c · t

where c is the speed of light.

In the case where P is very small, the streak image has the shape
shown in Figure 3. When P is a patch with finite extent, we get an
integral of all the points on P (with the same total path length) at
each time instant, thus giving a thicker curve in the streak image.

3.2.2 Path separation

The ultra-fast camera separates out light with different bounces.
Thus at the receiver R, direct light from s → r arrives first, then
light from s→ p→ r, and so on, for greater number of bounces of
light. Ultra-fast imaging permits us to easily separate out these dif-
ferent light transport paths, thus, greatly simplifying material acqui-
sition by letting us separate out terms that include only the BRDF
we are interested in.

3.2.3 Entanglement

One technical challenge with streak images, is that light paths are
not always separated. In the case where two different light paths
arrive at the same point r at the same time t (because they have the
same path length), there is a linear mixing observed at that point
in the streak image. Figure 4 shows the locus of points which get
mixed at r: an ellipse in 2D, an ellipsoid in 3D. All the measure-
ments from this locus of points are added together at the imaging
point for any given time instant.

The around-the-corner setup, as seen in Figure 2-(b), brings the foci
of the ellipse closer together, which increases the curvature of the
ellipse around the sample location. This ensures fewer entangle-
ments as compared to the canonical setup in Figure 2-(a).
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Figure 4: Multiplexed scattering causes entanglements: Two light
paths, s → p1 → r and s → p2 → r, with the same path length,
will get mixed in the streak image. The dashed ellipse (ellipsoid in
3D) shows all points with this path length.

3.3 Multiple patch measurement

As a patch gets larger we can acquire more measurements, which
improves the signal to noise ratio of our measurements. However,
the larger the patch, the more entanglement occurs. Thus, there
is a tradeoff in patch size between better signal and sharper signal
(that preserves high frequency information). To avoid excessive
blurring, we split the patch into multiple patches (of size 1cm ×
1cm), and independently recover reflectance parameters for each
subpatch. While entanglements are still possible, if the dimensions
of the subpatch are not comparable with those of the source and
receiver walls, there will be only a few such entanglements. In
Section 4 we show how we can disentangle these observations by
fitting to a parametric material model.

3.4 Coverage of our measurements

We indirectly observe BRDF measurements by imaging a Lamber-
tian material R. This enables taking many BRDF measurements
simultaneously, for a given point P , thus, accelerating acquisition.
However, this approach is only practicable with the ultra-fast cam-
era which is able to disambiguate between measurements across
time, thus enabling accurate reconstruction. Note that given the
geometry, there are restrictions on the range of incoming and out-
going directions that are measurable. As the laser sweeps over S,
we measure a 2D set of values on R.

In the canonical setup shown in Figure 2-(a), the horizontal separa-
tion between the S and R surfaces, as well as the vertical length of
the two surfaces decide the angular range of observations. In the-
ory, if both S and R surfaces are infinitely long, and separated by
an infinite distance, half of the hemisphere of all possible incoming
directions as well as the other half of the hemisphere in the outgo-
ing direction (mirror direction) will be sampled. However, due to
the inverse-square fall-off of energy with path length, the practical
setup cannot be arbitrarily large. Its dimensionality is limited by
constraints on the intensity of the light source and the sensitivity of
the camera imaging the receiver surface.

The around-the-corner setup in Figure 2-(b), can be thought of as
the setup in Figure 2-(a) with the S and R surfaces folded together.
So the same discussion of angular coverage applies to this case. The
angular coverage of practical setups is discussed in Section 6.

4 Reconstructing Reflectance Values

In this section we describe how we recover reflectance values from
the acquired data.

× =

G F B

g′ikj := g′(i, k, j)

(I · J · T )× (I · J ·K) (I · J · T )× 1
(I · J ·K)× 1

g′ikj fikj

bikj

fikj := F (i, k, j)

bikj := B(i, k, j)

T

T

J

t

j

Figure 5: The linear system to solve for reflectances is constructed
using the streak images and scene geometry information. Consider
two patches with a streak image for one source position si. The
streak image is sampled at two receiver positions r1 and r2 to cre-
ate the observation vector B. Based on the time-slot an obser-
vation falls in, we calculate the corresponding “physical factor”
g′(i, k, j). The time-slot decides the row location of g′ikj . The
column location of g′ikj is decided by the column location of the
corresponding BRDF in F . The same process is repeated in the
case of multiple source positions, by stacking up the streak-columns
vertically, which in turn makes the G matrix taller. B and G are
extremely sparse. In this figure, all the elements inB andG, except
the colored dots, are zero.

4.1 Discretizing the problem domain

We can estimate the geometry of the scene using our time-of-flight
device. A basic method to achieve this is described in [Kirmani
et al. 2009]. More recent algorithms are capable of reconstructing
continuous surfaces and complex shapes without good knowledge
of the object BRDF. Therefore, the various physical factors, θps,
θpr , θrp, ‖s − p‖, and ‖r − p‖, and d, can be determined. We
discretize the problem as below: given I laser positions indexed by
i, J receiver points indexed by j, K patch positions indexed by k,
and T time slots (corresponding to the width of the streak images)
indexed by m, we have I · J · K unknown values of BRDF and
I · J · T measurements.

A single patch: Consider a small patch placed in the Figure 2-
(a) configuration. We discretize the problem space for the patch,
assuming that for any i, j and k, vectors (s− p) and (r− p), and
the BRDF fr(s,p, r) are roughly constant. Discretizing Equation 4
we get:

Qi(j,m) = Ak g(i, k, j)F (i, k, j) (5)

where m is the discretized time taken by light traveling from the
laser source to the camera along path s → p → r, F is the dis-
cretized BRDF, Ak and p are the surface area and the center of the
patch, respectively, and g(i, k, j) is evaluated with all parameters at
the center of the respective patches si, pk and rj . We introduce a
modified geometry term g′(i, k, j) = Ak g(i, k, j), where we fold
the surface area Ak into the g term.

When there is no entanglement, F (i, k, j) can be obtained by read-
ing the intensity value Qi(j,m) on the streak image and dividing
it by these known factors. With entanglement, the measurement
in the streak image is a mixture of multiple paths, with different
BRDF values along each path. Thus, it is not possible to directly
invert these measurements. Therefore, we formulate a linear system
of equations as below to solve for the unknown reflectance values.

Multiple patches: The case ofK patches (with different BRDFs)
is a simple generalization of the equations above. Again, when
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there is no entanglement, each measurement corresponds to a sin-
gle BRDF, but when there is entanglement there is a mixture of
multiple (potentially different) BRDFs. Thus, the formulation for
both single patch, and multipatch, is the same in the presence of
entanglements.

4.2 Matrix formulation

We set up a linear system to solve for the BRDF for each patch. The
angular coverage of the recovered BRDF depends on the geometry
of the setup, primarily the dimensions of the source and receiver
wall, as discussed in Section 3.4. The discretized system of equa-
tions is:

B(i, j,m) = G(i, k, j) · F (i, k, j) + ν (6)

where, B(i, j,m) := Qi(j,m), and B, F , and G are the vector-
ized representations of observations, unknown BRDF values, and
the physical factors respectively, and ν represents noise from the
camera capture. The observation at each receiver position j repre-
sents one rowQi(j, 1 : T ). The observation vectorB is constructed
by stacking up the J columns.

The G matrix is populated with appropriate entries based on the
scene geometry and the constraints due to entanglement (see Fig-
ure 5). Given a source position, and two receiver positions, we have
all the time data for those two positions (shown as purple and yel-
low lines in the figure). The corresponding B vector consists of
2 · T entries, the F vector consists of 2 ·K entries, and G is setup
as described in the caption of the figure. Generalizing to I source
positions, and J receiver positions, we arrive at the vector B of di-
mension (I ·J ·T )×1, matrixG of dimension (I ·J ·T )×(I ·J ·K),
and vector F of dimension (I ·J ·K)× 1. The matrix G as well as
the observation vector B are extremely sparse. We will discuss the
actual number of equations available next.

Rank: We assume that we have T time-slots of observations of
the receiver R using the ultra-fast camera. Note that we assume
that we limit the time range of observation to only include light
that bounces from S to P to R (three bounces), eliminating lower
and higher bounces of light. This is possible in our proposed setup
using our time-of-flight imaging device.

Ideally, with no entanglements, if the path lengths of light arriving
from each of theK patches is different, we will observeK separate
responses at the receiver point Rj from m = 1 to T . The number
of observations will be exactly equal to the number of unknowns,
i.e. I ·J ·K, as there will be one unique observation corresponding
to one triplet (i, j, k), and we can trivially invert the equation to
acquire the BRDF value.

However any real-world geometry will contain a number of identi-
cal paths as shown in Figure 4. The light from different patches with
identical pathlengths will add up in the corresponding binQi(j,m).
Hence the number of observations corresponding to one laser and
receiver position can be less than or equal toK. This makes the lin-
ear system underdetermined. Next, we describe how using reduced
dimensional parametric models decreases the number of required
measurements, thus, enabling recovery of reflectance parameters.

4.3 Parametric reflectance models

In order to solve the sparse underdetermined system defined earlier,
we assume a low dimensional parametric model of the BRDF and
recover the parameters of this BRDF. We use the half-angle param-
eterization proposed by Rusinkiewicz [1998], and use the dBRDF
proposed in [Ashikhmin 2007], and used in [Ghosh et al. 2010b] to

measure distributions of the BRDF. Ashikhmin et al. [2007] show
that using such a fitting process for limited cone data can be effec-
tive. We compute the half angle vector h for each measurement
and parameterize the BRDF as fr = kd/π + ks p(h) where the
unknowns kd, ks are the diffuse and specular reflectance respec-
tively, and p(h) is a distribution parameterized by the half angle
vector. Various distributions p(h) have been published in graphics
literature [Ngan et al. 2005; Matusik et al. 2003; Ashikmin et al.
2000]. Since our measurements have relatively limited cones of an-
gles around the zero half-angle, we assume isotropic BRDFs and
fit the following Ashikhmin-Shirley model described in Ngan et
al. [2005]:

fr =
kd
π

+ ks
n+ 1

8π

(N ·H)n

(V ·H)max((N · L), (N · V ))

We ignore the Fresnel term in our fit, which is reasonable given
our configuration and range of angles covered. Thus, our BRDF
estimation problem reduces to estimating 3 unknowns per patch i.e.
kd, ks and n. Thus, the total number of unknowns for K patches
reduce from I · J ·K to 3K.

4.4 Solving for reflectances

When entanglement does not occur, for many half angle values it
is possible to use streak images to directly measure out the BRDF
without having to resort to fitting to a parametric representation.
However, in the presence of entanglements, assuming a low dimen-
sional parametric model, we have large number of observations and
only a few unknowns per patch.

To solve the linear system of equations, we sort the columns of the
matrixG by half angle, (N ·H), values for each patch in ascending
order. This ensures that the BRDF segment corresponding to each
patch is a continuous segment in F . This helps to make the opti-
mization process easier as the BRDF of each patch is now a single
segment in vector F .

The observation vector B and the matrix G are very sparse as the
actual number of non-zero observations in B are less than or equal
to I · J · K. We use this fact to delete all zeros from B and the
corresponding all-zero rows from G. This process reduces the size
of the linear system considerably. The size of G reduces from (I ·
J · T )× (I · J ·K) to V × (I · J ·K), where V is dependent on
the geometry of the setup. In our experiments, V is much less than
I · J · T , and is of the order of T ∼ 500.

To solve for the BRDF parameters, we apply unconstrained non-
linear optimization using the fminunc function from the Matlab
Optimization Toolbox. The optimization procedure uses the BFGS
Quasi-Newton method with a mixed quadratic and cubic line search
procedure. A detailed description of the algorithm can be found in
the Matlab Optimization Toolbox User’s guide [Mathworks 2011].
The optimization is performed over the 3K parameters to minimize
the error metric using the L2norm of B − GF ′, where F ′ is the
BRDF vector calculated using the estimated parameters.

We start with intuitive initial guesses of the parameters (n in the
value of hundreds, and kd and ks at approximately 10 %) to the
optimization process. We find that our optimization converges in a
few iterations to the global minimum. Figure 8 shows the paramet-
ric fits obtained for multiple patches.

5 Experiments

Modifying existing time-of-flight (ToF) cameras to report a full
time profile with sufficient SNR for our purpose is quite challeng-
ing. Our emphasis in this paper is on the computational and al-
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Figure 6: The time-of-flight camera setup involves a laser projector
via a Ti:Sapphire laser with steering mirrors and a pico-second ac-
curate camera. This setup corresponds to Figure 2-(b). Reflectance
of the “object” is recovered by aiming the camera and the laser
projector at the diffuse wall.

gorithmic aspects. Following experimental setup was used for our
proof-of-concept implementation.

Our light source is a mode-locked 795 nm Ti:Sapphire laser. The
camera is a Hamamatsu C5680 streak camera that captures a series
of 512 one-dimensional images, i.e., lines of 672 pixels in the scene,
with a time resolution of about 2 picoseconds. Figure 6 shows our
setup in the configuration corresponding to Figure 2-(b).

6 Results

We now present the results of our time-of-flight reflectance mea-
surement system. We first evaluate our results using a simulation
of the device, to focus on demonstrating its capabilities with a good
hardware implementation, and to validate against ground truth val-
ues. Finally we demonstrate acquisition using our hardware setup.

6.1 Simulation results and validation

In our simulation setup we simulated the working of a time-of-flight
camera in the indirect viewing configurations of Figures 2-(a) and
(b). The results are the same in both configurations, so we only
present our results for the (b) configuration.

6.1.1 Simulation setup

We simulate our physical setup from Figure 6. S, P , and R form
the left, back, and right planes of a box. S and R are of size
25 × 25cm2, and are separated by a distance 15 cm. We consider
I = 15 laser positions on S, J = 25 receiver positions on R. We
specify the number of patches for each experiment as they arise.
We measure T = 512 time slots, where each time slot corresponds
to 1.6678 picoseconds. Both the source and receiver are assumed
to be Lambertian surfaces with known reflectance, kd = 0.97.

We simulate different measurement scenarios by introducing single
and multiple patches of different materials assuming a parametric
Ashikhmin BRDF model (see Section 4.3). Using the geometry in-
formation and the supplied BRDFs, we generate the streak images.
To simulate finite patch areas, we sample each patch at ten random
points on the surface and average them at different receiver points.

Our simulation provides us with the measurement vector B. We
further add random noise to these observations to simulate the noise
introduced by the camera and other external factors during the ac-
tual capture process. For this purpose, we employ a commonly
applied noise model [Hasinoff et al. 2010; Schechner et al. 2007]
consisting of a signal independent additive term, which includes
dark current and amplifier noise, plus a signal dependent photon
shot noise term.

The noise added to an observation B(i, j,m) is given by
νb = νfloor + νphoton. Here νfloor is a constant noise-floor given
by νfloor = 0.01 · max(B) · ξ where B is the observation vector,
and ξ is a random number in ℵ(0; 1). νphoton is the photon noise give
by νphoton = η ·B(i, j,m) · ξ, where η is a noise-parameter defined
as a percentage.

6.1.2 Results

We simulate two scenarios using this setup: single patch and
multiple patch. We choose nine materials from the database by
Ngan et al [2005] to represent a wide variety of reflectances. We
simulate the three different channels separately using the corre-
sponding parameters. The first scenario contains a single unit-area
(1cm2) patch placed on P. The second scenario simulates a two-
dimensional grid of nine patches arranged in a 3× 3 configuration.

Single patch simulations: We recover parametric BRDFs, as de-
scribed in Section 4.3, for three different materials with different
percentage of additive noise: η = 0%, 1% and 10%. Table 1 shows
the ground truth results, and the recovered parameter values for two
materials (copper, and red plastic specular). For η = 1% the recov-
ered parameters have very low error, and even for η = 10%, the
recovered parameter values are reasonable. The diffuse reflectances
are most affected by noise, since they are relatively low. The sup-
plementary material provides more comparisons.

Multi patch simulations: We use the same nine materials, now
arranged in a 3×3 2-D grid of patches of unit area to create a ‘mul-
tipatch’ at P (see Figure 1). Again for this case, we recover the pa-
rameters for three different percentages of additive noise: η = 0%,
1% and 10%. Figure 8 shows rendered spheres using the ground
truth, and the recovered BRDFs with η = 1%, and η = 10%. Fig-
ure 8-(left) shows the streak image corresponding to the 9 materials.
We can see that there is mixing in the streak image that we are able
to separate out robustly using our reconstruction algorithm. See the
supplementary material for more comparisons.

Angular coverage of simulation setup: The angular coverage in
the simulated and physical setups is between 0◦ to 20◦ in terms
of half-angles. Both the incoming and outgoing angles are in the
range of 25◦ to 65◦ with respect to the patch normal. The setup
dimensions are selected such that grazing angles are avoided.

6.2 Results using our experimental device

We now evaluate our prototype experimental device for the “around
the corner” viewing mode using a high speed time-of-flight camera,
and a picosecond accurate laser. The setup as shown in Figure 2-(b)
is described in detail in Section 5.

Single patch data: For a single material, we image a small ma-
terial patch (of size 1.5 × 1.5 cm2) using our acquisition setup.
Figure 9-(1a) and (1b) show the streak images for two very dif-
ferent measured materials: copper and red plastic. 1(c) shows the
rendered spheres using an environment map with the recovered pa-
rameters for the two materials, with the error plots (1d) and (1e).
The results are taken at the wavelength of our laser at a wavelength
band from 770 nm to 820 nm and centered at about 795 nm. In
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Figure 7: In single-patch settings, our approach can achieve near-perfect reconstruction with relatively low noise-levels. Two BRDFs were
picked from Ngan et al.[2005]: (1) copper, (2) red plastic. Column (a) shows streak images; (b) shows rendered spheres under environment
lighting using the ground truth (top) and the recovered BRDFs (middle with 1% of noise and bottom with 10%), respectively; (c) shows plots
of the BRDFs in log-scale: the dotted red curve indicates the ground truth BRDF, the green curve represents the BRDF recovered with 1% of
noise, and the blue curve shows that with 10%. See Table 1 for BRDF parameter values.

Material Ground Truth Recovered (1% noise) Error Recovered (10% noise) Error
kd ks n kd ks n (log10) kd ks n (log10)

Copper
0.076 1.040 0.076 1.040 0.267 0.077 1.053 2.263
0.041 0.609 40800 0.041 0.609 40800 -0.632 0.044 0.660 40800 2.871
0.029 0.266 0.029 0.266 -0.702 0.027 0.252 2.298

Red plastic
specular

0.242 0.058 0.242 0.058 -1.398 0.228 0.055 1.179
0.031 0.045 8320 0.031 0.045 8320 -1.825 0.030 0.045 8320 0.170
0.009 0.030 0.009 0.030 -1.880 0.009 0.032 0.845

Table 1: Single patch simulated reconstruction: ground truth used to generate streak images, recovered values with 1% noise, and with 10%
noise. The three rows per material are the RGB values. Our approach recovers the BRDF parameters accurately with 1% of noise. With
10% of noise added to the input, recovered BRDFs are still reasonable, although there were larger offsets on the diffuse components, which
normally contain small values and are more sensitive to noise.

principle RGB color channels could be realized, for example by
using an optical parametric oscillator [Dudley et al. 1994] as light
source or converting light from multiple laser sources into the visi-
ble. The angular coverage is usually between 0◦ to 15◦ in terms of
half-angles.

The parameters fitted for red plastic are kd = 0.2175, ks = 0.0508
and n = 7.448·103, and for copper are kd = 0.1010, ks = 0.9472,
n = 2.83 · 104. These values are in rough agreement with numbers
cited by Ngan et al. [2005].

Multi patch data: We place two patches of copper and red plas-
tic side-by-side and measure them using our experimental device.
Figure 9-(2a) shows the streak image for both simultaneously. We
recover the parametric BRDFs for them simultaneously, shown as
rendered spheres in Figure 9-(2b), with error plots in 2(c) and 2(d).
The parameters reconstructed for red plastic are kd = 0.3105,
ks = 0.0433 and n = 6.321 ·103, and for copper are kd = 0.1320,
ks = 0.8365, n = 3.120 · 104. Again, these values roughly agree
with Ngan et al. [2005].

Validation using published gonioreflectometer data: We fur-
ther evaluate our proposed method for the “around the corner”
viewing mode using published gonioreflectometer data from the
Cornell Reflectance Database [2001]. We employ a simulation
setup with the geometry from Figure 2-(b). A single patch with
the tabulated BRDF from the House Paint data is used as the input
to generate the streak images. We then recover the parametric fit for
the material using our algorithm. The recovered parameter values
are: kd = (0.268, 0.431, 0.602), ks = (0.038, 0.041, 0.080),
and n = 11.6. Renderings of spheres using the measured data and
the recovered parameters match each other visually (see Figure 10).

7 Discussion

Our single-view point approach exploits the temporal dimension,
but it introduces traditional problems of time-of-flight cameras in
space-time resolution, signal to noise ratio and dynamic range.

Limited angular sampling: In a closed room, one can theoreti-
cally sample all the pairs of incoming and outgoing directions from
an object point. In practice, we can sample only a subset of all
half angles as the coverage is dependent on the field of view of the
camera. Despite these limited angles, a 3-parameter BRDF model
can be estimated. We also rely on the friendly reflectances of the
sources and receivers, though this is not a fundamental limitation.

Space-time resolution: Our at-a-distance capture mechanism
means that we cannot resolve small features with varying BRDF
or surface normals. So our approach is suitable for coarsely seg-
mented reflectance patches. Surfaces with rich surface details can
be acquired accurately to the limit of the spatio-temporal resolution
of the ToF device.

Time resolution limits our ability to perform linear inversion. Cur-
rently our camera only captures one spatial dimension, however, we
can scan the laser in two dimensions over the scene to increase the
sampling range of angles, and further sweep the camera.

Color: Since the laser operates at a single wavelength our images
are monochrome and taken in the near infrared. Colored images
could be taken with a white light supercontinuum source, a set of 3
lasers at different colors, or a tunable optical parametric oscillator.

Signal to noise ratio and capture time: The theoretical signal to
noise ratio (SNR) of the combined streak camera system is about
1000:1. A common way to improve the SNR by several orders of
magnitude is to bundle the same laser power into fewer pulses at a
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Figure 8: With nine patches with different BRDFs picked from Ngan et al.[2005], our approach is able to obtain high-quality reconstructions:
(left) the streak image; (right) rendered spheres under environment lighting using the ground truth (top) and the recovered BRDFs (middle
with 1% of noise and bottom with 10%), respectively. See the supplementary material for BRDF parameter values.
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Figure 9: For data using our experimental device our method obtains good results. Top row: single patch; Bottom row: two patches.
(1a)Actual patches of copper and plastic used for acquisition; (1b) and (1c) Streak images taken by our ToF camera: a – copper, b – plastic;
(1d) Spheres using the recovered BRDFs (copper – top, plastic – bottom); (1e) and (1f) Plots for the BRDFs: red dots indicate measured data
points and blue curves are the recovered BRDFs. Bottom row: two patch results. (2a) Streak image for both materials together. (2b) Spheres
rendered using recovered BRDFs (copper on left, plastic on right). (2c) and (2d): Error plots for the BRDFs.

lower repetition rate but with the same pulse length.

Our acquisition time of 10-15 seconds per streak camera image is a
result of our current hardware, which averages over a large number
of frames to improve SNR. A commercially available laser with
pulse energy of about 1 mJ could reduce the acquisition time to
nanoseconds, while offering better SNR as well.

Dynamic range: Capturing specular peaks and weak diffuse reflec-
tions in a single photo is limited due to the camera dynamic range.
We partially overcome this by using two different exposure photos.

Acquisition in the presence of ambient light: The time-of-flight
cameras are well suited for “in-the-wild” acquisition in the presence
of ambient light. Most ambient light is never detected by the sensor
because of the short capture window. Even highly sensitive photon
counting systems use these techniques to operate in daylight and
over hundreds of thousands of kilometers; for example, laser links
from Earth to the Moon and Mars, and commercial airborne LIDAR
systems [Degnan 2002; Warburton et al. 2007].

Portability: While ultra-fast lasers have not yet reached a state of

maturity to make them portable, this approach shows promise in
creating portable and compact devices in the future. Our system
can be extended for usage in unstructured environments with arbi-
trary geometry and lighting. Moreover, our algorithm in itself is not
limited to a particular geometric configuration.

Laser speckle: Imaging devices using coherent light often suffer
from laser specle noise. The laser coherence is, however, not main-
tained in multiple diffuse bounces. When the laser light returns to
the camera after two or three bounces, it is no longer coherent and
laser speckle is not observed.

Our work uniquely combines cutting edge research in ultra-fast op-
tics with emerging topics in computer graphics. Our computational
approach has been validated, but our physical prototype is a modifi-
cation of electro-optic hardware which is expensive, currently non-
portable, and may take years to become practical. But there are no
specific fundamental challenges to improve these systems.

8
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Figure 10: Validation using published gonioreflectometer data
from the Cornell Reflectance Database[2001]: (left) measured
data, (right) the recovered BRDF.

8 Conclusion

In this work, we have demonstrated a high speed photography de-
vice to acquire segmented scene reflectances using indirect reflec-
tions. We have identified the underlying constraints in using time-
of-flight capture, including entanglement of light paths with the
same path length. We demonstrate disentanglement for several
patches, on the order of tens, by fitting to low dimensional para-
metric models.

While fast and smaller solid state lasers are coming, merging them
with fast imaging devices is a clear logical step. We believe that
this approach acquisition has potential to enable fast, portable, and
remote BRDF capture devices. Without the need to instrument a
scene, our work may spur applications like real-world material clas-
sification, real-time material editing, and relighting. Our approach
can also be used when capturing complete BRDFs is not the ulti-
mate goal but sampling a part of it for material detection and clas-
sification can suffice. In addition, around the corner recovery of
material properties can enable radical applications, e.g., recovering
malignant growth in endoscopy beyond the reach of a camera. Our
approach also fits in the general spririt of computational photog-
raphy to allow one to capture meaningful properties from a single
camera viewpoint and then allow powerful post-capture operations,
in this case to relight or edit materials.
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