Stable Coactive Learning via Perturbation

Karthik Raman ¹ Thorsten Joachims ¹ Pannaga Shivaswamy ²
Tobias Schnabel ³

¹Cornell University { karthik,tj} @cs.cornell.edu

²AT&T Research pannaga@research.att.com

³Stuttgart University tbs49@cornell.edu

June 19, 2013

Learning model

Repeat forever:

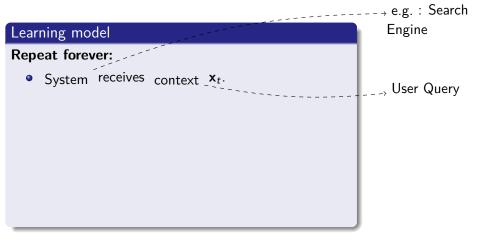
• System receives context \mathbf{x}_t .

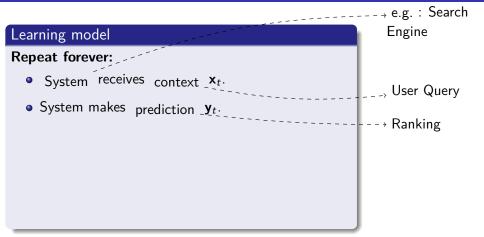
→ e.g. : Search Engine

Learning model

Repeat forever:

• System receives context \mathbf{x}_t .





Learning model

→ e.g. : Search Engine

Repeat forever:

- System receives context \mathbf{x}_t .
- System makes prediction y_{t}
- $\bullet \ \mathsf{Regret} = \mathsf{Regret} + \ \mathit{U}(\mathbf{x}_t, \mathbf{y}_t^*) \mathit{U}(\mathbf{x}_t, \mathbf{y}_t)$

__ User Query

 $--\rightarrow$ Ranking

---> User utility

Learning model

→ e.g. : Search Engine

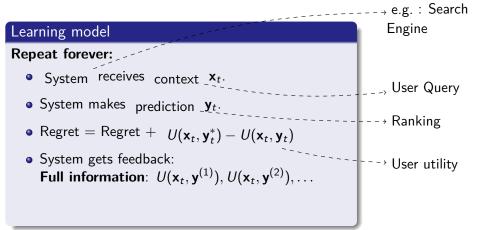
Repeat forever:

- System receives context \mathbf{x}_t .
- System makes prediction $\underline{\mathbf{y}}_{t}$.
- $\bullet \ \mathsf{Regret} = \mathsf{Regret} + \ \mathit{U}(\mathbf{x}_t, \mathbf{y}_t^*) \mathit{U}(\mathbf{x}_t, \mathbf{y}_t)$
- System gets feedback:
 - Full information: $U(\mathbf{x}_t, \mathbf{y}^{(1)}), U(\mathbf{x}_t, \mathbf{y}^{(2)}), \dots$

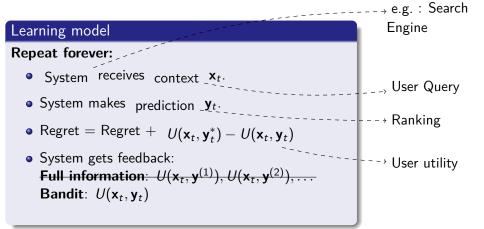
___ User Query

--→ Ranking

⁻--> User utility



Unrealistic for users to provide (e.g., implicit feedback).



Unrealistic for users to provide (e.g., implicit feedback).

Learning model

→ e.g. : Search Engine

Repeat forever:

- System receives context \mathbf{x}_t .
- System makes prediction y_t
- $\bullet \ \mathsf{Regret} = \mathsf{Regret} + \ \mathit{U}(\mathbf{x}_t, \mathbf{y}_t^*) \mathit{U}(\mathbf{x}_t, \mathbf{y}_t)$
- System gets feedback: Full information: $U(\mathbf{x}_t, \mathbf{y}^{(1)}), U(\mathbf{x}_t, \mathbf{v}^{(2)}), \dots$
 - Pandit ///www.
 - Bandit: $U(\mathbf{x}_t, \mathbf{y}_t)$
 - Coactive: $U(\mathbf{x}_t, \overline{\mathbf{y}}_t) \geq_{\alpha} U(\mathbf{x}_t, \mathbf{y}_t)$

___ User Query

--→ Ranking

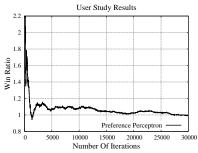
⁻ - -> User utility

→ e.g.: Search Engine Learning model Repeat forever: • System receives context \mathbf{x}_t . __⇒ User Query System makes prediction <u>y</u>t. ---→ Ranking • Regret = Regret + $U(\mathbf{x}_t, \mathbf{y}_t^*) - U(\mathbf{x}_t, \mathbf{y}_t)$ System gets feedback: ---- User utility Full information: $U(\mathbf{x}_t, \mathbf{y}^{(1)}), U(\mathbf{x}_t, \mathbf{y}^{(2)}), \dots$ Bandit: $U(\mathbf{x}_t, \mathbf{y}_t)$ Coactive: $U(\mathbf{x}_t, \overline{\mathbf{y}}_t) \geq_{\alpha} U(\mathbf{x}_t, \mathbf{y}_t)$

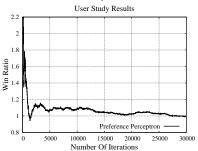
Perceptron has regret $O(\frac{1}{\alpha\sqrt{T}})$ for linear utility $(U(\mathbf{x},\mathbf{y}) = \mathbf{w}_*^{\top}\phi(\mathbf{x},\mathbf{y}))$.

- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.

- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).



- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).

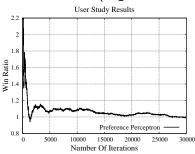


Preference Perceptron Algo:

- **1** Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- ② Given context \mathbf{x}_t present $\mathbf{y}_t \leftarrow \operatorname{argmax}_{\mathbf{y}} \mathbf{w}_t^{\top} \phi(\mathbf{x}_t, \mathbf{y})$.

Presented Ranking (v)

- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).

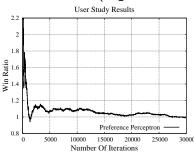


Preference Perceptron Algo:

- 1 Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- Given context x_t present $\mathbf{y}_t \leftarrow \operatorname{argmax}_{\mathbf{v}} \mathbf{w}_t^{\top} \phi(\mathbf{x}_t, \mathbf{y}).$
- Observe clicks and construct feedback ranking $\bar{\mathbf{y}}_t$.

On live search engine.

- Goal: Learn ranking function from user clicks
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).



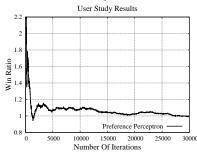
Perceptron performs poorly!

Presented Ranking (v)

Preference Perceptron Algo:

- **1** Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- ② Given context \mathbf{x}_t present $\mathbf{y}_t \leftarrow \operatorname{argmax}_{\mathbf{y}} \mathbf{w}_t^{\top} \phi(\mathbf{x}_t, \mathbf{y})$.
- **3** Observe clicks and construct feedback ranking $\bar{\mathbf{y}}_t$.

- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).



Preference Perceptron Algo:

- **1** Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- $\textbf{②} \ \, \mathsf{Given} \ \, \mathsf{context} \ \, \mathbf{x}_t \ \, \mathsf{present} \\ \mathbf{y}_t \leftarrow \mathsf{argmax}_{\mathbf{y}} \mathbf{w}_t^\top \phi(\mathbf{x}_t, \mathbf{y}).$
- **3** Observe clicks and construct feedback ranking $\overline{\mathbf{y}}_t$.
- Repeat from step 2.
- Presented Ranking (y)

 February south your disease or ground and present the p

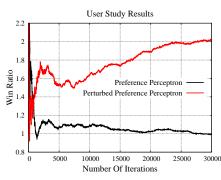
- On live search engine.
- Goal: Learn ranking function from user clicks.
- Interleaved comparison against hand-tuned baseline.
- Win ratio of 1 means no better than baseline (Higher = Better).



Perturbed Preference Perceptron

- **1** Initialize weight vector $\mathbf{w}_1 \leftarrow \mathbf{0}$.
- ② Given context \mathbf{x}_t compute $\hat{\mathbf{y}}_t \leftarrow \operatorname{argmax}_{\mathbf{y}} \mathbf{w}_t^{\top} \phi(\mathbf{x}_t, \mathbf{y})$.
- Observe clicks and construct feedback ranking $\bar{\mathbf{y}}_t$.
- Repeat from step 2.

Predicted Ranking (ŷ)



Presented Ranking (y)

Please come to our poster

I will tell you:

- Why the preference perceptron performs poorly?
- Why does perturbation fix the problem?
- What are the regret bounds for the algorithm?
- How do we do this more generally for non-ranking problems?