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Socially optimal solutions in Information systems

Problem: Common content for users with different tastes.
. Hedge against uncertainty in user’s preferences.

. Ex: News Sites, Product & Media Recommendation, Frontpages.
Diverse User population: N user types.
User type i has probability pi .
Personal utility for object (e.g. ranking) y: Ui (·, y).
Social utility is the expected utility (over all users):

U(·, y) = E[Ui (·, y)] =
N∑

i=1
piUi (·, y)

Goal: Find Socially Optimal Solution y∗ = argmaxyU(·, y).

Challenge: Learn from egoistic, weak, noisy user feedback.
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Challenge of egoistic feedback

Challenge: Learn from egoistic, weak, noisy user feedback.

User i ’s feedback reflects them behaving as per personal utility Ui .
Not social utility U.
. As in the case of prior work [RSJ12] for the intrinsic diversity problem.
Need to infer social utility from such conflicting, individual feedback.

User Interest Pref Ranking
Company

a1, a2, a3, . . .

ML

b1, b2, b3, . . .

Gift Cards

c1, c2, c3, . . .

Social Opt

a1, b1, c1, . . .

Even if social optimal is
presented, users may
indicate preferences for
other rankings.

  















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Related work

[CG98, ZCL03, CK06]: Address Extrinsic Diversity.
� Do not use learning.

[YJ08, SMO10, RJS11]: Use learning for diversity.
� Require relevance labels for all user-document pairs.

[RKJ08]: Uses online learning: Array of (decoupled) MA Bandits.
� Learns very slowly. Does not generalize across queries.

[SRG13]: Couples the arms together.
� Does not generalize across queries. Hard-coded notion of diversity.

[YG12]: Generalizes across queries.
� Requires cardinal utilities.

[RSJ12]: Learns from user preferences.
� Requires all users directly optimize social utility U.
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Preferential Feedback

What feedback do we obtain
from users?

. Implicit feedback (e.g. clicks)
is timely and easily available.

User feedback does not reflect
cardinal utilities.

. Shown in user studies
[JGP+07].

KEY: Treat user feedback as
preferences.

How do we learn from such
preferential feedback?

  





Presented
(y)
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Learning from Preferences: Coactive Learning [SJ12, RJSS13]

Learning model
Repeat forever:

System receives context xt .

System makes prediction yt .

Regret = Regret + U(xt , y∗t )− U(xt , yt)

System gets (preference) feedback:
Ui (xt , ȳt) ≥α,δ Ui (xt , yt)

e.g. : Search
Engine

User Query

Ranking

Social utility

Feedback received in terms of personal utilities Ui .
But regret is in terms of social utility U.

How does we model utilities?
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Ui (xt , ȳt) ≥α,δ Ui (xt , yt)

e.g. : Search
Engine

User Query

Ranking

Social utility

Feedback received in terms of personal utilities Ui .
But regret is in terms of social utility U.

How does we model utilities?

Karthik Raman (Cornell University) Learning Socially Optimal Systems Sept 23, 2013 7 / 20



Modeling User Utility: Submodularity

Assume personal utilities are submodular.
Diminishing returns: Marginal benefit of additional document on
ML diminishes if 10 docs already shown vs only 1 previous doc.

  

D1

D2

D3

D4
Computing ranking ≈ Submodular
maximization
Use simple, efficient greedy algorithm.

Approximation guarantee of 1
2

(under partition matroid constraint).

How does this lead to diversity?
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Diversity via Submodularity: An example

Posn Doc machine learning metal silver
1

d3 2 5 0 0

2

d5 0 0 3 5

3

d2 5 2 0 0

4

d6 0 0 6 2

MAX of Col

Doc Marginal Benefit
d1
d2
d3
d4
d5
d6
d7
d8

Doc Words
d1 ma:3 le:3
d2 ma:5 le:2
d3 ma:2 le:5
d4 ma:2 le:3
d5 me:3 si:5
d6 me:6 si:2
d7 me:4 si:2 ma:1
d8 me:3 si:1 ma:1

Word Weight
machine 5
learning 7
metal 4
silver 6

Karthik Raman (Cornell University) Learning Socially Optimal Systems Sept 23, 2013 9 / 20



Diversity via Submodularity: An example

Posn Doc machine learning metal silver
1

d3 2 5 0 0

2

d5 0 0 3 5

3

d2 5 2 0 0

4

d6 0 0 6 2

MAX of Col

Doc Marginal Benefit
d1 3*5 + 3*7 36
d2
d3
d4
d5
d6
d7
d8

Doc Words
d1 ma:3 le:3
d2 ma:5 le:2
d3 ma:2 le:5
d4 ma:2 le:3
d5 me:3 si:5
d6 me:6 si:2
d7 me:4 si:2 ma:1
d8 me:3 si:1 ma:1

Word Weight
machine 5
learning 7
metal 4
silver 6

Karthik Raman (Cornell University) Learning Socially Optimal Systems Sept 23, 2013 9 / 20



Diversity via Submodularity: An example

Posn Doc machine learning metal silver
1

d3 2 5 0 0

2

d5 0 0 3 5

3

d2 5 2 0 0

4

d6 0 0 6 2

MAX of Col

Doc Marginal Benefit
d1 3*5 + 3*7 36
d2 5*5 + 2*7 39
d3 2*5 + 5*7 45
d4 2*5 + 3*7 31
d5 3*4 + 5*6 42
d6 6*4 + 2*6 36
d7 1*5 + 4*4 + 2*6 33
d8 1*5 + 3*4 + 1*6 23

Doc Words
d1 ma:3 le:3
d2 ma:5 le:2
d3 ma:2 le:5
d4 ma:2 le:3
d5 me:3 si:5
d6 me:6 si:2
d7 me:4 si:2 ma:1
d8 me:3 si:1 ma:1

Word Weight
machine 5
learning 7
metal 4
silver 6

Karthik Raman (Cornell University) Learning Socially Optimal Systems Sept 23, 2013 9 / 20



Diversity via Submodularity: An example

Posn Doc machine learning metal silver
1 d3 2 5 0 0
2

d5 0 0 3 5

3

d2 5 2 0 0

4

d6 0 0 6 2

MAX of Col 2 5 0 0

Doc Marginal Benefit
d1 3*5 + 3*7 36
d2 5*5 + 2*7 39
d3 2*5 + 5*7 45
d4 2*5 + 3*7 31
d5 3*4 + 5*6 42
d6 6*4 + 2*6 36
d7 1*5 + 4*4 + 2*6 33
d8 1*5 + 3*4 + 1*6 23

Doc Words
d1 ma:3 le:3
d2 ma:5 le:2
d3 ma:2 le:5
d4 ma:2 le:3
d5 me:3 si:5
d6 me:6 si:2
d7 me:4 si:2 ma:1
d8 me:3 si:1 ma:1

Word Weight
machine 5
learning 7
metal 4
silver 6

Karthik Raman (Cornell University) Learning Socially Optimal Systems Sept 23, 2013 9 / 20



Diversity via Submodularity: An example

Posn Doc machine learning metal silver
1 d3 2 5 0 0
2

d5 0 0 3 5

3

d2 5 2 0 0

4

d6 0 0 6 2

MAX of Col 2 5 0 0

Doc Marginal Benefit
d1 (3-2)*5 5
d2 (5-2)*5 15
d3 - -
d4 0 0
d5 3*4 + 5*6 42
d6 6*4 + 2*6 36
d7 4*4 + 2*6 28
d8 3*4 + 1*6 18

Doc Words
d1 ma:3 le:3
d2 ma:5 le:2
d3 ma:2 le:5
d4 ma:2 le:3
d5 me:3 si:5
d6 me:6 si:2
d7 me:4 si:2 ma:1
d8 me:3 si:1 ma:1

Word Weight
machine 5
learning 7
metal 4
silver 6

Karthik Raman (Cornell University) Learning Socially Optimal Systems Sept 23, 2013 9 / 20



Diversity via Submodularity: An example

Posn Doc machine learning metal silver
1 d3 2 5 0 0
2 d5 0 0 3 5
3

d2 5 2 0 0

4

d6 0 0 6 2

MAX of Col 2 5 3 5

Doc Marginal Benefit
d1 (3-2)*5 5
d2 (5-2)*5 15
d3 - -
d4 0 0
d5 3*4 + 5*6 42
d6 6*4 + 2*6 36
d7 4*4 + 2*6 28
d8 3*4 + 1*6 18

Doc Words
d1 ma:3 le:3
d2 ma:5 le:2
d3 ma:2 le:5
d4 ma:2 le:3
d5 me:3 si:5
d6 me:6 si:2
d7 me:4 si:2 ma:1
d8 me:3 si:1 ma:1

Word Weight
machine 5
learning 7
metal 4
silver 6

Karthik Raman (Cornell University) Learning Socially Optimal Systems Sept 23, 2013 9 / 20



Diversity via Submodularity: An example

Posn Doc machine learning metal silver
1 d3 2 5 0 0
2 d5 0 0 3 5
3 d2 5 2 0 0
4

d6 0 0 6 2

MAX of Col 5 5 3 5

Doc Marginal Benefit
d1 (3-2)*5 5
d2 (5-2)*5 15
d3 - -
d4 0 0
d5 - -
d6 (6-3)*4 12
d7 (4-3)*4 4
d8 0 0

Doc Words
d1 ma:3 le:3
d2 ma:5 le:2
d3 ma:2 le:5
d4 ma:2 le:3
d5 me:3 si:5
d6 me:6 si:2
d7 me:4 si:2 ma:1
d8 me:3 si:1 ma:1

Word Weight
machine 5
learning 7
metal 4
silver 6

Karthik Raman (Cornell University) Learning Socially Optimal Systems Sept 23, 2013 9 / 20



Diversity via Submodularity: An example

Posn Doc machine learning metal silver
1 d3 2 5 0 0
2 d5 0 0 3 5
3 d2 5 2 0 0
4 d6 0 0 6 2

MAX of Col 5 5 6 5

Doc Marginal Benefit
d1 0 0
d2 - -
d3 - -
d4 0 0
d5 - -
d6 (6-3)*4 12
d7 0 0
d8 0 0

Doc Words
d1 ma:3 le:3
d2 ma:5 le:2
d3 ma:2 le:5
d4 ma:2 le:3
d5 me:3 si:5
d6 me:6 si:2
d7 me:4 si:2 ma:1
d8 me:3 si:1 ma:1

Word Weight
machine 5
learning 7
metal 4
silver 6
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More General Submodular Utility

Can we use other submodular functions?

X Yes.

Given ranking/set y = (di1 , . . . , din ), aggregate features as:

φj
F (x, y) = F (γ1φ

j(x, di1), γ2φ
j(x, di2), ... . . . , γnφ

j(x, din ))

. φj(x, di ) is j th feature of di .

. F is a submodular function (modeling decision).

. γ1≥γ2≥ ... ≥ γn ≥ 0 are position-discount factors

Utility modeled as linear in aggregate features: U(x, y) = wT
∗ φF (x, y)

. Submodular aggregation leads to diversity.
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Social Perceptron for Ranking

1 Initialize weight vector w1 ← 0.
2 Given context xt compute yt ← argmaxyw>t φ(xt , y).

. Using greedy algorithm.

3 Observe user clicks D.
4 Construct preference feedback ȳt ← PrefFeedback(yt ,D).

. Pairwise feedback.

5 w̄t+1 ← wt + φ(xt , ȳt)− φ(xt , yt)

. Perceptron update.

6 Clip: wj
t+1 ← max(w̄j

t+1, 0)

. To ensure submodularity.

7 Repeat from step 2.
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Regret Bound

Definition
User feedback is expected αi , δi -informative if ξ̄t ∈ < is chosen s.t. :

Eȳt [Ui (xt , ȳt)] ≥ (1 + δi )Ui (xt , yt) + αi
(
Ui (xt , y∗,it )− Ui (xt , yt)

)
− ξ̄t .

Theorem
For any w∗ ∈ Rm and ‖φ(x, y)‖`2 ≤ R the average regret of the SoPer-R
algorithm can be upper bounded as:

REGT ≤
1
ηT

T−1∑
t=0

Ei [pi ξ̄t ] +
R‖w∗‖

2η +

√
15R‖w∗‖
η
√

2T
.

with: δi ≥
(

ΓF ·
1− pi

pi

)
, η = min

i
piαi .
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Eȳt [Ui (xt , ȳt)] ≥ (1 + δi )Ui (xt , yt) + αi
(
Ui (xt , y∗,it )− Ui (xt , yt)

)
− ξ̄t .

Theorem
For any w∗ ∈ Rm and ‖φ(x, y)‖`2 ≤ R the average regret of the SoPer-R
algorithm can be upper bounded as:

REGT ≤
1
ηT

T−1∑
t=0

Ei [pi ξ̄t ] +
R‖w∗‖

2η +

√
15R‖w∗‖
η
√

2T
.

with: δi ≥
(

ΓF ·
1− pi

pi

)
, η = min

i
piαi .

Karthik Raman (Cornell University) Learning Socially Optimal Systems Sept 23, 2013 12 / 20



Regret Bound: Analysis

Theorem
Average regret of the SoPer-R algorithm can be upper bounded as:

REGT ≤
1
ηT

T−1∑
t=0

Ei [pi ξ̄t ] +
R‖w∗‖

2η +

√
15R‖w∗‖
η
√

2T
.

with: δi ≥
(

ΓF ·
1− pi

pi

)
, η = min

i
piαi .

Does not depend on number of dimensions.
. Only on feature ball radius R.

Decays gracefully with noisy feedback (the αi s and η).
Need not converge to optimal.
. Partly due to NP-hardness of submodular maximization.
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Social Perceptron for Sets

SoPer-S Algorithm for predicting diverse sets.
See paper for more details.
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Experimental Setup

Used standard TREC 6-8 Interactive search-diversification dataset:
. Each query has 7-56 user types.

Setup as in previous work [BJYB11, RJS11].

Simulated user behavior:
. Users scan rankings top to bottom.
. Click on first document relevant to them (with small error chance).

Utility function: Normalized DCG-coverage function (i.e.
F (x1, . . . , xn) = max

i
γixi ) upto rank 5.
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Learning to Diversify: Single Query
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Improved learning for single-query diversification.
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Learning to Diversify: Cross-Query
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StructPerc is (rough) skyline: Uses optimal for training.
First method to learn cross-query diversity from implicit feedback.
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Robustness

User Fncn SoPer-R Function Rand
MAX SQRT

MAX .630 ±.007 .620 ±.006 .557 ±.006
SQRT .656 ±.007 .654 ±.007 .610 ±.007

Robust to difference between submodular functions used in User’s
utility and Algorithm’s utility.

Random No Noise Noise
.557 ±.006 .630 ±.007 .631 ±.007

Works even if user feedback is noisy
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Conclusions

Proposed online-learning algorithms for aggregating conflicting user
preferences of a diverse population.

. Utilizes the coactive learning model.

Modeled user utilities as submodular.

Provided regret bounds for algorithms.

Works well empirically and is robust.
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Experimental Setup Details

TREC 6-8 Interactive diversification dataset:
. Contains 17 queries. Each has 7-56 user types. Binary relevance labels.
. Similar results observed for WEB diversification dataset.

Setup details:
. Re-ranking documents relevant to ≥ 1 user.
. Probability of user type ∝ # of documents relevant to user.

DCG-position discounting: γi =
1

log2 (1 + i) .
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Regret Bound

Definition
User feedback is expected αi , δi -informative for user with personal utility
function Ui , if ξ̄t ∈ < is chosen s.t. for some given αi ∈ [0, 1] and δi > 0:

Eȳt [Ui (xt , ȳt)] ≥ (1 + δi )Ui (xt , yt) + αi
(
Ui (xt , y∗,it )− Ui (xt , yt)

)
− ξ̄t .

Theorem
For any w∗ ∈ Rm and ‖φ(x, y)‖`2 ≤ R the average regret of the SoPer-R
algorithm can be upper bounded as:

REGT ≤
1
ηT

T−1∑
t=0

Ei [pi ξ̄t ] +
βR‖w∗‖

η
+

√
2
√

4− β2R‖w∗‖
η
√

T
.

with: δi ≥
(

ΓF ·
1− pi

pi

)
, η = min

i
piαi and β = (1− βgr ) =

1
2 .
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