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Evaluation at Scale: Peer Grading

 Conventional Evaluation:

* Medium-scale classes (20-200 students) : TAs perform grading.
* Scaling to MOOCs (10000+ students)??

« MCQs & Auto-graded questions: Not a good test of
understanding.
« Limits kinds of courses offered.

 PEER GRADING: Students grade each other.

* Overcomes scaling limitation of TA grading:

* Number of “graders” scales with number of
students!
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. S_tudlenlts are not trained graders: Need to make feedback process
simple!

* Ordinal feedback easier to provide and more reliable than
cardinal feedback:

* Project Xis better than Project Y vs. Project Xis a B+.

* Ordinal Peer Grading: Graders provide ordering of assignments
* Need to infer overall ordering and grader reliabilities.




Mallows Ordinal Peer Grading
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» # of pairs ordered differently between the two rankings.

e Greedy algorithm to find MLE (Maximum-Likelihood estimator).

* Easy to extend: Grader Reliabilities, other aggregation models
(Bradley-Terry ..)

* Viable alternate to conventional TA evaluation [kop14]
* As good (if not better) than cardinal peer grading.



Instructors Want More Details!

ASSIGNMENT #1:- MEAN RANK:2.65, MEDIAN: 2, ENTROPY: 2.52
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ASSIGNMENT #2:- MEAN RANK:7.72, MEDIAN: 7, ENTROPY: 3.70
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ASSIGNMENT #3:- MEAN RANK:16.23, MEDIAN: 16, ENTROPY: 4.5/
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ASSIGNMENT #4:- MEAN RANK:36.02, MEDIAN 36, ENTROPY: 3.59

* Need finer-grained
details to fully trust
algorithm.

* Uncertainty
information

* Helps identify most
confusing assignments.

* Allows instructors to
understand grading
output.



Solution: Bayesian Mallows Peer Grading

e Sample orderings using MCMC (Metropolis-Hastings)
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Experiments

* Meaningful posteriors at cost of minimal grading
error
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