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Coactive Learning

Coactive Learning: [Shivaswamy and Joachims, 2012]

I Given context x, predict object y to optimize utility U(x, y).
I Models the interaction between user(s) and learning system.

SYSTEM
(e.g. Search Engine)

USER

Context
(e.g. Query)

Takes Actions (e.g. Present Ranking)

Provides Feedback
(e.g. Receive Improved Ranking: 

From User Clicks)

Example: Using implicit feedback for ranking:

Click!

Click!

Presented Ranking (y) Feedback Ranking (y̅)≤α

Instability of the Preference Perceptron

Linear Utility: U(x, y) = w>∗ φ(x, y)

Preference Perceptron Algorithm:
(Proposed in [Shivaswamy and Joachims, 2012])

1. Initialize weight vector w1 ← 0.

2. Given context xt present
yt ← argmaxyw>t φ(xt, y).

3. Move clicked documents to top to get
feedback ranking ȳt.

4. wt+1←wt+φ(xt, ȳt)−φ(xt, yt).

5. Repeat from step 2.

User Study:
I Experimented using live full-text search

engine at arxiv.org.
I Goal: Learning a ranking function from

implicit feedback i.e., user clicks.
I Interleaved evaluation against hand-tuned

baseline ranker.
I Win ratio of 1 indicates being no better

than the baseline. Higher win ratio is better.
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User Study Results

Preference Perceptron

Perturbed Preference Perceptron

Preference Perceptron is unstable:
The rankings learned by PrefP never stabilize:
Even after thousands of updates, the top 10
documents of the same query before and after 100
update steps only overlap by 4 documents.
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3PR

PrefP[top]

Perturbed Preference Perceptron

1. Initialize weight vector w1 ← 0.

2. Given context xt predict
ŷt ← argmaxyw>t φ(xt, y).

3. Present yt: Obtained by randomly swapping
adjacent pairs in ŷt with probability pt.

4. Observe clicks. If clicked document is lower
element of pair, move it up by one to get ȳt.

5. wt+1←wt+φ(xt, ȳt)−φ(xt, yt).

6. Repeat from step 2.

Presented Ranking (y) Predicted Ranking (ŷ) 

PERTURB 

Click! 
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Presented Ranking (y) Feedback Ranking (y̅) 
 

≤α 

Illustrative Example

Preference Perceptron (PrefP)
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Reversal! 

Small  
Probability 
of user 
reading till 
the end to 
fix ranking! 
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Perturbed Preference Perceptron (3PR)
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Positive 
reinforcement!  

For n = 10 and 20%
user error rate,
average rank of the
relevant document for
3PR (with p = 0.5)
is 2.1 (compared to
the 9.4 for PrefP).

Theoretical Analysis

α-Informative
Feedback:
We characterize the utility of
the feedback received ȳt as:

Eȳ[U(x, ȳ)] ≥ U(x, y)

+ α(U(x, y∗)− U(x, y))− ξ

I where y∗ is the optimal and y
is the presented object.

I Note that this is just a
characterization (not an
assumption).

I Used to prove regret bounds.

Regret:
We define the regret after T
iterations as:

1

T

T∑
t=1

(
U(xt, y∗t )−E[U(xt, yt)]

)
.

Fixed Probability 3PR

The regret of 3PR with fixed
swap probability p (i.e.
∀t : pt = p) is:

≤
∑T

t=1 ξt

αT
+

p(1− γ2

γ1
)R‖w∗‖
α

+

√
2(4− p2(1− γ2
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)2)R‖w∗‖

α
√

T
.

Dynamic 3PR

For any ∆≥0, dynamically
setting the swap prob pt of 3PR
has regret:

≤
1

αT

T∑
t=1

ξt +
‖w∗‖
α
√

T
×√√√√

4R2 + 2∆+ 2R

√
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T
.

Experimental Results

I Performed offline experiments on a search dataset (Yahoo! LTR)
and two news recommendation datasets: RCV1 and News.

I Simulated user behavior with and without noise.
I NDCG@5 was the utility for all three datasets.

Comparison with other methods:
I PrefP[top]: Preference Perceptron with move-to-top feedback.
I PrefP[pair]: PrefP with pairwise feedback i.e., 3PR with pt = 0.
I SVM: Ranking SVM with move-to-top feedback.
I Perceptron which receives optimal is (rough) upper bound.
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I Small loss in performance due to perturbation, but large
gain overall (as seen from PrefP[pair] comparison).

Websearch RCV1 News
Presented y .717 ± .002 .286 ± .028 .386 ± .035
Predicted ŷ .723 ± .002 .291 ± .028 .397 ± .035

I Dynamically setting the swap probability does best:
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