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Coactive Learning
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© Regret = Regret + (J(x,,y*) — U(xs,y:)
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1
Perceptron has regret O(—=) for linear utility (U(x,y)=w,$(x,y)).
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User Study: Learning Rankings using Perceptron
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@ On live search engine.

@ Goal: Learn ranking function
from user clicks.

@ Interleaved comparison against
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y: Learning Rankin

Preference Perceptron Algo:
@ Initialize weight vector wy < 0.
@ Given context x; present
y: < argmax,w, ¢(x¢,y).
© Observe clicks and construct
feedback ranking y:.
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Perturbed Preference Perceptron

@ Initialize weight vector wy < 0.

User Study Results
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Please come to our poster

I will tell you:

o Why the preference perceptron performs poorly?
o Why does perturbation fix the problem?
o What are the regret bounds for the algorithm?

o How do we do this more generally for non-ranking
problems?
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