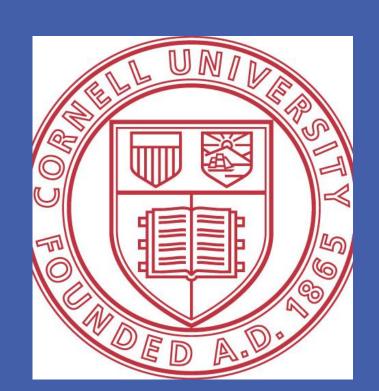


Beyond myopic inference in Big Data pipelines

Karthik Raman, Adith Swaminathan, Thorsten Joachims, Johannes Gehrke



Cornell University, Ithaca, NY USA

Introduction

- > Setting: Big Data pipelines constructed using modular components
- > Problem: Error by a component cascades through the pipeline causing catastrophic failure in the eventual output
- > Key idea: Establish correspondence between pipelines and *Probabilistic* Graphical Models that explains pipeline operation theoretically
- **Result:** More robust inference procedures while still using existing components

An illustrative example: A NLP pipeline

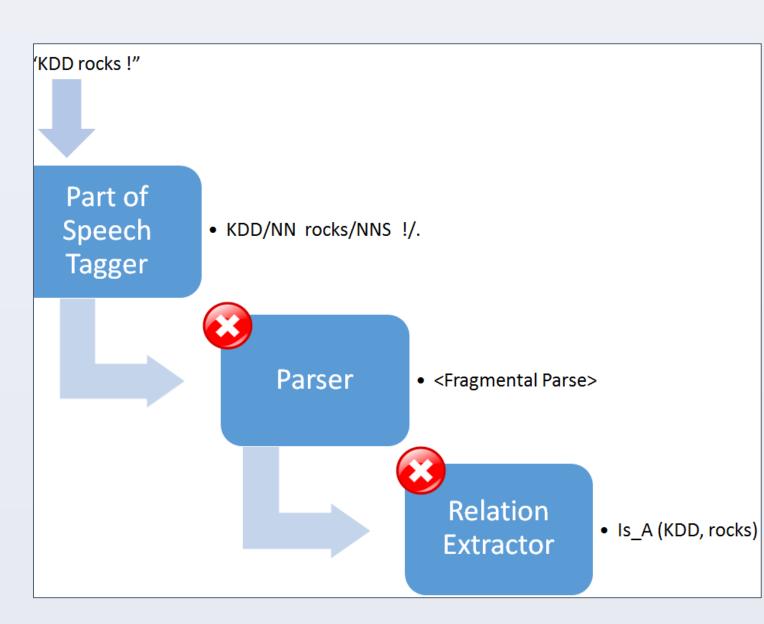


Figure 1. Tagger tags "rocks" incorrectly, causing an unrecoverable failure

- Using locally optimal component output is myopic
- > Want: Globally better outputs
- Error detection needs a notion of confidence scores for predictions.
- Error recovery needs a mechanism for alternative predictions

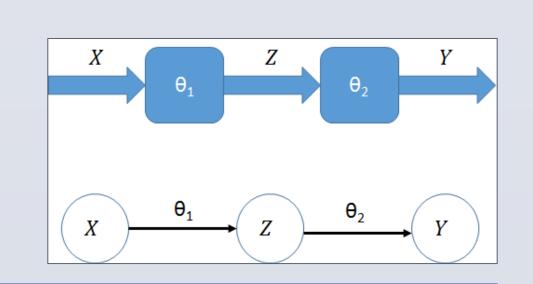
Approach

View components as probabilistic models - regardless of their actual implementation.

- Component models $Pr(y|x,\theta)$. For input x, it returns $y^* = argmax_v \Pr(y|x,\theta)$
- Confidence score = $Pr(y^*|x,\theta)$
- When using dynamic programming to maximize, maintain and return list of k top scoring outputs $[y^1, ..., y^k]$
- Composition of probabilistic components \rightarrow a directed graphical model

Figure 2. Inputs/outputs of components become nodes

• Components are edges in graphical model



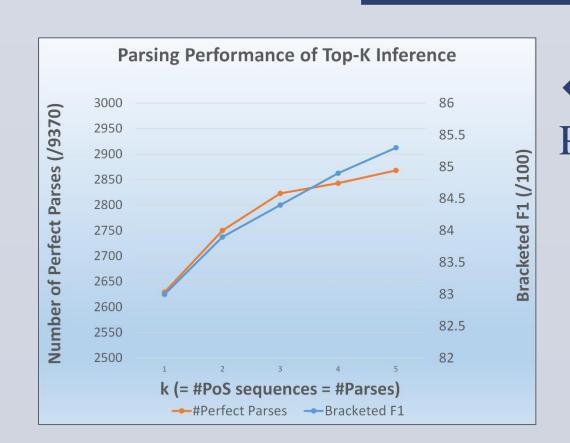
➤ Ideal inference in a graphical model with observed variable *X*:

$$y^* = argmax_y \sum_{z} Pr(y|z, \theta_2) . Pr(z|x, \theta_1)$$

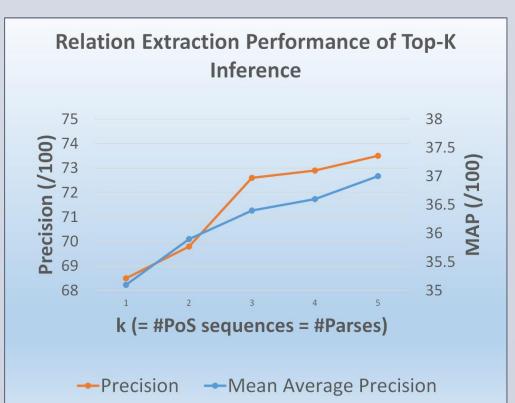
- > Canonical inference computes
- $z^* = argmax_z \Pr(z|x, \theta_1); y^* = argmax_y \Pr(y|z^*, \theta_2).\Pr(z^*|x, \theta_1)$
- > ... a greedy approximation!
- \triangleright With a list of k top intermediates $\{z\} = [z^1, ..., z^k]$ a better approximation is *Top-K Inference*:

$$y^* = argmax_y \sum_{z \in \{z\}} \Pr(y|z, \theta_2) \cdot \Pr(z|x, \theta_1)$$

Does Top-K actually help?



← Figure 3. Parsing Figure 4. \rightarrow Relation extraction

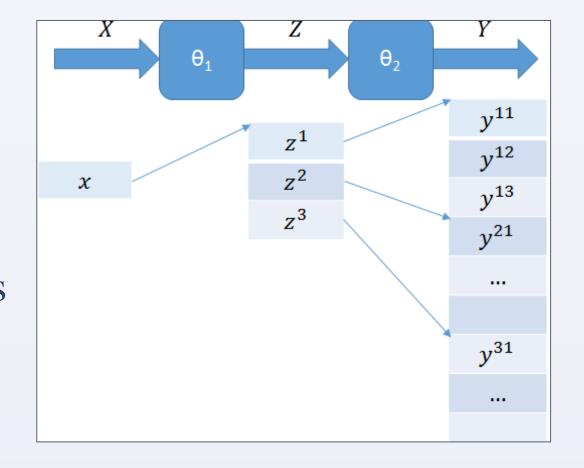


- ➤ Using more outputs better than canonical inference
- > Parsing: Two stage pipeline, evaluated on WSJ benchmark
- > Relation extraction: Three stage non-linear pipeline, evaluated on difficult subset of ACE-04 newswire benchmark

Efficient inference: Beam and Adaptive inference

Figure 5. Top-k inference causes multiplicative blowup of inference cost

- **Observation:** Diminishing returns from more values
- ➤ **Idea:** Use beam search to limit list lengths
- \triangleright Given budget m * k, retain top m after each stage



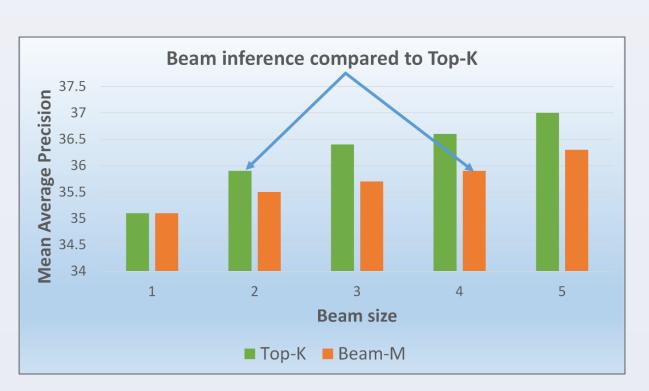


Figure 6. Smooth performance improvement like top-k inference

- ➤ With linear increase in inference cost (in beam size)
- For robust inference, ideal #outputs required from each component will vary for different inputs
- \triangleright Unlike Top-k and Beam, Adaptive inference exploits this
- > Effect of an output on overall prediction is estimated first
- > Propagate iff it has a large effect

Create scored list $[z^1, ..., z^k]$. If $Score(z^i) > \tau.Score(z^{i+1})$, return $[z^1, ..., z^i]$.

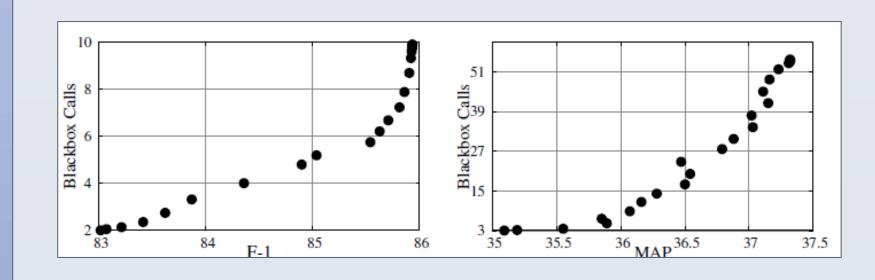


Figure 7. Increasing threshold τ smoothly increases overall accuracy and cost

Discussion

> Top-K, Beam and Adaptive Inference are generic algorithms

➤ No assumptions about components' error models, or the pipeline structure.

Figure 8. Synthetic pipeline with 3 components.

- \triangleright Components model $Pr(y|x,\theta)$ with a $Dirichlet(\alpha)$ distribution
- \triangleright As task becomes harder (α increases), Top-k remains robust
- > Graphical model view of pipelines viable even with components that aren't probabilistic models
 - Calibrated optimization criterion \rightarrow surrogate for $Pr(y|x,\theta)$
 - Redundant components can be used to get "top-k" outputs
- > Components make two kinds of errors:
 - "Near miss": When the correct output is in the top-k list for small k
 - Catastrophic: Cannot recover cheaply even using *Top-K Inference*
- > This work suggests a novel objective to train components by minimizing the number of catastrophic errors they make.

Conclusion and Future Work

- > Canonical inference with myopic components cause unrecoverable pipeline errors
- > Viewing pipelines as graphical models allows reasoning about overall inference
- > Proposed different inference procedures to approximate ideal inference problem
- > Experiments demonstrate robust pipelines constructed using existing components
- Handling pipelines with feedback
- Incorporating uncertainty of predictions into training

Contact

The full paper is available for personal use at http://www.cs.cornell.edu/~adith/Papers/PipelineInference.pdf

For more information, please e-mail: adith@cs.cornell.edu