
september 2009 | vol. 52 | no. 9 | communications of the acm 89

Optimistic Parallelism
Requires Abstractions
By Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and L. Paul Chew

doi:10.1145/1562164.1562188

Abstract
The problem of writing software for multicore processors
is greatly simplified if we could automatically parallelize
sequential programs. Although auto-parallelization has
been studied for many decades, it has succeeded only in a
few application areas such as dense matrix computations.
In particular, auto-parallelization of irregular programs,
which are organized around large, pointer-based data struc-
tures like graphs, has seemed intractable.

The Galois project is taking a fresh look at auto-
parallelization. Rather than attempt to parallelize all pro-
grams no matter how obscurely they are written, we are
designing programming abstractions that permit program-
mers to highlight opportunities for exploiting parallelism
in sequential programs, and building a runtime system
that uses these hints to execute the program in parallel. In
this paper, we describe the design and implementation of
a system based on these ideas. Experimental results for two
real-world irregular applications, a Delaunay mesh refine-
ment application and a graphics application that performs
agglomerative clustering, demonstrate that this approach is
promising.

1. INTRODUCTION

A pessimist sees the difficulty in every opportunity; an
optimist sees the opportunity in every difficulty.

—Sir Winston Churchill

Irregular applications are organized around pointer-based
data structures such as graphs and trees, and are ubiquitous
in important application areas such as finite-elements, SAT
solvers, maxflow computations, and compilers. In principle,
it is possible to use a thread library (e.g., pthreads) or a com-
bination of compiler directives and libraries (e.g., OpenMP)
to write parallel code for irregular applications, but it is well
known that writing explicitly parallel code can be very tricky
because of the complexities of memory consistency models,
synchronization, data races, etc. Tim Sweeney, who designed
the multithreaded Unreal 3 game engine, estimates that
writing multithreading code tripled software costs at Epic
Games (quoted in de Galas3).

From the earliest days of parallel computing, it has been
recognized that one way to circumvent the problems of
writing explicitly parallel code is auto-parallelization.10 In
this approach, application programmers write sequential
programs, leaving it to the compiler or runtime system
to extract and exploit the latent parallelism in programs.
There is an enormous literature on algorithms and mecha-
nisms for auto-parallelization, but like the characters in
Pirandello’s play Six Characters in Search of an Author, most

of them are in search of programs that they can parallel-
ize. They can be divided into two categories: compile-time
techniques and runtime techniques. Compile-time tech-
niques use static analyses to find independent computa-
tions in programs, and have succeeded in parallelizing
limited classes of irregular programs such as n-body meth-
ods.1, 5, 20 Runtime techniques use optimistic paralleliza-
tion: computations are parallelized speculatively, and
the runtime system detects conflicts between concurrent
computations and rolls them back as needed to preserve
the sequential semantics of the program. Optimistic paral-
lelism is the basis of the popular Timewarp algorithm for
parallel event-driven simulation,9 but efforts to build gen-
eral-purpose systems based on optimistic parallelization,
such as thread-level speculation (TLS),19, 22, 24 have had lim-
ited success. Because of these problems, interest in auto-
parallelization has waned in recent years.

We are taking a fresh look at auto-parallelization, but
from a different perspective than prior work in this area.
Instead of trying to parallelize all application programs no
matter how obscurely written, the Galois project is focusing
on the following questions.

•	 Can we design sequential programming abstractions
that capture the most commonly occurring parallelism
patterns in programs?

•	 If so, what systems support is needed to auto-parallelize
programs that use these abstractions?

A useful analogy is relational database programming.
The SQL programmer views data as if they were organized
as a flat table (relations), and operates on the data using
high-level operations like joins and projections. Inside
the database system, relations are implemented in very
complex ways using B-trees, index structures, etc., and
the high-level operations are performed in parallel using
locks and transactions, but the relational abstractions
enable these complications to be hidden from the SQL
programmer.

Can we carry out a similar program for irregular applica-
tions? Although we are far from having a complete solution,
the outlines of a solution for important patterns of parallel-
ism are emerging from the fog. In this paper, we focus on
understanding and exploiting parallelism in iterative irregu-
lar applications. In Section 2, we describe parallelism pat-
terns in two such applications: a Delaunay mesh refinement

The original version of this paper appeared in the Pro-
ceedings of the 2007 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation.

90 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

code2 and a graphics application23 that performs agglom-
erative clustering.17 In Section 3, we discuss the Galois pro-
gramming model and runtime system for exploiting this
parallelism. In Section 4, we evaluate the performance of
our system on the two applications. Finally, in Section 5, we
discuss conclusions and ongoing work.

2. TWO IRREGULAR APPLICATIONS
In this section, we describe opportunities for exploiting
parallelism in two irregular applications: Delaunay mesh
refinement,2 and agglomerative clustering17 as used within
a graphics application.23 These applications perform refine-
ment and coarsening, respectively, which are arguably
the two most common operations for bulk modification of
irregular data structures.

2.1. Delaunay mesh refinement
The input to the 2D Delaunay mesh refinement algorithm is a
triangulation of some region in the plane, in which all triangles
satisfy a certain geometric property called the Delaunay con-
dition.2 Some of these triangles may be badly shaped accord-
ing to certain geometric criteria; for example, excessively
large triangles may cause unacceptable discretization errors
in finite-element solutions. The goal of mesh refinement is
to eliminate these badly shaped triangles from the mesh by
replacing them with smaller triangles. However, performing
this operation on a bad triangle may violate the Delauanay
condition for neighboring triangles, so it is necessary to find
all affected triangles (this is called the cavity of that bad tri-
angle), and retriangulate the entire cavity. Figure 1 shows the
initial mesh on the left (badly shaped triangles are colored
black, and cavities are colored gray), and the refined mesh on
the right. Refinement may create new badly shaped triangles,
but there is a mathematical guarantee, at least in 2D, that if
this process is repeated, a mesh without bad triangles will
be produced in the end. The structure of the final mesh may
depend on the order in which bad triangles are eliminated,
but any mesh produced by this process is acceptable.

Figure 2 shows the pseudocode for mesh refinement. It is
natural to organize the program around a work-list contain-
ing the bad triangles, as seen in lines 3 and 4. This work-list
is one of the two key data structures in mesh refinement.
The other is a graph representing the mesh structure; each
triangle in the mesh is represented as one node, and edges
in the graph represent triangle adjacencies in the mesh.

Opportunities for Exploiting Parallelism: Delaunay mesh
refinement is a relatively complicated code since the central
data structure is a graph that is modified repeatedly during
the execution of the algorithm. Nevertheless, there may be a
lot of parallelism in the algorithm since cavities that do not
overlap can be processed in parallel, as in the mesh of Figure 1.
If two cavities overlap, they must be processed sequentially
in some order. How much parallelism is there in mesh refine-
ment? Our studies11 have shown that for a mesh of 100,000
triangles in which roughly half the initial triangles are badly
shaped, there are more than 256 triangles that can be pro-
cessed in parallel until almost the end of execution.

2.2. Agglomerative clustering
The second problem is agglomerative clustering, a well-known
data-mining algorithm.17 This algorithm is used in graphics
applications for handling large numbers of light sources.23

The input to the clustering algorithm is (1) a data-set and
(2) a measure of the similarity between items in the data-set.
The goal of clustering is to construct a binary tree called a
dendrogram whose hierarchical structure exposes the simi-
larity between items in the data-set. Figure 3(a) shows a data-
set containing points in the plane, for which the measure of
similarity between data points is Euclidean distance. The
dendrogram for this data-set is shown in Figure 3(b) and (c).

Agglomerative clustering can be performed by an iterative
algorithm: at each step, the two closest points in the data-
set are clustered together and replaced in the data-set by a
single new point that represents the new cluster. The loca-
tion of this new point may be determined heuristically.17 The
algorithm terminates when there is only one point left in the
data-set. Pseudocode for the algorithm is shown in Figure 4. Figure 1. Fixing bad elements.

(a) Unrefined Mesh (b) Refined Mesh

a

b
c

d

e

a

b
c

d

e

a b c d e

(a) Data points (b) Hierarchical clusters (c) Dendrogram

Figure 3. Agglomerative clustering.

Figure 2. Pseudocode of the mesh refinement algorithm.

1:   Mesh m = /* read in initial mesh */
2:   WorkList wl ;
3:   wl.add (mesh.badTriangles ());
4:   while (wl.size () != 0) {
5:     Element e = wl.get (); //get bad triangle
6:     if (e no longer in mesh) continue;
7:     Cavity c = new Cavity (e);
8:     c.expand ();
9:     c.retriangulate ();
10:    mesh.update (c);
11:    wl.add (c.badTriangles () );
12:   }

september 2009 | vol. 52 | no. 9 | communications of the acm 91

determines dependences between units of work and con-
structs a computation schedule and an executor phase that
executes the resulting schedule in parallel. This approach
does not work for mesh refinement since the dependence
structure changes when the underlying graph is modified by
the algorithm.

These considerations suggest that a fully dynamic
approach in which dependences are detected at runtime
is needed to parallelize codes like mesh refinement and
agglomerative clustering. One such approach to paralleliz-
ing mesh refinement has been proposed by Hudson et al.,8
and it has the following steps: (1) compute the cavities of
all bad triangles without making any modifications to the
graph, (2) build an interference graph in which nodes rep-
resent cavities and edges represent overlapping cavities, (3)
find a maximal independent set of nodes in this graph, and
(4) retriangulate the cavities corresponding to these nodes
in parallel, without any synchronization. These steps are
then repeated for the new mesh until convergence. This
approach can be viewed as an extended inspector–executor
approach in which the execution of the inspector and execu-
tor are interleaved. However, this approach is very specific to
Delaunay mesh refinement. For example, it is not clear that
it can be used for applications like agglomerative clustering
in which iterations are performed over priority queues.

3. THE GALOIS APPROACH
The analysis of Section 2 suggests that optimistic paralleliza-
tion, in which computations are speculatively executed in
parallel and rolled back selectively when dependence con-
flicts are detected by the runtime system, is the only gener-
al-purpose approach to exploiting parallelism in irregular
applications. In this section, we argue that optimistic par-
allelization needs to be coupled with appropriate program-
ming abstractions, and we describe an implementation of
these ideas in the Galois system.

The need for programming abstractions becomes evi-
dent if we consider the mesh refinement code in Figure 2.
The work-list of bad triangles determines a particular order
in which bad triangles are processed by the sequential pro-
gram, and any auto-parallelized version of this code will be
forced to process bad triangles in the same order. The fact
that bad triangles can actually be processed in any order is
important for parallelization, but it is missing from this code.
Abstractly, we can view the processing of each bad triangle
as an operator that is applied to the graph to modify a small
region of it; the fact that bad triangles can be processed in
any order is equivalent to asserting that the applications of
this operator to the graph “commute” with each other. Since
the structure of the final graph may actually be different for
different operator orderings, we call this application-specific
commutativity for obvious reasons.

Opportunities to exploit commutativity may also arise in
abstract data type (ADT) implementations. Consider a set
ADT that is implemented using a linked list. With respect to
the semantics of sets, insert operations commute with each
other since all insertion orders produce the same set even
though the linked list representation internal to the ADT
may be different for different insertion orders. In this case,

The algorithm iterates over a priority queue whose entries
are ordered pairs of points <x, y>, such that y is the nearest
neighbor of x (we call this nearest(x) ). In each iteration
of the while loop, the pair of points at the head of the prior-
ity queue—the closest pair—are clustered. These two points
are replaced by a new, representative point. The nearest
neighbor of this point is determined, and the pair is entered
into the priority queue.

To find the nearest neighbor of a point, we can scan
the entire data-set at each step, but this is too inefficient.
Instead, we use a spatial acceleration structure called a kd-
tree to find nearest neighbors. The kd-tree is built at the start
of the algorithm and is kept up to date as points are removed
and added from the space, as seen in Figure 4.

Opportunities for Exploiting Parallelism: Since each
iteration clusters the two closest points in the current data-
set, it may seem that the algorithm is inherently sequential.
However, if we consider the data-set in Figure 3(a), we see
that points a and b, and points c and d can be clustered con-
currently since neither cluster affects the other. Intuitively,
if the dendrogram is a long and skinny tree, there may be
few independent iterations, whereas if the dendrogram is a
bushy tree, there is parallelism that can be exploited since
the tree can be constructed bottom-up in parallel. As in the
case of Delaunay mesh refinement, the parallelism is very
data-dependent. In experiments on graphics scenes with
20,000 lights, we have found that on average about 100 clus-
ters can be constructed concurrently11; thus, there is sub-
stantial parallelism that can be exploited.

2.3. Discussion
Existing compile-time parallelization techniques for irreg-
ular programs are based on shape analysis,20 which deter-
mines structural invariants in the data structures. The graph
in mesh refinement has no particular structure, and it is also
modified in each iteration of the loop in Figure 2, so com-
pile-time parallelization will not work for this application.
Semi-static approaches using the inspector–executor model18
split computation into two phases: an inspector phase that

Figure 4. Pseudocode for agglomerative clustering.

1:  kdTree :=   new KDTree ( points )
2:  pq := new PriorityQueue ()
3:  foreach p in points {pq.add( <p,kdTree.nearest ( p )> )}
4:  while ( pq.size () != 0 ) do {
5:   Pair <p , n> := pq  .  get (); // return closest pair
6:   if ( p.isAlreadyClustered()) continue;
7:   if ( n.isAlreadyClustered ()) {
8:   pq.add ( <p,kdTree.nearest ( p )> );
9:   continue;
10:    }
11:   Cluster c := new Cluster ( p,n );
12:   dendrogram.add ( c );
13:   kdTree.remove ( p );
14:   kdTree.remove ( n );
15:   kdTree.add ( c );
16:   Point m:= kdTree . nearest ( c );
17:   if ( m != ptAtInfinity ) pq.add ( <c,m> );
18: }

92 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

Note that new elements may be added to a set while
iterating over it, which is not allowed in conventional set
iterators in languages like SETL or Java. Figure 6 shows
the client code for Delaunay mesh generation. Instead of a
work-list of bad triangles, this code uses a set of bad trian-
gles and a set iterator. Since set elements are not ordered,
the iterator is permitted to iterate over the set in any order.
Therefore, the Galois version makes evident the fact that
the bad triangles can be processed in any order, a fact that
is absent from the more conventional code of Figure 2. For
lack of space, we do not show the Galois version of agglom-
erative clustering, but it uses the ordered-set iterator in the
obvious way.

The parallel execution model is shown in Figure 5(b).
A master thread executes all code outside the Galois set
iterators. When it encounters a Galois set iterator, it enlists
worker threads to help execute iterations concurrently. The
assignment of iterations to threads is done dynamically,
but this policy can be changed by an expert programmer.12
Threads synchronize by barrier synchronization at the end
of the iterator.

Given this execution model, the main technical problem
is to ensure that the parallel execution respects the sequen-
tial semantics of the iterators. For an unordered-set iterator,
this can be accomplished by ensuring that the execution of
each iteration has transactional semantics. These semantics
guarantee serializability; the parallel execution will behave
as if the iterations were executed serially in some order. For
the ordered-set iterator, we must also ensure that the itera-
tions appear to execute in the order prescribed by the order-
ing on set elements. Guaranteeing sequential semantics is
a nontrivial problem because each iteration may read and
write objects in shared memory, so we must ensure that
these reads and writes are properly coordinated. Next, we
describe how this is accomplished.

3.2. Galois library classes
The library has two kinds of classes: catch-and-keep and
catch-and-release. As in Java, a lock is automatically associ-
ated with each object, but the locking policy is different for
the two kinds of classes.

Catch-and-Keep Classes: Catch-and-keep classes are the
default, and they are implemented in Galois using a varia-
tion of the well-known two-phase locking policy. To invoke
a method on a catch-and-keep object, an iteration must

commutativity arises from the fact that there may be several
concrete (memory) states that represent a single abstract
state. Exploiting this kind of ADT commutativity obviously
requires an object-oriented language.

We will refer to application-specific and ADT commutativity
as semantic commutativity. In contrast, traditional compile-time
parallelization techniques such as dependence analysis10 and
Diniz and Rinard’s commutativity analysis4 focus on concrete
commutativity in which all orders of performing operations
result in the same concrete state. Semantic commutativity is
more general, and it permits more interleavings of operations.

The programming abstractions introduced in this sec-
tion permit programmers to highlight opportunities for
exploiting semantic commutativity. They can be added to
any sequential object-oriented language (the results in this
paper are from an implementation in C++). Figure 5(a) is a
conceptual picture of the Galois system. Application pro-
grams use two constructs called Galois set iterators, described
in Section 3.1, for highlighting opportunities for exploiting
parallelism. Section 3.2 describes the data structure library.
Data structures in which there are opportunities to exploit
ADT commutativity are implemented by catch-and-release
classes, while others are implemented in catch-and-keep
classes. The runtime system implements optimistic paral-
lelization, and detects and recovers from potentially unsafe
accesses to shared objects, as explained in Section 3.3.

3.1. Galois set iterators
The Galois programming model is sequential and object-
oriented; programs are written in an object-oriented lan-
guage like C++ or Java extended with two constructs called
Galois set iterators.

•	 Unordered-set iterator: for each e in set S do B(e)
	 The loop body B(e) is executed for each element e of set S.

Since set elements are not ordered, this construct asserts
that in a serial execution of the loop, the iterations can be
executed in any order. There may be dependences between
the iterations, as in the case of Delaunay mesh refinement,
but any serial order of executing iterations is permitted.
When an iteration executes, it may add elements to S.

•	 Ordered-set iterator: for each e in Poset S do B(e)
	 This construct iterates over a partially ordered set

(Poset) S. It is similar to the set iterator above, except
that any execution order must respect the partial order
imposed by the Poset S.

(a) Layered architecture

Library

Runtime system

Catch-and-keep
classes

Catch-and-release
classes

Application
program

main() Master

for each {
. . . .

.

.

.

.

.

}

(b) Execution model

i5

i4

i3i1

i2

Figure 5. The Galois system.
Figure 6. Delaunay mesh refinement using set iterator.

1:  Mesh m = /* read in initial mesh */
2:  Set wl;
3:  wl.add (mesh.badTriangles   (   )   );
4:  for each e in wl do {
5:    if ( e no longer in mesh ) continue;
6:    Cavity c = new Cavity ( e );
7:    c.expand ();
8:    c.retriangulate ();
9:    m.update ( c );
10:    wl.add( c.badTriangles());
11: }

september 2009 | vol. 52 | no. 9 | communications of the acm 93

how can we determine which interleavings are legal, and
which should be disallowed?

The key is semantic commutativity, described at the
beginning of this section. Method invocations to a given
object from two iterations can be interleaved safely pro-
vided that the final abstract state is consistent with some
serial order of iteration execution. In Figure 7(a), the invo-
cation contains(x) does not commute with the opera-
tions from the other thread, so the invocations from the
two iterations must not be interleaved. In Figure 7(b),
contains(y) commutes with the other operations, so
the iterations can execute in parallel. Note that commu-
tativity may depend on the arguments or return values of
methods.

Because iterations are executed in parallel, it is pos-
sible for commutativity conflicts to prevent an iteration
from completing, requiring that iterations be rolled back.
Because semantic commutativity does not track the con-
crete state of an object, simply creating copies of the con-
crete state (as in catch-and-keep classes) does not suffice.
Instead, every method of a catch-and-release object that
may modify the state of that object must have an associated
inverse method that undoes the side-effects of that method
invocation. For example, for a set that does not contain x,
the inverse of a method invocation that adds an element x
to a set is a method invocation that removes it from that set.
As in the case of commutativity, what is relevant for our pur-
pose is an inverse in the semantic sense; invoking a method
and its inverse in succession may not restore the concrete
data structure to what it was.

Note that when an iteration rolls back, all of the methods
which it invokes during roll-back must succeed. Thus, we
must never encounter conflicts when invoking inverse meth-
ods. When the Galois system checks commutativity, it also
checks commutativity with the associated inverse method.
Putting It All Together: ADT commutativity and undo must
be specified by the class designer. Figure 8 illustrates how

first acquire the lock associated with it. This lock is held
until the iteration terminates, at which point the iteration
releases all of its locks. If an iteration is unable to acquire a
lock on an object, this means that a second iteration is cur-
rently accessing the object, and one of the two iterations
must be rolled back. Rollbacks are accomplished by copying
an object before it is modified, and restoring from that copy
upon rollback. Thus, in a system in which all objects use the
catch-and-keep policy, serialization of iterations is easy to
ensure. Acquiring and releasing locks, making backup cop-
ies of objects, etc., is performed automatically by our run-
time system, as explained in Section 3.3. It is also possible to
use hardware transactional memory (TM).7

While catch-and-keep classes are simple to implement,
they may not provide enough concurrency. Work-sets are them-
selves data structures, and they are implemented using classes
in the Galois library. Since each iteration gets an element from
the work-set at the beginning and may add elements to it at the
end, a catch-and-keep implementation of the work-set class
would permit only one iteration to execute at a time.

Catch-and-Release Classes: To solve this problem,
the Galois system supports the catch-and-release policy
for concurrently accessed objects such as the graph and
work-set in mesh refinement, or the kd-tree in agglomera-
tive clustering. To access a catch-and-release object, an
iteration must acquire the lock on the object. However,
unlike in catch-and-keep, the lock is released as soon as
the method completes. Releasing the lock allows interleav-
ing of method invocations from different iterations, which
increases concurrency.

The key problem in catch-and-release is to ensure that
the method interleavings do not violate serializability of
iterations. This is nontrivial, as demonstrated by the pro-
grams in Figure 7, which show iterations manipulating
a set that supports add, remove, and contains, with
the standard semantics. In Figure 7(a), we see that in any
sequential execution, the call contains(x) will return
false. However, for the interleaving shown in the figure, the
call will return true. On the other hand, for the program
in Figure 7(b), all possible interleavings of the methods
match a serial execution. For a catch-and-release object,

Set S Set SS.add(x)

S.remove(x)

S.contains?(x)

(a) (b)

S.add(x)

S.remove(x)

S.contains?(y)

Figure 7. Interleaving method invocations from different iterations.

Figure 8. Example Galois class for a set.

class Set {
  //interface methods
  void add ( Element x );
  [ commutes ]
      — add ( y ) { y != x }
      — remove ( y ) { y != x }
      — contains ( y ) { y != x }
  [ inverse ] remove ( x )
  void remove ( Element x );
  [ commutes ]
      — add ( y ) { y != x }
      — remove ( y ) { y != x }
      — contains ( y ) { y != x }
  [ inverse ] add ( x )
  boolean contains ( Element x );
  [ commutes ]
      — add ( y ) { y != x }
      — remove ( y ) { y != x }
      — contains ( * )//any call to contains
}

94 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

Conflict Logs: The conflict log is the mechanism for
detecting commutativity conflicts. There is one conflict
log associated with each catch-and-release object. A sim-
ple implementation for the conflict log of an object is a list
containing the method signatures (including the values
of the input and output parameters) of all invocations on
that object made by currently executing iterations (called
“outstanding invocations”). When iteration i attempts to
call a method m1 on an object, the method signature is
compared against all the outstanding invocations in the
conflict log. If one of the entries in the log does not com-
mute with m1, then a commutativity conflict is detected,
and an arbitration process is begun to determine which
iterations should be aborted, as described below. If m1
commutes with all the entries in the log, the signature of
m1 is appended to the log. When i either aborts or com-
mits, all the entries in the conflict log inserted by i are
removed from the conflict log.

Consider the effects of calling contains(x) on a set
implementing the interface shown in Figure 8. The conflict
log contains all the outstanding invocations of methods on
the set. Because contains can only conflict with add or
remove, the runtime system will scan the log to ensure that
no other iteration called add(x) or remove(x).

Note that for efficiency, a runtime system may use an
optimized implementation of conflict logs which does not
require a full scan of all outstanding method invocations to
detect conflicts. The full version of this paper describes a
number of these optimizations in more detail.14

Commit Pool: When an iteration attempts to commit, the
commit pool checks two things: (1) that the iteration is at
the head of the commit queue, and (2) that the priority of the
iteration is higher than all the elements left in the set/Poset
being iterated over. If both conditions are met, the iteration
can successfully commit. If the conditions are not met, the
iteration must wait until it has the highest priority in the
system; its status is set to RTC, and the thread is allowed to
begin another iteration.

When an iteration successfully commits, the thread that
was running that iteration also checks the commit queue to
see if more iterations in the RTC state can be committed. If
so, it commits those iterations before beginning the execu-
tion of a new iteration. When an iteration has to be aborted,
the status of its record is changed to ABORTED, but the com-
mit pool takes no further action. Such iteration objects are
lazily removed from the commit queue when they reach the
head.

Conflict Arbitration: The other responsibility of the com-
mit pool is to arbitrate conflicts between iterations. When
iterating over an unordered set, the choice of which itera-
tion to roll back in the event of a conflict is irrelevant. For
simplicity, we always choose the iteration which detected
the conflict. However, when iterating over an ordered set,
the lower priority iteration must be rolled back while the
higher priority iteration must continue. Without doing so,
there exists the possibility of deadlock. Thus, when iter-
ation i1 calls a method on a shared object and a conflict
is detected with iteration i2, the commit pool arbitrates
based on the priorities of the two iterations. If i1 has lower

this information is specified in Galois for a class that imple-
ments sets. For each method, the implementor specifies the
following:

•	 Commutes: This section specifies which other methods
the current method commutes with, and under which
conditions. For example, remove(x) commutes with
add(y), as long as the elements are different.

•	 Inverse: This section specifies the inverse of the current
method.

Note that add(x) does not commute with add(x) accord-
ing to this specification. This is because rolling back add(x)
requires invoking remove(x), which would conflict with
other invocations of add(x). This choice simplifies the
implementation.

3.3. Runtime system
The Galois runtime system has two components: (1) a
global structure called the commit pool that is responsible
for creating, aborting, and committing iterations and (2)
structures called conflict logs which detect when com-
mutativity conditions are violated for catch-and-release
objects.

The commit pool maintains an iteration record, shown
in Figure 9, for each ongoing iteration in the system. The
status of an iteration can be RUNNING, RTC (ready-to-com-
mit), or ABORTED. Threads go to the commit pool to obtain
an iteration. The commit pool creates a new iteration
record, obtains the next element from the iterator, assigns
a priority to the iteration record based on the priority of
the element (for a set iterator, all elements have the same
priority), and sets the status field of the iteration record
to RUNNING. When an iteration invokes a method of a
shared object, (1) the conflict log of that object is updated,
as described in more detail below and (2) a callback to the
associated inverse method is pushed onto the undo log of
the iteration record. If a commutativity conflict is detected,
the commit pool arbitrates between the conflicting itera-
tions, and aborts iterations to permit the highest priority
iteration to continue execution. Callbacks in the undo logs
of aborted iterations are executed to undo their effects on
shared objects. Once a thread has completed an iteration,
the status field of that iteration is changed to RTC, and the
thread is allowed to begin a new iteration. When the com-
pleted iteration has the highest priority in the system, it is
allowed to commit. It can be seen that the role of the com-
mit pool is similar to that of a reorder buffer in out-of-order
processors.

Figure 9. Iteration record maintained by runtime system.

IterationRecord {
  Status status;
  Priority p;
  UndoLog ul;
  Lock 1;
}

september 2009 | vol. 52 | no. 9 | communications of the acm 95

call meshgen), as well as an explicitly parallel, fine-grain lock-
ing program (FGL) that uses locks on individual triangles.
The Galois version uses the set iterator, and the runtime sys-
tem described in Section 3.3. In all three implementations,
the mesh was represented by a graph that was implemented
as a set of triangles, where each triangle maintained a set of
its neighbors. For meshgen, code for commutativity checks
was added by hand to this graph class; ultimately, we would
like to generate this code automatically from high-level
commutativity specifications like those in Figure 8. We used
an STL queue to implement the work-set. We refer to these
default implementations of meshgen and FGL as meshgen(d)
and FGL(d).

To understand the effect of scheduling policy on per-
formance, we implemented two more versions, FGL(r)
and meshgen(r), in which the work-set was implemented
by a data structure that returned a random element of the
work-set.

The input data-set was generated automatically using
Jonathan Shewchuk’s Triangle program.21 It had 10,156
triangles and boundary segments, of which 4,837 triangles
were bad.

Execution Times and Speedups: Execution times for the
five implementations on the Itanium machine are shown in
Figure 10(a). The reference version is the fastest on a single
processor. On four processors, FGL(d) and FGL(r) differ only
slightly in performance. Meshgen(r) performed almost as
well as FGL, although surprisingly, meshgen(d) was twice as
slow as FGL.

Statistics on Committed and Aborted Iterations: To
understand these issues better, we determined the total
number of committed and aborted iterations for differ-
ent versions of meshgen, as shown in Figure 10(b). On one
processor, meshgen executed and committed 21,918 itera-
tions. Because of the inherent nondeterminism of the set

priority, it simply performs the standard rollback opera-
tions. The thread which was executing i1 then begins a new
iteration.

This situation is complicated when i2 is the iteration that
must be rolled back. Because the Galois runtime functions
at the user-level, there is no way to roll back an iteration
running on another thread. Instead, i1 undoes the effects
of i2 without explicitly rolling back execution. Next, i1 sets a
flag on i2 telling it to roll back. When the thread running i2
invokes a shared method or attempts to commit, it checks
this flag and completes the rollback.

When an iteration has to be aborted, the callbacks in its
undo log are executed in LIFO order. Note that the argu-
ments used by the callback must have the values present
when the callback was created. This is ensured due to the
LIFO ordering of the undo log, as any later changes to the
arguments will be undone first.

3.4. Discussion
There is no analog of unordered-set iterators or catch-and-
release objects in current TLS systems22, 24 (in fact, most of
these systems auto-parallelize programs in FORTRAN and
C, which have no notion of data abstraction). It is possible
that this might account for the limited performance of these
systems.

The TM paper of Herlihy and Moss7 has inspired a vast
literature on transactions and TM (see Larus and Rajwar15
for a survey of the more important results). The starting
point for the transactional approach is an explicitly parallel
program, and the focus is on reducing the complexities and
overhead of synchronization through the use of the trans-
actional model. In contrast, our starting point is a sequen-
tial program, and the focus is on auto-parallelization. The
Galois runtime system exploits optimistic parallelism just
as TM exploits optimistic synchronization. Hardware TM
can be used to implement catch-and-keep classes with low
overhead, but catch-and-release classes must be supported
in software. Herlihy and Koskinen have recently introduced
catch-and-release objects into a software TM to boost its
performance.6

Ni et al.16 have proposed to extend the conventional trans-
actional model with open nested transactions and abstract
locking to allow more abstract conflict checking. Open nest-
ing is a mechanism, and it does not specify how the abstract
locks should be used. Semantic commutativity provides the
appropriate definition of semantic conflict for data struc-
tures, and open nesting is one possible means of imple-
menting semantic commutativity.

4. EVALUATION
Our initial implementation of the Galois system was in C++.
Our evaluation platform was a 4 processor, 1.5 GHz Itanium
2, with 16KB of L1, 256KB of L2 and 3MB of L3 cache per pro-
cessor. The threading library was pthreads.

4.1. Delaunay mesh refinement
We first wrote a sequential Delaunay mesh refinement pro-
gram without locks, threads etc. to serve as a reference imple-
mentation. We then implemented a Galois version (which we

1 2 3 4

of processors

0

2

4

6

8

E
xe

cu
tio

n
tim

e
(s

)

Reference
FGL (d)
FGL (r)
Meshgen (d)
Meshgen (r)

(a) Execution times

Committed Aborted
of proc. Max Min Avg Max Min Avg

1 21918 21918 21918 n/a n/a n/a
4 (meshgen(d)) 22128 21458 21736 28929 27711 28290
4 (meshgen(r)) 22101 21738 21909 265 151 188

(b) Committed and aborted iterations for meshgen

Source of overhead % of overhead
Abort 10
Commit 10
Scheduler 3
Commutativity 77

(c) Breakdown of Galois overhead for meshgen(r)

Figure 10. Mesh refinement results.

96 communications of the acm | september 2009 | vol. 52 | no. 9

research highlights

clustering code to use Galois interfaces and the Poset itera-
tor for tree construction. The overall structure of the result-
ing code was discussed in Figure 4. We will refer to this
Galois version as treebuild. We compared the running time
of treebuild against a sequential reference version.

Figure 11 gives the performance results. These results
are similar to the Delaunay mesh generation results
discussed in Section 4.1, so we describe only the points
of note. The execution times in Figure 11(a) show that
despite the serial dependence order imposed by the prior-
ity queue, the Galois system is able to expose a significant
amount of parallelism. The mechanism that allows us to
do this is the commit pool, which allows threads to begin
execution of iterations even if earlier iterations have yet to
commit. The overhead introduced by the Galois system is
44% on a single processor. We see that due to the overhead
of managing the commit pool, the scheduler accounts for
a significant percentage of the overall Galois overhead, as
seen in Figure 11(c).

4.3. Ongoing work
In recent work, we introduced the notion of logical data
partitioning into the Galois system.13 For mesh refinement,
each partition of the graph is mapped to a core, and each
core processes bad triangles in its own partition. This
mapping reduces the likelihood of conflicts since differ-
ent cores work in different regions of the graph; unlike the
randomized schedule discussed in Section 4, this approach
also promotes locality of reference. Furthermore, commu-
tativity checks, which are expensive, can be replaced with
locking on partitions. Over-decomposition of the graph
increases the likelihood that a core will have work to do
even if some of its partitions are locked by other cores

iterator, the number of iterations executed by meshgen
in parallel varies from run to run (the same effect will be
seen on one processor if the scheduling policy is varied).
Therefore, we ran the codes a large number of times, and
determined a distribution for the numbers of committed
and aborted iterations. Figure 10(b) shows that on four pro-
cessors, meshgen(d) committed roughly the same number
of iterations as it did on one processor, but also aborted
almost as many iterations due to cavity conflicts. The abort
ratio for meshgen(r) is much lower because the scheduling
policy reduces the likelihood of conflicts between proces-
sors. The lower abort ratio accounts for the performance
difference between meshgen(d) and meshgen(r). Because
the FGL code is carefully tuned by hand, the cost of an
aborted iteration is substantially less than the correspond-
ing cost in meshgen, so FGL(r) performs only a little better
than FGL(d).

It seems counterintuitive that a randomized scheduling
policy could be beneficial, but a deeper investigation into
the source of cavity conflicts showed that the problem could
be attributed to our use of an STL queue to implement the
work-set. When a bad triangle is refined by the algorithm,
a cluster of smaller bad triangles may be created within
the cavity. In the queue data structure, these new bad tri-
angles are adjacent to each other, so it is likely that they will
be scheduled together for refinement on different proces-
sors, leading to cavity conflicts. One conclusion from these
experiments is that domain knowledge is invaluable for
implementing a good scheduling policy.

Overhead Breakdown: The Galois system introduces
some overhead over the reference code, even when run-
ning on one processor; meshgen(r) takes 58% longer to
execute the reference code on the same input. To under-
stand the overheads of the Galois implementations, we
instrumented the code using PAPI. We broke down the
Galois overhead into four categories: (1) commit overhead,
(2) abort overhead, (3) scheduler overhead, which includes
time spent arbitrating conflicts, and (4) commutativity
check overhead. The results, as seen in Figure 10(c), show
that roughly three fourths of the Galois overhead goes in
performing commutativity checks. It is clear that reducing
this overhead is key to reducing the overall overhead of the
Galois runtime.

4.2. Agglomerative clustering
For the agglomerative clustering problem, the two main
data structures are the kd-tree and the priority queue. The
kd-tree interface is essentially the same as set, but with the
addition of the nearest neighbor (nearest) method. The
priority queue is an instance of a Poset. Since the priority
queue is used to sequence iterations, the removal and inser-
tion operations (get and add, respectively) are orchestrated
by the commit pool.

To evaluate the agglomerative clustering algorithm,
we modified an existing graphics application called light-
cuts that provides a scalable approach to illumination.23
The code builds a light hierarchy based on a distance met-
ric that factors in Euclidean distance, light intensity, and
light direction. We modified the objects used in the light

1 2 3 4

of processors

0

2

4

6

8

E
xe

cu
tio

n
tim

e
(s

)

Reference
Treebuild

(a) Execution times

Committed Aborted
of proc. Max Min Avg Max Min Avg

57846 57846 57846 n/a n/a n/a1
4 57870 57849 57861 3128 1887 2528

(b) Committed and aborted iterations in treebuild

Source of overhead % of overhead
Abort 1
Commit 8
Scheduler 39
Commutativity 52

(c) Breakdown of Galois overhead

Figure 11. Agglomerative clustering results.

september 2009 | vol. 52 | no. 9 | communications of the acm 97

working on cavities that span multiple partitions. However,
load-balancing is more of a problem than in the baseline
approach. We also developed a scheduling framework that
gives programmers control over the scheduling policy used
by the Galois runtime.12

We produced a new implementation of the Galois sys-
tem in Java, which incorporates these changes. We then
evaluated an implementation of mesh refinement, using
an input mesh of 100,000 triangles. Figure 12 shows the
performance of this implementation on a 128-core Sunfire
system, normalized to a sequential implementation in
plain Java. We see that the Galois system is able to achieve
significant speedup up to 64 cores, beyond which load
imbalance and communication latency begin to dominate
performance.

5. CONCLUSION
In this paper, we described the Galois system, which is a
fresh approach to automatic parallelization of irregular
applications. Rather than attempt to parallelize all pro-
grams no matter how obscurely they are written, our system
provides programming abstractions that programmers use
to highlight opportunities for exploiting parallelism. The
runtime system uses optimistic parallelization to exploit
these opportunities for parallel execution highlighted by
the programmer. It detects conflicts between concurrent
computations, and rolls back computations appropri-
ately to preserve the sequential semantics of the program.
Experimental results for two real-world irregular appli-
cations, a Delaunay mesh refinement application and a
graphics application that performs agglomerative cluster-
ing, demonstrate that this approach is promising.

The Galois approach should be viewed as a base-
line parallel implementation for irregular applications.
Handwritten parallel versions of many irregular applica-
tions exploit particular kinds of structure in these appli-
cations to reduce parallel overheads. How do we identify
such opportunities for exploiting structure in irregular
programs? Can the relevant optimizations be performed
automatically by the compiler? How do we reduce run-
time overheads? These are some of the exciting research
opportunities that lie ahead.

This work is supported in part by NSF grants 0833162,
0719966, 0702353, 0724966, 0739601, and 0615240, as well
as grants from IBM and Intel Corporation.�

1 2 4 8 16 32 64 128

of Processors

0

5

10

15

20

25

S
pe

ed
up

Figure 12. Speedup vs. # of processors for mesh refinement.

Milind Kulkarni and Keshav Pingali
({milind,pingali}@cs.utexas.edu),
University of Texas, Austin.

Bruce Walter, Ganesh Ramanarayanan,
Kavita Bala, and L. Paul Chew
(bjw@graphics.cornell.edu,
{graman,kb,chew}@cs.cornell.edu),
Cornell University, Ithaca, NY.

© 2009 ACM 0001-0782/09/0900 $10.00

	 1.	 Burke, M., Carini, P., Choi, J.-D.
Interprocedural Pointer Alias
Analysis. Technical Report IBM RC
21055, IBM Yorktown Heights, 1997.

	 2.	 Chew, L.P. Guaranteed-quality mesh
generation for curved surfaces.
In SCG’93: Proceedings of the 9th
Annual Symposium on Computational
Geometry (1993), 274–280.

	 3.	 de Galas, J. The quest for more
processing power: is the single core
CPU doomed? http://www.anandtech.
com/cpuchipsets/showdoc.
aspx?I=2377, February 2005.

	 4.	 Diniz, P.C., Rinard, M.C. Commutativity
analysis: a new analysis technique
for parallelizing compilers. ACM
Trans. Prog. Lang. Syst. 19, 6 (1997),
942–991.

	 5.	 Ghiya, R., Hendren, L. Is it a tree,
a dag, or a cyclic graph? A shape
analysis for heap-directed pointers in
c. In POPL, 1996.

	 6.	 Herlihy, M., Koskinen, E. Transactional
boosting: a methodology for highly-
concurrent transactional objects. In
Principles and Practices of Parallel
Programming (PPoPP), 2008.

	 7.	 Herlihy, M., Moss, J.E.B. Transactional
memory: architectural support
for lock-free data structures. In
ISCA ‘93: Proceedings of the 20th
Annual International Symposium on
Computer Architecture (1993).

	 8.	 Hudson, B., Miller, G.L., Phillips, T.
Sparse parallel Delaunay mesh
refinement. In SPAA (2007).

	 9.	J efferson, D.R. Virtual time. ACM
Trans. Prog. Lang. Syst. 7, 3 (1985),
404–425.

	10.	 Kennedy, K., Allen, J., editors.
Optimizing Compilers for Modern
Architectures: A Dependence-Based
Approach. Morgan Kaufmann, 2001.

	11.	 Kulkarni, M., Burtscher, M., Inkulu,
R., Pingali, K., Cascaval, C. How
much parallelism is there in irregular
applications? In Principles and
Practices of Parallel Programming
(PPoPP), 2009.

	12.	 Kulkarni, M., Carribault, P., Pingali, K.,
Ramanarayanan, G., Walter, B., Bala,
K., Chew, L.P. Scheduling strategies
for optimistic parallel execution of
irregular programs. In Symposium on
Parallel Architectures and Algorithms
(SPAA) (2008).

	13.	 Kulkarni M., Pingali, K.,
Ramanarayanan, G., Walter, B., Bala,
K., Chew, L.P. Optimistic parallelism
benefits from data partitioning.
SIGARCH Comput. Archit. News 36,
1 (2008), 233–243.

	14.	 Kulkarni, M., Pingali, K., Walter,
B., Ramanarayanan, G., Bala, K.,
Chew, L.P. Optimistic parallelism
requires abstractions. SIGPLAN Not
(Proceedings of PLDI 2007) 42, 6
(2007), 211–222.

	15.	 Larus, J., Rajwar, R. Transactional
Memory (Synthesis Lectures on
Computer Architecture). Morgan &
Claypool Publishers, 2007.

	16.	N i, Y., Menon, V., Adl-Tabatabai, A.-R.,
Hosking, A.L., Hudson, R., Moss, J.E.B.,
Saha, B., Shpeisman, T. Open nesting
in software transactional memory. In
Principles and Practices of Parallel
Programming (PPoPP), 2007.

	17.	 Pang-Ning Tan, M.S., Kumar, V.,
editors. Introduction to Data Mining.
Pearson Addison Wesley, 2005.

	18.	 Ponnusamy, R., Saltz, J., Choudhary,
A. Runtime compilation techniques for
data partitioning and communication
schedule reuse. In Proceedings of
the 1993 ACM/IEEE Conference on
Supercomputing (1993).

	19.	 Rauchwerger, L., Padua, D.A.
The LRPD test: Speculative
run-time parallelization of loops
with privatization and reduction
parallelization. IEEE Trans. Parallel
Distrib. Syst. 10, 2 (1999), 160–180.

	20.	S agiv, M., Reps, T., Wilhelm, R.
Solving shape-analysis problems in
languages with destructive updating.
In Proceedings of the 23rd Annual
ACM Symposium on the Principles
of Programming Languages (St.
Petersburg Beach, FL, January 1996).

	21.	S hewchuk, J.R. Triangle: Engineering
a 2D quality mesh generator and
Delaunay triangulator. In Applied
Computational Geometry: Towards
Geometric Engineering, volume 1148
of Lecture Notes in Computer Science.
May 1996, 203–222.

	22.	S teffan, J.G., Colohan, C.B., Zhai, A.,
Mowry, T.C. A scalable approach
to thread-level speculation. In
ISCA ’00: Proceedings of the 27th
Annual International Symposium on
Computer Architecture (2000).

	23.	 Walter, B., Fernandez, S., Arbree, A., Bala,
K., Donikian, M., Greenberg, D. Lightcuts:
a scalable approach to illumination. ACM
Trans. Graphics (SIGGRAPH) 24, 3 (July
2005), 1098–1107.

	24.	 Zhan, L.R.Y., Torrellas, J. Hardware for
speculative run-time parallelization
in distributed shared-memory
multiprocessors. In HPCA ’98:
Proceedings of the 4th International
Symposium on High-Performance
Computer Architecture (1998).

References

