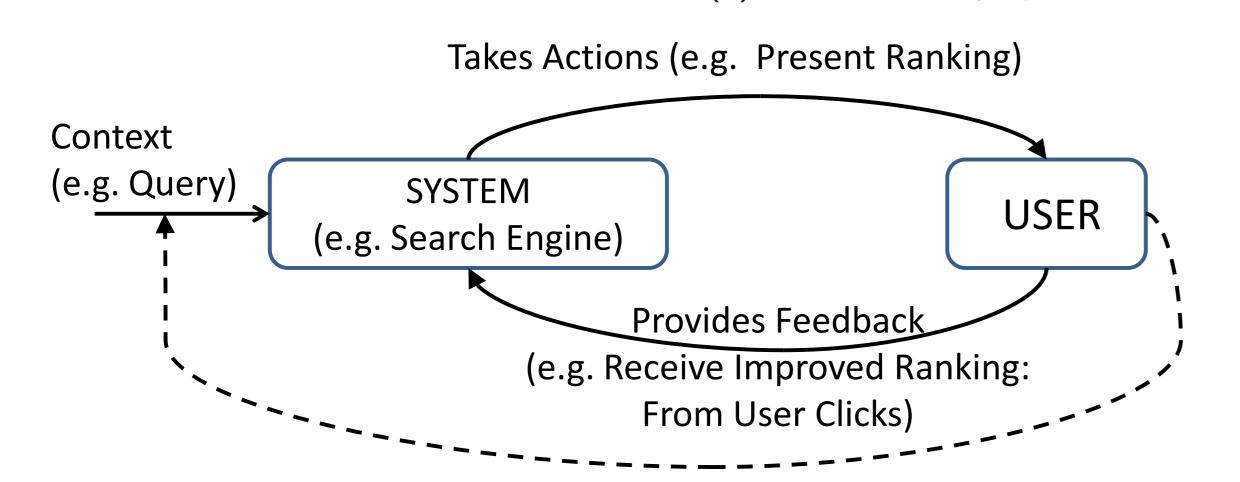
Stable Coactive Learning via Perturbation

Karthik Raman, Thorsten Joachims (Cornell University) Pannaga Shivaswamy (AT&T Research), Tobias Schnabel (University of Stuttgart)

Coactive Learning

Coactive Learning: [Shivaswamy and Joachims, 2012]

- \triangleright Given context x, predict object y to optimize utility U(x, y).
- ► Models the interaction between user(s) and learning system.



Example: Using implicit feedback for ranking:

Instability of the Preference Perceptron

Linear Utility: $U(x, y) = w_*^\top \phi(x, y)$

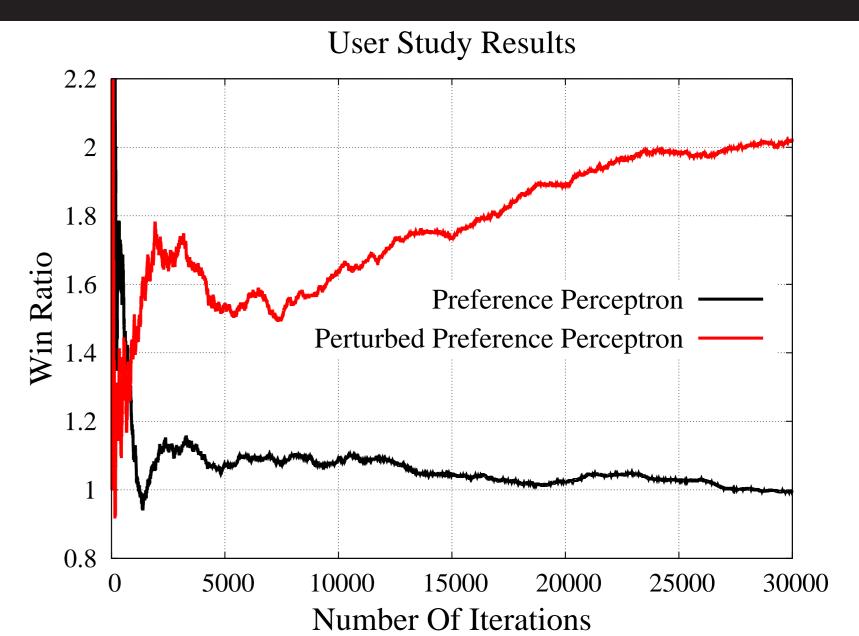
Preference Perceptron Algorithm:

(Proposed in [Shivaswamy and Joachims, 2012])

- 1. Initialize weight vector $\mathbf{w_1} \leftarrow \mathbf{0}$.
- 2. Given context x_t present $\mathbf{y_t} \leftarrow \operatorname{argmax}_{\mathbf{v}} \mathbf{w}_{\mathbf{t}}^{\top} \phi(\mathbf{x_t}, \mathbf{y}).$
- 3. Move clicked documents to top to get feedback ranking $\bar{\mathbf{y}}_{\mathbf{t}}$.
- 4. $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \phi(\mathbf{x}_t, \bar{\mathbf{y}}_t) \phi(\mathbf{x}_t, \mathbf{y}_t)$.
- 5. Repeat from step 2.

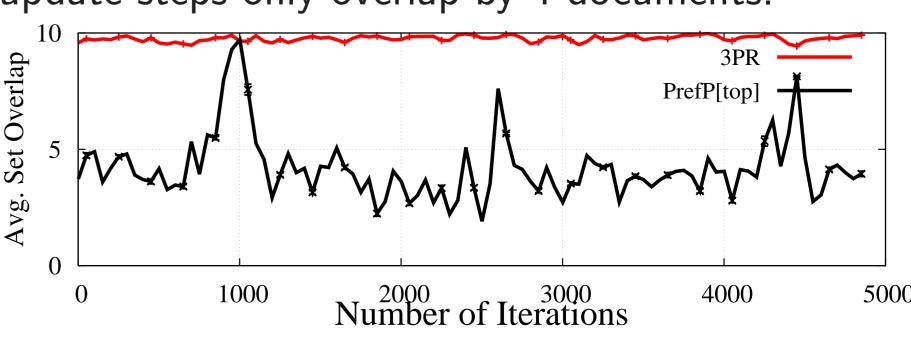
User Study:

- Experimented using live full-text search engine at arxiv.org.
- ► Goal: Learning a ranking function from implicit feedback i.e., user clicks.
- Interleaved evaluation against hand-tuned baseline ranker.
- ► Win ratio of 1 indicates being no better than the baseline. Higher win ratio is better.



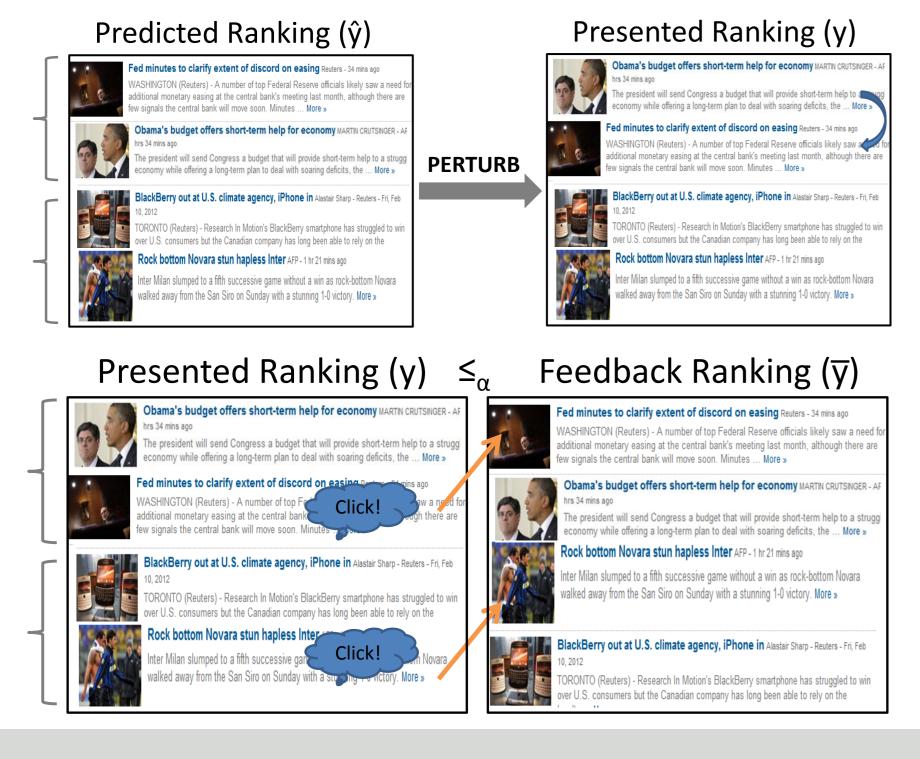
Preference Perceptron is unstable:

The rankings learned by PrefP never stabilize: Even after thousands of updates, the top 10 documents of the same query before and after 100 update steps only overlap by 4 documents.



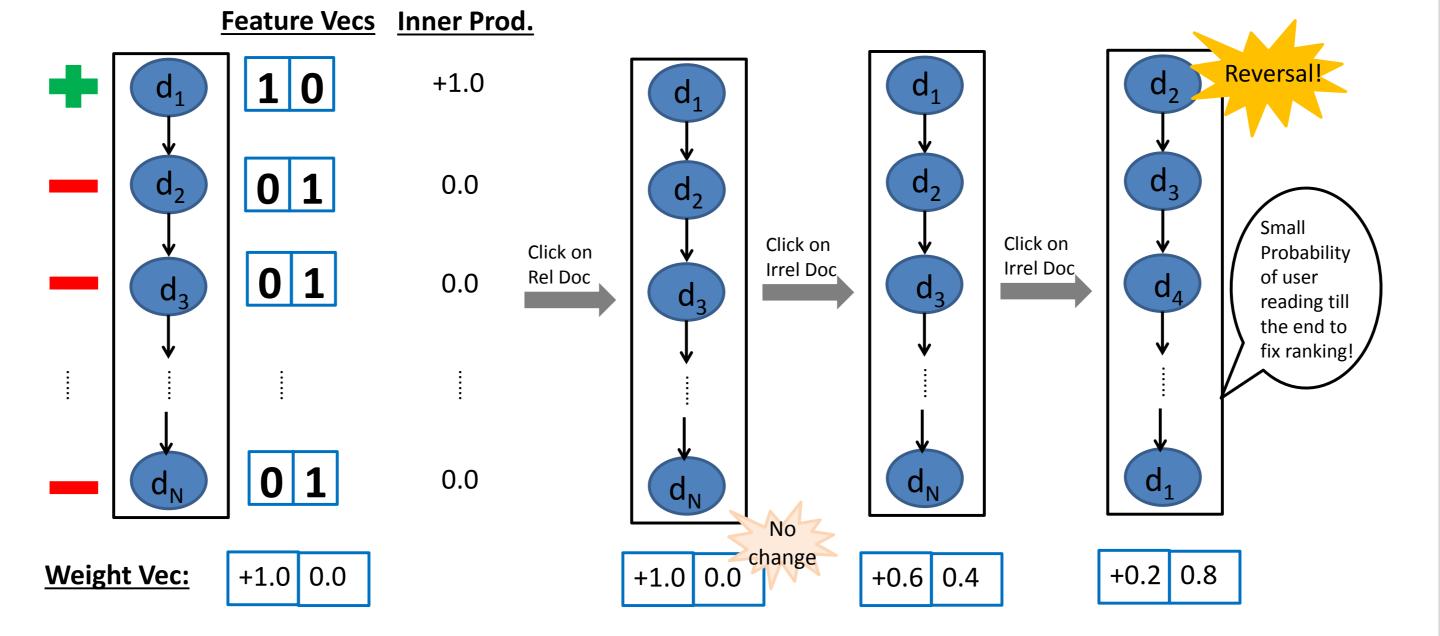
Perturbed Preference Perceptron

- 1. Initialize weight vector $\mathbf{w_1} \leftarrow \mathbf{0}$.
- 2. Given context x_t predict $\hat{\mathbf{y}}_{t} \leftarrow \operatorname{argmax}_{\mathbf{v}} \mathbf{w}_{t}^{\top} \phi(\mathbf{x}_{t}, \mathbf{y}).$
- 3. Present y_t : Obtained by randomly swapping adjacent pairs in $\hat{\mathbf{y}}_{t}$ with probability \mathbf{p}_{t} .
- 4. Observe clicks. If clicked document is lower element of pair, move it up by one to get \bar{y}_t .
- 5. $\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + \phi(\mathbf{x}_t, \bar{\mathbf{y}}_t) \phi(\mathbf{x}_t, \mathbf{y}_t)$.
- 6. Repeat from step 2.

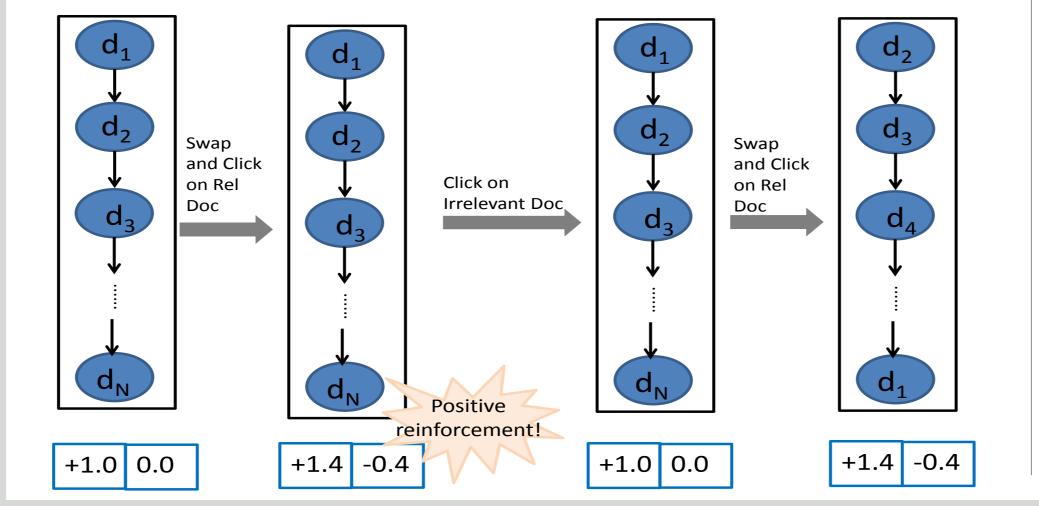


Illustrative Example

Preference Perceptron (PrefP)



Perturbed Preference Perceptron (3PR)



For n=10 and 20%user error rate, average rank of the relevant document for 3PR (with p = 0.5) is 2.1 (compared to the 9.4 for PrefP).

Theoretical Analysis

α -Informative Feedback:

We characterize the utility of the feedback received \bar{y}_t as:

$$E_{\bar{y}}[U(x,\bar{y})] \ge U(x,y) \\
+ \alpha(U(x,y^*) - U(x,y)) - \xi$$

- \triangleright where \mathbf{y}^* is the optimal and \mathbf{y} is the presented object.
- ► Note that this is just a characterization (not an assumption).
- Used to prove regret bounds.

Regret:

We define the regret after **T** iterations as:

$$\frac{1}{T} \sum_{t=1}^{T} (U(x_t, y_t^*) - E[U(x_t, y_t)]).$$

Fixed Probability 3PR

The regret of **3PR** with *fixed* swap probability **p** (i.e. $\forall t : p_t = p)$ is:

$$\leq \frac{\sum_{\mathsf{t}=1}^{\mathsf{T}} \xi_{\mathsf{t}}}{\alpha \mathsf{T}} + \frac{\mathsf{p}(1 - \frac{\gamma_2}{\gamma_1}) \mathsf{R} || \mathsf{w}_* ||}{\alpha} \\ + \frac{\sqrt{2(4 - \mathsf{p}^2(1 - \frac{\gamma_2}{\gamma_1})^2) \mathsf{R} || \mathsf{w}_* ||}}{\alpha \sqrt{\mathsf{T}}}.$$

Dynamic 3PR

For any $\Delta > 0$, dynamically setting the swap prob p_t of 3PRhas regret:

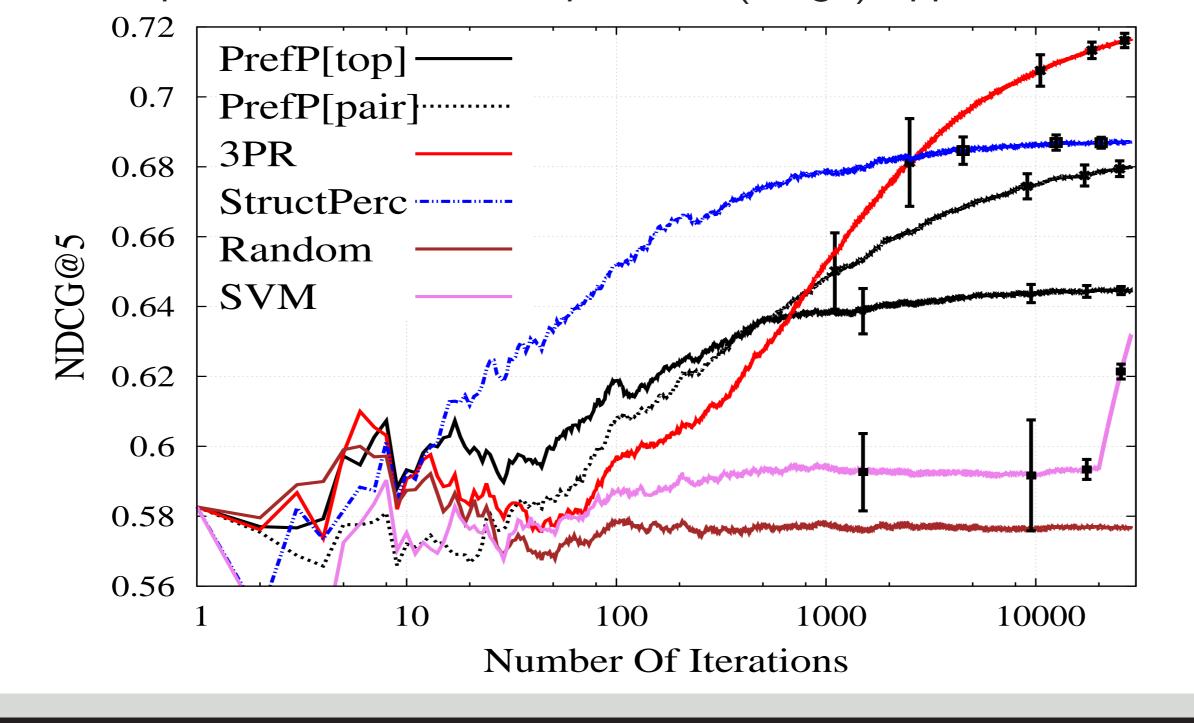
$$\leq \frac{1}{\alpha \mathsf{T}} \sum_{t=1}^{\mathsf{T}} \xi_t + \frac{\|\mathsf{w}_*\|}{\alpha \sqrt{\mathsf{T}}} \times \sqrt{4\mathsf{R}^2 + 2\Delta + 2\mathsf{R}} \sqrt{\frac{4\mathsf{R}^2 + 2\Delta}{\mathsf{T}}}.$$

Experimental Results

- Performed offline experiments on a search dataset (Yahoo! LTR) and two news recommendation datasets: RCV1 and News.
- Simulated user behavior with and without noise.
- ► NDCG@5 was the utility for all three datasets.

Comparison with other methods:

- ► PrefP[top]: Preference Perceptron with move-to-top feedback.
- ▶ PrefP[pair]: PrefP with pairwise feedback *i.e.*, 3PR with $\mathbf{p_t} = \mathbf{0}$.
- ► SVM: Ranking SVM with move-to-top feedback.
- Perceptron which receives optimal is (rough) upper bound.



► Small loss in performance due to perturbation, but large gain overall (as seen from PrefP[pair] comparison).

> Websearch RCV1 News Presented y .717 \pm .002 .286 \pm .028 .386 \pm .035 Predicted $\hat{\mathbf{y}}$ | .723 \pm .002 | .291 \pm .028 | .397 \pm .035

Dynamically setting the swap probability does best:

