
 Setting: Big Data pipelines constructed using modular components

 Problem: Error by a component cascades through the pipeline causing

catastrophic failure in the eventual output

 Key idea: Establish correspondence between pipelines and Probabilistic

Graphical Models that explains pipeline operation theoretically

 Result: More robust inference procedures while still using existing components

Introduction

An illustrative example: A NLP pipeline

Contact

The full paper is available for personal use at
http://www.cs.cornell.edu/~adith/Papers/PipelineInference.pdf

For more information, please e-mail: adith@cs.cornell.edu

Figure 1. Tagger tags “rocks”

incorrectly, causing an

unrecoverable failure

 Using locally optimal

component output is myopic

 Want: Globally better

outputs

 Ideal inference in a graphical model with observed variable 𝑋:

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦

𝑧

Pr 𝑦 𝑧, θ2 . Pr(𝑧|𝑥, θ1)

 Canonical inference computes

𝑧∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑧 Pr 𝑧 𝑥, θ1 ; 𝑦
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 Pr 𝑦 𝑧

∗, θ2 . Pr(𝑧
∗|𝑥, θ1)

 … a greedy approximation!

 With a list of 𝑘 top intermediates 𝑧 = 𝑧1, … , 𝑧𝑘 a better

approximation is Top-K Inference :

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦

𝑧 ∈ 𝑧

Pr 𝑦 𝑧, θ2 . Pr(𝑧|𝑥, θ1)

Figure 7. Increasing

threshold τ smoothly

increases overall accuracy

and cost

• Error detection needs a notion of confidence scores for predictions.

• Error recovery needs a mechanism for alternative predictions

Figure 8. Synthetic pipeline with 3

components.

 Components model Pr(𝑦|𝑥, θ) with

a 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(α) distribution

 As task becomes harder (α
increases), Top-𝑘 remains robust

 Top-K, Beam and Adaptive Inference are generic algorithms

 No assumptions about components’ error models, or the pipeline structure.

 For robust inference, ideal #outputs required from each component will vary for

different inputs

 Unlike Top-𝑘 and Beam, Adaptive inference exploits this

 Effect of an output on overall prediction is estimated first

 Propagate iff it has a large effect

Figure 6. Smooth performance

improvement like top-𝑘
inference

 With linear increase in

inference cost (in beam size)

Figure 5. Top-𝑘 inference causes

multiplicative blowup of inference cost

 Observation: Diminishing returns from

more values

 Idea: Use beam search to limit list lengths

 Given budget 𝑚 ∗ 𝑘, retain top 𝑚 after

each stage

Figure 2. Inputs/outputs of components

become nodes

• Components are edges in graphical model

View components as probabilistic models - regardless of their actual implementation.

• Component models Pr(𝑦|𝑥, θ). For input 𝑥, it returns

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 Pr(𝑦|𝑥, θ)

• Confidence score = Pr(𝑦∗|𝑥, θ)

• When using dynamic programming to maximize, maintain and return list of 𝑘 top

scoring outputs [𝑦1, … , 𝑦𝑘]

• Composition of probabilistic components  a directed graphical model

Conclusion and Future Work

Approach

Cornell University, Ithaca, NY USA

Karthik Raman, Adith Swaminathan, Thorsten Joachims,
Johannes Gehrke

Beyond myopic inference in Big Data
pipelines

Discussion

Does Top-K actually help?

 Using more outputs better than canonical inference

 Parsing: Two stage pipeline, evaluated on WSJ benchmark

 Relation extraction: Three stage non-linear pipeline, evaluated on

difficult subset of ACE-04 newswire benchmark

Efficient inference : Beam and Adaptive inference

 Graphical model view of pipelines viable even with components that aren’t

probabilistic models

• Calibrated optimization criterion  surrogate for Pr(𝑦|𝑥, θ)

• Redundant components can be used to get “top-𝑘” outputs

 Components make two kinds of errors:

• “Near miss”: When the correct output is in the top-𝑘 list for small 𝑘

• Catastrophic: Cannot recover cheaply even using Top-K Inference

 This work suggests a novel objective to train components by minimizing the

number of catastrophic errors they make.

 Canonical inference with myopic components cause unrecoverable pipeline errors

 Viewing pipelines as graphical models allows reasoning about overall inference

 Proposed different inference procedures to approximate ideal inference problem

 Experiments demonstrate robust pipelines constructed using existing components

 Handling pipelines with feedback

 Incorporating uncertainty of predictions into training

 Figure 3.

Parsing

Figure 4. 

Relation

extraction

Create scored list [𝑧1, … , 𝑧𝑘]. If 𝑆𝑐𝑜𝑟𝑒 𝑧𝑖 > τ. 𝑆𝑐𝑜𝑟𝑒(𝑧𝑖+1), return [𝑧1, … , 𝑧𝑖].

