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Abstract— Planning in unstructured environments is chal-
lenging – it relies on sensing, perception, scene reconstruc-
tion, and reasoning about various uncertainties. We propose
DeepSemanticHPPC, a novel uncertainty-aware hypothesis-
based planner for unstructured environments. Our algorithmic
pipeline consists of: a deep Bayesian neural network which
segments surfaces with uncertainty estimates; a flexible point
cloud scene representation; a next-best-view planner which
minimizes the uncertainty of scene semantics using sparse visual
measurements; and a hypothesis-based path planner that pro-
poses multiple kinematically feasible paths with evolving safety
confidences given next-best-view measurements. Our pipeline
iteratively decreases semantic uncertainty along planned paths,
filtering out unsafe paths with high confidence. We show that
our framework plans safe paths in real-world environments
where existing path planners typically fail.

I. INTRODUCTION

Path planning for complex outdoor environments is chal-
lenging due to the unstructured nature of environments that
do not fall neatly into discretized space. Moreover, different
terrain surface types can be difficult to detect with traditional
sensing modalities. In indoor environments, a grid space
representation with lidar sensors is sufficient [1]–[3]. Out-
door environments exhibit complex geometries and surface
types, which are difficult – if not impossible – to differentiate
using just lidar data. Therefore, a more flexible representation
of the scene, surface classification using computer vision
techniques, and scene reasoning are necessary.

Previous work for outdoor planning has focused on clas-
sifying terrain and surface roughness using SVM classifiers
[4], [5], neural networks [6], [7], and other computer vision
techniques [8], [9]. While these techniques can differentiate
between simple terrain types, they do not model the inherent
uncertainties and ambiguities in complex scenes where it can
be difficult to differentiate between terrain types (e.g., an
offroad robot driving through a patch of grass with small
rocks). Many current outdoor planning approaches still rely
on grid maps which do not model the complex geometry
of an outdoor scene (e.g., a field with irregular bumps and
rocks) [10], [11]. Recent work has modeled outdoor maps for
planning with a point cloud [12], which is a more flexible
and suitable map for unstructured scenes; however, [12] uses
traditional lidar sensing which cannot differentiate between
different surface types as broadly as computer vision.
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Fig. 1: The DeepSemanticHPPC pipeline. (1) In the first
stage, initial inputs are used to generate a multi-hypothesis
graph of possible paths. (2) In the second stage, the uncer-
tainty in the scene is reduced and path costs are updated. (3)
The second stage is repeated for a set number of iterations.
This is terminated early if a safe path is confirmed or all
paths are confirmed as unsafe. (4) A path is selected.

In this paper we present DeepSemanticHPPC (Deep Se-
mantic Hypothesis-based Planner over Point Clouds), a novel
algorithmic pipeline for planning over uncertain semantic
point clouds, which leverages a Bayesian neural network
(BNN) [13], [14] to extract principled estimates of segmenta-
tion uncertainty. This allows our framework to reason about
ambiguous terrain as well as robustly handle false positive
detections by taking additional measurements to reduce se-
mantic uncertainty in the scene. However, each measurement
is costly due to the computationally expensive nature of
Bayesian neural networks operating on a robotic platform
with limited computing power. Our planner hence employs
next-best-view (NBV) techniques [15]–[17] to select the
best possible measurements to reduce scene uncertainty
while minimizing the total number of measurements taken.
DeepSemanticHPPC includes:

• the employment of a deep Bayesian neural network [13],
[14] to obtain surface and obstacle semantics with uncer-
tainty estimates for unstructured outdoor environments;

• a flexible point cloud scene representation;
• a next-best-view planner which minimizes the uncertainty

of terrain semantics using sparse visual measurements;
• a hypothesis-based path planner (extending [12]) that pro-

poses multiple kinematically feasible paths with evolving
safety confidences given the NBV measurements.



Experimental results with real environments show that our
pipeline is able to plan safe paths in real-world environments
where existing path planners typically fail. Fig. 1 illustrates
DeepSemanticHPPC. In the first stage, a multi-hypothesis
planner generates multiple hypotheses of possible safe paths
given a scene belief. In a second stage, a NBV function
calculates NBV poses and associated rewards. These poses
and rewards are input to a NBV selection block which
selects the best feasible NBV. A BNN extracts from the
NBV measurement semantic segmentations and associated
uncertainties, which are used to generate a new scene belief.
The new scene belief reduces hypothesis uncertainty, and the
second stage is repeated for a set number of iterations. Fi-
nally, a safe path (hypothesis) with high confidence selected;
if all paths are determined to be unsafe, then no path is
selected. The algorithm terminates once a path is confirmed
safe or all paths are confirmed unsafe.

II. BACKGROUND

A. RRT-Based Non-Holonomic Planning over a Point Cloud

We build upon an existing rapidly-exploring random tree
(RTT) [18] based planner for finding kinematically feasible
trajectories over non-planar point cloud environments [12].
6D robot poses are expressed by transformation matrices
belonging to the Special Euclidean Group SE(3). A matrix
TMR specifies the position and orientation of a robot-fixed
coordinate frame R expressed in a given reference map
frame M. [12] considers the following planning problem:
given start and goal poses TMS, TMG and a point cloud
M = {mi} with mi ∈ R3, compute a connecting trajectory
π : R>0 → SE(3). The trajectory has to satisfy a number of
constraints up to a given degree of approximation: contact
with the terrain surface, static traversability (e.g. bounded
roll and pitch angles), and kinematic constraints – including
bounded continuous curvature. Trajectories are represented
as piecewise continuous functions in the 6D space of robot
poses, and are specified by a sequence of nodes π̂ = [N k],
where each N k is a tuple (TMRk , τk,wk, κk). Here, TMRk

is a 6D pose attached to the terrain surface, τk ∈ [0, 1] is
the associated static traversability value, wk is a parameter
vector specifying a short planar trajectory segment con-
necting TMRk to the next pose in the sequence, and κk is
the curvature at the beginning of the trajectory segment.
The vector wk specifies a trajectory segment as a cubic
curvature polynomial [19] evolving along the planar patch
defined by the xy plane of the coordinate frame R attached
to TMRk . The end point of such trajectory segment gives the
subsequent pose TMRk+1 through a projection on the terrain
surface via f : (M,TMR) 7→ TMR; f queries M for the K
nearest-neighbors of such end point, which can be thought
of as the points the robot will lie on at TMRk+1 (K depends
on the size of the robot and on the point cloud density). We
use φ(N k+1) to denote such points.

Leveraging the above trajectory representation, [12] pro-
poses to define a small set of motion primitives (short
trajectory segments) and use them to grow two RRTs, one
from the start pose and one from the goal pose, and iteratively

try to connect them. Each new pose is associated with a node
N k, which is accepted in the tree only if τk > 0. [12] also
proposes a technique to derive a better trajectory (in terms of
smoothness and distance) starting from an initial one. This
second optimization stage is not explicitly considered in this
work, because it can be easily generalized and applied to all
“safe” trajectories according to our method.

B. Segmentation with Bayesian Neural Networks

Although segmentation networks for 3D point clouds
exist [20]–[24], 3D data repositories are focused on object
recognition and part segmentation (e.g. [25]) or only contain
a small number of scenes [26]. In contrast, existing large-
scale image segmentation datasets [27]–[30] contain varied
surfaces and obstacles in diverse real-world outdoor scenes.
Therefore, we leverage a state-of-the-art image segmentation
network [31] (Section IV-A), and update the point cloud en-
vironment from per-pixel image segmentations (Section IV-
B). Furthermore, we augment the network to estimate output
uncertainty, allowing uncertainty in surface predictions to be
stored in the point cloud. Uncertainty in surface type is used
to guide path-safety evaluation.

At inference time, forward passes with active dropout
layers can be interpreted as an approximation of the posterior
distribution of model weights [13], [14]. The uncertainty of
predictions can be computed by taking the sample standard
deviation across multiple forward passes. For each pixel
(i, j)X of image X , the mean softmax vector over T forward
passes is:

p(i,j)X =
1

T

T∑
t=1

s
(i,j)X
t (y|X) (1)

where s(i,j)X (y|X) ∈ RC is the softmax output of the
network. The corresponding uncertainty vector on p(i,j)X

is:

σ(i,j)X =

√√√√√ T∑
t=1

(
s
(i,j)X
t (y|X)− p(i,j)X

)2
T − 1

(2)

In our framework, image X corresponds to a view with
known camera parameters. p(i,j)X and σ(i,j)X are combined
with existing measurements for each point m ∈M that maps
to pixel (i, j)X (Section IV-B).

III. APPROACH OVERVIEW

The planner presented in Section II-A does not leverage
critical semantic information about terrain types. In this
work, we assume an initial point cloud is given in the form
M = {ei}, where each element ei is a tuple (mi,pi,σi).
Here, mi ∈ R3 as before; pi = (pi1, p

i
2, . . . , p

i
C) is a

vector specifying the probabilities that the point belongs to
each one of the C possible semantic classes (gravel, water,
etc.); σi = (σi1, σ

i
2, . . . , σ

i
C) is a vector specifiying the

uncertainties of pi, as discussed in Section II-B. Points are
initialized with uniform semantic probabilities and maximum
uncertainties. Updating the semantic point cloud is discussed
in Section IV-B. Fig. 2(b) shows a pointcloud obtained in
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Fig. 2: An example point cloud. (a) Image view of a portion of the environment. (b) Point cloud colored with the most
likely class predicted from image (a) (bright green: “grass”; dark green: “tree”; purple: “sidewalk”; dark grey: “road”; light
grey: no information available). All the classes except “tree” belong to the set S. The region around the tree is actually
mulch/woodchips, which should be classified as “dirt” (belonging to U ). (c) Point cloud colored to show safe (white), unsafe
(black), and unclear regions R (random colors).

a real (ambiguous) environment, where each point mi is
associated with the color corresponding to the class label
j whose pij is maximum.

We assume that the semantic classes have been partitioned
into two sets: the safe set S (e.g. gravel, grass) and the unsafe
set U (e.g. water, snow). For each point mi, the points are
defined as piS =

∑
j∈S p

i
j , p

i
U = 1 − piS =

∑
j∈U p

i
j , and

σi = min(
√∑

j∈S σ
i2
j ,

√∑
j∈U σ

i2
j ). Each point is then

classified as:

• safe if piS − wσσi ≥ θs;
• unsafe if piU − wσσi ≥ θu;
• unclear otherwise.

Intuitively, this implies that points are safe/unsafe given high
probability (piS , piU ) and low uncertainty (σi), and unclear
otherwise. wσ , θs, θu are defined by the mission planner
(with 1−θs < θu). We useMsafe,Munsafe,Munclear to denote
the partition of M obtained from the above classification.
Note that a point is labeled safe (unsafe) even when a
significant uncertainty on piS (piU ) is present, provided that
there is small uncertainty on piU (piS). This is captured by the
min in the definition of σi. For example, the network may
be uncertain between gravel and grass (both safe), but it is
sure that the point is neither water nor snow (both unsafe).

Consider now a trajectory π̂ = [N k], and recall that
φ(N k) denotes the set of points on which the robot lies when
at pose TMRk . Depending on the semantic information ini-
tially available, it might be very difficult –if not impossible–
to immediately find a trajectory whose node points φ(N k) all
belong to Msafe. DeepSemanticHPPC works in two stages:

1) Compute a set of candidate paths traversing different
unclear regions, and

2) Reduce the uncertainty of such paths by taking new
views in the proximity of the robot’s starting position
of the most promising path.

We relax the path planning problem in a natural way –
instead of reaching a specific goal pose, we require the robot
to reach a goal pose region G defined around TMG. Then,
the points in Munclear are organized into a set R of unclear
regions. To build the set R, we use the following two-stage
clustering process: first, we use DBSCAN [32] to perform

a large-scale clustering of the points in Munclear, obtaining
a set of large unclear regions R̂. Then, the points of each
r̂ ∈ R̂ are further partitioned according to their most likely
class (treating the points not associated with any prediction
as belonging to a special class); DBSCAN is called again on
each partition. Fig. 2(c) shows the result of this process on
our example with θs = 0.9, θu = 0.3, wσ = 3.

The remaining task is to compute a set of candidate paths
from TMS to G. Section IV-C presents a variant of a standard
RRT algorithm which is able to construct multiple hypothesis
for the safest path, traversing different unclear regions. These
paths are stored in the form of a directed graph G = (V,A),
where each v ∈ V is associated with a potential trajectory
node N v and each a ∈ A represents the existence of a short
trajectory segment connecting two poses. The cost for each
node is based on how far it is from satisfying our safety
constraint: p̄v = 1

|φ(Nv)|
∑
i∈φ(Nv) min(1,max(0, θs−piS +

wσσ
i)) for for each v ∈ V . However, if the node region

sufficiently intersects with an unsafe region, the cost is
infinite; and if the node lies entirely in a safe region, the
cost is zero.

Summarizing, c(v) is defined as:

c(v) =


0 if |Msafe ∩ φ(N v)| = |φ(N v)|
∞ if |Munsafe ∩ φ(N v)| ≥ φv
p̄v otherwise,

(3)

where φv is a user-defined threshold. The first condition
can be relaxed for the nodes in close proximity of the
starting pose. Although a vertex with infinite cost is never
obtained when the candidate paths are initially computed,
its cost might tend to infinity when additional views are
taken during the NBV stage (Section IV-D). A predefined
number of NBV iterations are run. At each iteration, the
m most promising (shortest) paths according to the above
cost function are computed by a k-shortest paths algorithm
(we use Yen’s [33]). The associated vertices v such that
0 < c(v) < ∞ are then considered in the function that
computes the best additional view. The value of m is also
decided by the mission planner: m = 1 corresponds to an
aggressive setting, while m > 1 should be preferred given a
large temporal budget for taking additional views.



IV. TECHNICAL DETAILS

A. Predicting Semantic Labels

We curate a segmentation dataset for outdoor navigation
in unstructured environments from the existing large-scale
COCO panoptic dataset [27]. First, images of unstructured
outdoor scenes are selected using a Places365 [34] classifier.
An image is kept if (a) the classifier’s top one (highest)
prediction is an unstructured outdoor category with > 50%
probability, or (b) two or more of the top five predictions are
unstructured outdoor categories. Second, the 133 categories
in COCO panoptic are merged: (a) all outdoor terrains (e.g.
grass, dirt, snow, pavement) are retained; (b) obstacles are
merged into four categories: fixed obstacles (e.g. buildings),
moving human-made obstacles (e.g. vehicles), humans, and
animals; (c) all indoor categories are removed. Our final
dataset consists of 34K training images with 22 categories.
Our navigation segmentation categories (from COCO panop-
tic), and filtered list of COCO panoptic images are at:
https://drive.google.com/file/d/
11MIN6n9NJV8IZIvReSgQGXZHS2qcSjvg

For our network architecture, we use DeepLabv3+ [31]
with Xception65 [35] backbone augmented with dropout in
the middle and exit flow blocks for semantic segmentations.
At inference time, 50 forward passes are used to predict
semantics and uncertainties (Eqs. (1)-(2)).

B. Associating Semantic Labels to a Point Cloud

Given a viewpoint with known pose and camera in-
trinics, image segmentation probabilities and uncertainties
are mapped to the point cloud. To map pixel (i, j)X :

1) Estimate depth map DX for view X.
2) Each pixel is backprojected to a single point correspond-

ing to the center of the projected pixel. This approxi-
mation does not hold for pixels with very large depths,
but typically produces good results. Backprojected pixel
point m̃(i,j)X is computed as:

m̃(i,j)X = PX [D
(i,j)
X I3×3|[0 0 1]T ]TK−1

X [i j 1]T (4)

where KX , PX are intrinsic and pose matrices.
3) Each backprojected point is merged with its nearest

neighbor mnn in the point cloud M within threshold
distance R. If a backprojected point does not have a
neighbor within the threshold, the point is discarded.

4) p(i,j)X and σ(i,j)X are merged with existing measure-
ments for point mnn. The combined measurement is
the best linear unbiased estimator under the simplifying
assumption that the per-class predictions are indepen-
dent. Given a set of K measurements {(p(k),σ(k))},
the combined measurement (p̃, σ̃) for class c is:(
p̃c =

1

Z

K∑
k=1

w(k)p(k)c , σ̃c =

√√√√ K∑
k=1

(w(k))2(σ(k))2

)

where w(k)
c =

(σ
(k)
c )−2∑

c′∈C
(σ

(k)

c′ )−2
, Z s.t.

∑
c′∈C

p̃c′ = 1

(5)

Fig. 3: An example graph G = (V,A), with poses. Vertices
with c(v) = 0 are in green, while vertices with 0 < c(v) ≤ 1
are in red (the darker, the closer to 1).

C. RRT-Based Multi-hypothesis Planner

The algorithm to compute G = (V,A) starts by building
an initial RRT from a root vertex vs associated with the
projected start pose TMS via a predefined set of motion
primitives. Instead of building two RRTs as is done in [12],
we build a single RRT from the start pose and bias the
sampling to the point that is closest to the projected ideal goal
pose. Sampling is performed on the points in M not lying
in the forbidden points set F , which is initialized as F ←
Munsafe. Once the first path π̂ = [N v] is found, the algorithm
examines which regions in R are traversed by the vertices
of π̂ by checking their intersections with each set of points
φ(N v). Except for the regions containing points belonging
to the K-nearest neighbors of TMS and TMG, all regions
traversed by π̂ are placed into the removal candidates set
C. A heuristic is then used to decide which region(s) should
be removed from subsequent planning stages. In this work,
we simply remove the largest region ĉ, and F is updated
as F ← F ∪ ĉ. When ĉ is removed, the vertices, including
those of π̂, are removed from the RRT. The algorithm then
proceeds to optimize and find a new path to the goal, by
continuously expanding the RRT component containing vs.
This time, however, the algorithm also tries to connect (by
computing ad hoc trajectory segments) new vertices to those
that were disconnected from the RRT due to the removal of
ĉ. When a new path is found, the process repeats. If at any
iteration, the algorithm finds a path only contained in the
regions of TMS and TMG, it can be restarted with a different
random seed. The two graphs can be merged at a later stage.
Fig. 3 shows an example multi-hypothesis graph computed
on the example of Section III (Fig. 2).

If any path computed on the multi-hypothesis graph G =
(V,A) has zero cost, the robot can start following that path
since all the underlying points lie in Msafe. Otherwise, the
robot enters the NBV stage described below.

D. Next-Best-View (NBV) Planning

A set of n viable NBV poses Tviable =
{TMV1 , . . . ,TMVn} is computed by growing a RRT
starting from TMS. The candidate poses Tviable are a
subsample of the RRT vertices. All points lying within
Munclear are treated as unsafe, and sampling is performed on
the safe points lying within a given radius r from TMS. The
robot should not travel too far to take a new view; otherwise
it is more appropriate to follow the most promising path of
G = (V,A).



A reward J(TMVj
) is calculated for each candidate pose

TMVj . The NBV pose TNBV is selected by picking the pose
with the highest value of J that also admits a safe path back
to the current pose.

J(TMVj ) = βdD + βγγ + βvisNvis + βQQ, (6)

where D is a distance metric, γ is a viewing angle metric,
Nvis is the number of visible vertices from TMVj , and Q
is the average information gain over visible vertices from
TMVj

. The weight βd, βγ , βvis, βQ sum to 1 and D, γ, Nvis,
and Q are normalized. Distance and change in viewing
angle are used based on the assumption that closeness and
view diversity will reduce vertex uncertainty. Nvis puts more
weight on candidate poses which have higher chances of re-
ducing the uncertainty of multiple segments of the multipath
graph G = (V,A). Q represents the expected reduction in
uncertainty in the graph vertices given TMVj

. Each of these
components are defined as follows.

Begin by defining the set of vertices v ∈ VNBV, where
VNBV is the set of unclear vertices belonging to the m
most promising paths (see the end of Section III). For
each candidate pose TMVj

∈ Tviable, only vertices visible
from TMVj

are considered in calculating the reward. Visible
vertices are defined as vertices which occupy greater than a
predefined number of pixels in the image plane rendering of
the point cloud from TMVj

. Visible vertices are added to the
set v ∈ Vvis,j , where Vvis,j ∈ VNBV.

To calculate D, the distances from TMVj
to v ∈ Vvis,j are

normalized. Since a lower distance should correspond to a
higher reward, we subtract the normalized distances from 1.
To calculate γ: the set of negative cosine distances of the
angle between TMS and TMVj

to v ∈ Vvis,j are used. Nvis is
the size of Vvis,j .

The information gain metric Q(v) is calculated for each
v ∈ VNBV. Q(v) represents the expected reduction in uncer-
tainty for each v ∈ VNBV, and is a function of the visibility
and uncertainty of the points lying in φ(N v).

The visibility I(v,TMVj
) of a vertex v ∈ VNBV, given a

candidate pose TMVj
, is the pixel coverage of φ(N v) in the

rendered image plane of TMVj
. Per-point bounding squares

of size equal to half the point cloud resolution are used to
compute occlusions and pixel coverage for surface points.
The number of pixels that φ(N v) occupies in the rendering
is the predicted visibility I(v,TMVj

) of v at TMVj
.

The uncertainty σ(v) of a vertex v ∈ VNBV is the average
sum of the uncertainties of the points in φ(N v):

σ(v) =
1

|φ(N v)|
∑

i∈φ(Nv)

C∑
j=1

σji (7)

The information gain metric Q(v) of vertex v ∈ VNBV can
be formally written as

Q(v) = αiI(v, TMVj ) + ασσ(v), (8)

where αI , ασ are weights that sum to 1 and
I(v,TMVj ) and σ(v) are normalized.

Fig. 4: Left: Image from Cass Park in Ithaca. There are
multiple different terrains in the scene including grass, mud,
and water. Right: Annotated safe (blue) and unsafe (red)
regions for the Cass Park point cloud.

V. VALIDATION

A. Validation Scenes and Overview

We implement our full pipeline in the AirSim simula-
tor [36]. However, preliminary experiments show that the
BNN trained on the real-world dataset (Section IV-A) per-
forms poorly on the synthetic AirSim environment. The full
pipeline with a simpler BNN trained on the AirSim environ-
ment and corresponding experimental results are shown in
the accompanying video.

For real world validation, we collect data for two different
scenes using the ZED stereo camera from Stereolabs. The
first scene is next to the Mann Library in Cornell University
(Fig. 2(a)) and the second scene is at Cass Park in Ithaca
(Fig. 4). These scenes are selected due to their varying (but
common) terrain types. The scenes are representative of com-
mon unstructured outdoor environments without pathological
geometry or terrain. The ZED camera API is used to extract
depth maps and generate point cloud reconstructions of the
scenes. For these scenes, we heuristically select a set of
candidate NBV poses instead of growing a RRT from TMS,
and assume a path between these poses and the start pose
exists. Candidate NBV poses are selected to be oriented in
the general direction of the goal while covering a wide range
of the scene. Our method (and baseline methods) choose
NBVs from the set of candidate NBV poses.

B. NBV evaluation

To evaluate the performance of the NBV function, we
examine the change in uncertainty of the path vertices as
the number of NBVs increases. The complete NBV reward
function (Eq. ??) is compared against: (a) random selection,
(b) geometry-only reward, and (c) uncertainty-only reward.
For the geomtry-only NBV reward, we set {βQ} to zero, and
for the uncertainty-only NBV reward, we set {βd, βγ , βvis}
to zero. The change in uncertainties summed across all
the classes and points for each path vertex averaged over
500 trials is shown in Fig. 5. In our experiments, the full
NBV reward weights are set as follows: {βd = 0.4, βγ =
0.05, βvis = 0.25, βQ = 0.3, αI = 0.5, ασ = 0.5} for the
Mann Library scene, and {βd = 0.15, βγ = 0.05, βvis =
0.2, βQ = 0.6, αI = 0.3, ασ = 0.7} for the Cass Park scene.
A higher uncertainty weight is assigned to the Cass scene
because the boundaries between surface types (e.g. water,
mud, grass) are more ambiguous than in the Mann scene.

For both scenes, the full NBV reward function consistently
achieves the lowest uncertainty with 2 or more NBVs (Fig.



Fig. 5: Change in uncertainty of path vertices (y-axis) as the
number of NBV measurements increase (x-axis).

5). This illustrates the importance of both geometry and un-
certainty terms in the reward function. In the Mann scene, the
baseline reward functions converge to a higher uncertainty
than the full reward function. Due to the small size of the
scene and the nature of all candidate NBVs being oriented
towards the goal pose, random selection performs quite well.
It initially outperforms uncertainty-only which does not take
into account point visibility or viewpoint diversity, while
random sampling implicitly selects diverse views. In the
Cass scene, the baseline reward functions converge to a
higher uncertainty than the full reward function, except for
uncertainty-only which converges to point as the full reward
function. The overall uncertainty in the BNN predictions are
much higher at Cass park, so heavily weighing the uncer-
tainty in the reward function performs well. In the Mann
scene, geometry-only outperforms uncertainty-only, whereas
the opposite result holds for the Cass scene. Mann has less
inherent ambiguity so geometry terms are more important,
while Cass has more ambiguous regions so uncertainty terms
are more important.

C. Path Safety Evaluation

To evaluate the real world application of DeepSemanticH-
PPC, we study the safety of selected paths. We annotate a
point cloud (Fig. 4 right) with MeshLab [37] into ground
truth safe and unsafe regions. For Mann library mulch (dirt)
is labeled as unsafe, and for Cass Park mud (dirt) and water
are labeled as unsafe. Any path which contains a vertex that
overlaps with the unsafe region with over Nunsafe points is
unsafe. We set Nunsafe = 4. Two baselines are considered:
(a) B1: planning without semantic information (based on
[12]) and (b) B2: planning with semantic information from
a single initial view without taking any NBV measurements
to reduce path uncertainty. We also study the performance
of DeepSemanticHPPC as the number of NBVs increase.

Table I shows the path safety results for the Mann Library
and Cass Park scenes over 500 trials. Since both safe and
unsafe terrain surfaces can be geometrically similar, baseline
B1 cannot reliably avoid unsafe semantic regions. Baseline
B2 performs significantly better than B1 because of the
inclusion of semantic surface types in the planner. However,
because the semantic segmentations can be incorrect, espe-
cially in regions with high uncertainty, this planner still plans
over unsafe terrain.

Our DeepSemanticHPPC framework is significantly better
than the two baselines. NBVs allow the planner to discard

Mann B1 B2 1N 2N 3N 4N 5N
Safe % 0 23.4 81.6 79.8 81.4 83.6 86.0

Unsafe % 100 76.6 18.4 15.4 11.2 6.6 3.8
CS % N/A N/A 0 0 4.0 18.0 28.0
CN % N/A N/A 0 4.8 7.4 9.8 10.2
Cass B1 B2 1N 2N 3N 4N 5N

Safe % 13.2 33.4 54.0 57.4 57.4 59.0 59.2
Unsafe % 86.8 66.6 46.0 41.6 39.8 37.4 36.6

CS % N/A N/A 0 0 0 0 0
CN % N/A N/A 0 1.0 2.8 3.6 4.2

TABLE I: 500 trials of path safety evaluation. The columns
are the path planning methods used: B1 is the planner based
on [12], B2 is the variant of our framework which does not
utilize any NBVs, XN is DeepSemanticHPPC (ours) with
X NBVs. The rows are the metrics: Safe is the number of
trials where a safe path is selected, Unsafe is the number of
trials where an unsafe path is selected (lower is better), CS
is the number of trials where a safe path is confirmed, CN
is the number of trials where all multipaths are confirmed as
unsafe (and no path is selected).

unsafe paths as semantic uncertainties decrease. With just
one NBV, the percentage of safe paths taken increases
drastically from 23.4% to 81.6% (Mann) and increases from
33.4% to 54.0% (Cass). As NBVs increase, the percentage of
safe paths selected generally increases while the percentage
of unsafe paths selected decreases. With 5 NBVs, 86%
(59.2%) of paths selected for Mann (Cass) are safe, and
only 3.8% (36.6%) of paths selected for Mann (Cass) are
unsafe. With 5 NBVs, uncertainty is sufficiently reduced so
that in 10.2% (4.2%) of trials, all multipaths are confirmed
to be unsafe for Mann (Cass) and no path is selected. The
complexity of the Cass scene is reflected in these results.

VI. CONCLUSION

In this paper we presented DeepSemanticHPPC, a novel
framework for planning in unstructured outdoor environ-
ments while accounting for uncertain terrain types. Our
experiments show that DeepSemanticHPPC is able to re-
duce semantic uncertainty in planned paths and increase the
safety of paths planned in environments with unsafe terrains.
We plan to implement DeepSemanticHPPC on a robot for
physical experiements. Other interesting directions include
exploring the ability to build the point cloud online and
incorporating geometric uncertainties.
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