
 Setting: Big Data pipelines constructed using modular components

 Problem: Error by a component cascades through the pipeline causing 

catastrophic failure in the eventual output

 Key idea: Establish correspondence between pipelines and Probabilistic 

Graphical Models that explains pipeline operation theoretically

 Result: More robust inference procedures while still using existing components

Introduction

An illustrative example: A NLP pipeline
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Figure 1. Tagger tags “rocks” 

incorrectly, causing an 

unrecoverable failure

 Using locally optimal 

component output is myopic

 Want: Globally better 

outputs

 Ideal inference in a graphical model with observed variable 𝑋:

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦  

𝑧

Pr 𝑦 𝑧, θ2 . Pr(𝑧|𝑥, θ1)

 Canonical inference computes

𝑧∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑧 Pr 𝑧 𝑥, θ1 ; 𝑦
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 Pr 𝑦 𝑧

∗, θ2 . Pr(𝑧
∗|𝑥, θ1)

 … a greedy approximation!

 With a list of 𝑘 top intermediates 𝑧 = 𝑧1, … , 𝑧𝑘 a better 

approximation is Top-K Inference :

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦  

𝑧 ∈ 𝑧

Pr 𝑦 𝑧, θ2 . Pr(𝑧|𝑥, θ1)

Figure 7. Increasing 

threshold τ smoothly 

increases overall accuracy 

and cost

• Error detection needs a notion of confidence scores for predictions.

• Error recovery needs a mechanism for alternative predictions

Figure 8. Synthetic pipeline with 3 

components.

 Components model Pr(𝑦|𝑥, θ) with 

a 𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(α) distribution

 As task becomes harder (α
increases), Top-𝑘 remains robust

 Top-K, Beam and Adaptive Inference are generic algorithms

 No assumptions about components’ error models, or the pipeline structure.

 For robust inference, ideal #outputs required from each component will vary for 

different inputs

 Unlike Top-𝑘 and Beam, Adaptive inference exploits this

 Effect of an output on overall prediction is estimated first

 Propagate iff it has a large effect

Figure 6. Smooth performance 

improvement like top-𝑘
inference

 With linear increase in 

inference cost (in beam size)

Figure 5. Top-𝑘 inference causes 

multiplicative blowup of inference cost

 Observation: Diminishing returns from 

more values

 Idea: Use beam search to limit list lengths

 Given budget 𝑚 ∗ 𝑘, retain top 𝑚 after 

each stage

Figure 2. Inputs/outputs of components 

become nodes

• Components are edges in graphical model

View components as probabilistic models - regardless of their actual implementation.

• Component models Pr(𝑦|𝑥, θ). For input 𝑥, it returns

𝑦∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦 Pr(𝑦|𝑥, θ)

• Confidence score = Pr(𝑦∗|𝑥, θ)

• When using dynamic programming to maximize, maintain and return list of 𝑘 top 

scoring outputs [ 𝑦1, … , 𝑦𝑘]

• Composition of probabilistic components  a directed graphical model
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Discussion

Does Top-K actually help?

 Using more outputs better than canonical inference

 Parsing: Two stage pipeline, evaluated on WSJ benchmark

 Relation extraction: Three stage non-linear pipeline, evaluated on 

difficult subset of ACE-04 newswire benchmark

Efficient inference : Beam and Adaptive inference

 Graphical model view of pipelines viable even with components that aren’t 

probabilistic models

• Calibrated optimization criterion  surrogate for Pr(𝑦|𝑥, θ)

• Redundant components can be used to get “top-𝑘” outputs

 Components make two kinds of errors:

• “Near miss”: When the correct output is in the top-𝑘 list for small 𝑘

• Catastrophic: Cannot recover cheaply even using Top-K Inference

 This work suggests a novel objective to train components by minimizing the 

number of catastrophic errors they make.

 Canonical inference with myopic components cause unrecoverable pipeline errors

 Viewing pipelines as graphical models allows reasoning about overall inference

 Proposed different inference procedures to approximate ideal inference problem

 Experiments demonstrate robust pipelines constructed using existing components

 Handling pipelines with feedback

 Incorporating uncertainty of predictions into training

 Figure 3.

Parsing

Figure 4. 

Relation 

extraction

Create scored list [𝑧1, … , 𝑧𝑘]. If 𝑆𝑐𝑜𝑟𝑒 𝑧𝑖 > τ. 𝑆𝑐𝑜𝑟𝑒(𝑧𝑖+1), return [𝑧1, … , 𝑧𝑖].


