
Stable Coactive Learning via Perturbation
Karthik Raman, Thorsten Joachims (Cornell University)

Pannaga Shivaswamy (AT&T Research), Tobias Schnabel (University of Stuttgart)

Coactive Learning

Coactive Learning: [Shivaswamy and Joachims, 2012]

I Given context x, predict object y to optimize utility U(x, y).
I Models the interaction between user(s) and learning system.

SYSTEM
(e.g. Search Engine)

USER

Context
(e.g. Query)

Takes Actions (e.g. Present Ranking)

Provides Feedback
(e.g. Receive Improved Ranking:

From User Clicks)

Example: Using implicit feedback for ranking:

Click!

Click!

Presented Ranking (y) Feedback Ranking (y̅)≤α

Instability of the Preference Perceptron

Linear Utility: U(x, y) = w>∗ φ(x, y)

Preference Perceptron Algorithm:
(Proposed in [Shivaswamy and Joachims, 2012])

1. Initialize weight vector w1 ← 0.

2. Given context xt present
yt ← argmaxyw>t φ(xt, y).

3. Move clicked documents to top to get
feedback ranking ȳt.

4. wt+1←wt+φ(xt, ȳt)−φ(xt, yt).

5. Repeat from step 2.

User Study:
I Experimented using live full-text search

engine at arxiv.org.
I Goal: Learning a ranking function from

implicit feedback i.e., user clicks.
I Interleaved evaluation against hand-tuned

baseline ranker.
I Win ratio of 1 indicates being no better

than the baseline. Higher win ratio is better.

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 5000 10000 15000 20000 25000 30000

W
in

 R
at

io

Number Of Iterations

User Study Results

Preference Perceptron

Perturbed Preference Perceptron

Preference Perceptron is unstable:
The rankings learned by PrefP never stabilize:
Even after thousands of updates, the top 10
documents of the same query before and after 100
update steps only overlap by 4 documents.

 0

 5

 10

 0 1000 2000 3000 4000 5000

A
v
g
.
S

et
 O

v
er

la
p

Number of Iterations

3PR

PrefP[top]

Perturbed Preference Perceptron

1. Initialize weight vector w1 ← 0.

2. Given context xt predict
ŷt ← argmaxyw>t φ(xt, y).

3. Present yt: Obtained by randomly swapping
adjacent pairs in ŷt with probability pt.

4. Observe clicks. If clicked document is lower
element of pair, move it up by one to get ȳt.

5. wt+1←wt+φ(xt, ȳt)−φ(xt, yt).

6. Repeat from step 2.

Presented Ranking (y) Predicted Ranking (ŷ)

PERTURB

Click!

Click!

Presented Ranking (y) Feedback Ranking (y̅)

≤α

Illustrative Example

Preference Perceptron (PrefP)

d1

d2

dN

......

d3

1 0

Feature Vecs

0 1

0 1

0 1

......

......

Weight Vec: +1.0 0.0

Inner Prod.

+1.0

0.0

0.0

0.0

......

Click on
Irrel Doc

d1

d2

dN

......

d3

+0.6 0.4

Click on
Irrel Doc

d2

d3

d1

......

d4

+0.2 0.8

Reversal!

Small
Probability
of user
reading till
the end to
fix ranking!

Click on
Rel Doc

d1

d2

dN

......

d3

+1.0 0.0

No
change

Perturbed Preference Perceptron (3PR)

d1

d2

dN

......

d3

+1.0 0.0

Click on
Irrelevant Doc

d1

d2

dN

......

d3

+1.0 0.0

Swap
and Click
on Rel
Doc

d2

d3

d1

......

d4

+1.4 -0.4

Swap
and Click
on Rel
Doc

d1

d2

dN

......

d3

+1.4 -0.4

Positive
reinforcement!

For n = 10 and 20%
user error rate,
average rank of the
relevant document for
3PR (with p = 0.5)
is 2.1 (compared to
the 9.4 for PrefP).

Theoretical Analysis

α-Informative
Feedback:
We characterize the utility of
the feedback received ȳt as:

Eȳ[U(x, ȳ)] ≥ U(x, y)

+ α(U(x, y∗)− U(x, y))− ξ

I where y∗ is the optimal and y
is the presented object.

I Note that this is just a
characterization (not an
assumption).

I Used to prove regret bounds.

Regret:
We define the regret after T
iterations as:

1

T

T∑
t=1

(
U(xt, y∗t)−E[U(xt, yt)]

)
.

Fixed Probability 3PR

The regret of 3PR with fixed
swap probability p (i.e.
∀t : pt = p) is:

≤
∑T

t=1 ξt

αT
+

p(1− γ2

γ1
)R‖w∗‖
α

+

√
2(4− p2(1− γ2

γ1
)2)R‖w∗‖

α
√

T
.

Dynamic 3PR

For any ∆≥0, dynamically
setting the swap prob pt of 3PR
has regret:

≤
1

αT

T∑
t=1

ξt +
‖w∗‖
α
√

T
×√√√√

4R2 + 2∆+ 2R

√
4R2+2∆

T
.

Experimental Results

I Performed offline experiments on a search dataset (Yahoo! LTR)
and two news recommendation datasets: RCV1 and News.

I Simulated user behavior with and without noise.
I NDCG@5 was the utility for all three datasets.

Comparison with other methods:
I PrefP[top]: Preference Perceptron with move-to-top feedback.
I PrefP[pair]: PrefP with pairwise feedback i.e., 3PR with pt = 0.
I SVM: Ranking SVM with move-to-top feedback.
I Perceptron which receives optimal is (rough) upper bound.

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 1 10 100 1000 10000

N
D

CG
@

5

Number Of Iterations

PrefP[top]

PrefP[pair]

3PR

StructPerc

Random

SVM

I Small loss in performance due to perturbation, but large
gain overall (as seen from PrefP[pair] comparison).

Websearch RCV1 News
Presented y .717 ± .002 .286 ± .028 .386 ± .035
Predicted ŷ .723 ± .002 .291 ± .028 .397 ± .035

I Dynamically setting the swap probability does best:

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

 1 10 100 1000 10000

ND
CG

@
5

Number Of Iterations

p=0

p=0.1

p=0.25

p=0.5

p=0.75

p=0.9

Dynamic

I Far more robust to noise:

0.61

0.64

0.67

0.7

0.73

No Noise Noise

ND
CG

@
5

Websearch

0

0.1

0.2

0.3

0.4

0.5

No Noise Noise

News
PrefP[top]

PrefP[pair]

3PR

0

0.1

0.2

0.3

0.4

No Noise Noise

RCV1

