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1. Introduction
This supplementary material is organized as follows. First

we show the data collection interface and discuss additional
statistics that may be of interest (section 2). Second, we
discuss some additional training details (section 3). Third,
we show statistics for our test set (section 4). Fourth, we
discuss in detail the 2D classification baseline that we used
in our evaluation (section 5). Fifth, we visualize embedding
plots via t-SNE for our learned descriptor space (section 6).
Sixth, we show confusion matrices for both Classification
and Multitask networks (section 7), as well as for 3-view
variants (section 8), and for network trained with only con-
trastive loss (section 9). Seventh, we show a sample of our
dataset as well as a visual sample of our material prediction
results (section 10).

2. Data collection
Our data collection interface is shown in Fig. 1. Four

different rendered views covering the front, sides and back of
the textured 3D shape were shown. At the foot of the page, a
single shape component was highlighted while the rest of the
3D shape appeared faded. Each query highlighted a different
component. Workers were asked to select a label from a
set of materials for the highlighted component. In total, we
collected 15923 labeled components in 3080 shapes. On
average 76% of the surface area per mesh was labeled. For
training, we kept only shapes with > 50% of components
labeled (2134 shapes).

3. Training Points
To train the network, we sample 150 evenly-distributed

surface points from each of our 3D training shapes. Points
lacking a material label, or externally invisible, are discarded.
Point visibility is determined via ray-mesh intersection tests.
The remaining points are subsampled to 75 per shape. This
subsampling is again performed so that selected points are
approximately uniformly distributed along the shape surface.
The choice to sample 75 points per shape is due to mem-
ory limitations (we store the dataset in the main memory to

Figure 1: Our interface for collecting material labels for 3D
shapes.

avoid slow I/O during training). The views corresponding to
these points are preprocessed and saved as single channel,
unsigned integer arrays which are read directly into memory
at training time to prevent I/O bottlenecks. Note that sam-
pling roughly 75 points per shape requires ∼ 60G memory.
Preprocessing to store into memory rather than reading from
disk offered us a 5− 10x speedup in training time.

4. Benchmark Test Set Distributions
In Fig. 2, we show the distribution of labels across com-

ponents in the benchmark shape dataset, as well as the distri-
bution of labels across the points sampled from these shapes
that form our evaluation test set. Notice that although there
are a large number of metal and plastic components, rel-
atively few metal or plastic points are sampled. This is
because many metal or components are small thin structures
(e.g. handles, table legs). Recall that we sample our test
points uniformly across the surface of our shapes and thus
the surface area of a component is proportional to the number
of points sampled from that component.
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Figure 2: (top) Distribution of material labels assigned to compo-
nents in our expert-labeled benchmark test shapes (bottom) Distri-
bution of material labels assigned to the points sampled from the
benchmark test shapes that form our test set.

5. 2D Classification Network Baseline

To evaluate the baseline of using a 2D material classi-
fication network, we use MINC. The network is based on
GoogLeNet. We take their pretrained network and finetune
on their dataset. The classification layer is finetuned to only
classify the five materials we consider in this paper. Fur-
thermore, we choose to finetune with greyscale images. The
reason for this is that our our texture-less 3D renderings do
not offer any color cues; therefore, we train the 2D network
under similar conditions. This network is trained until val-
idation losses converge with batchsize 24 with stochastic
gradient descent with momentum. The initial learning rate is
set to 0.001 and momentum is set to 0.4. The learning rate
policy is polynomial decay with power 0.5. L2 weight decay
is set to 0.0002. We call this finetuned network MINC-bw.
The confusion matrix for the network on our test 3D ren-
derings is in Fig. 3. The poor performance suggests that it
is non-trivial to adapt 2D photos train a network to learn
material descriptors for 3D shapes.

6. Embedding Visualization

We visualize the learned material-aware descriptor em-
bedding with t-SNE in Fig. 4. In both the Classification and
Multitask variations, we see a tendency of our network to
cluster datapoints.

Figure 3: Confusion matrix for top-1 classification predic-
tions for MINC-bw tested on 3D shapes.

Wood Metal Plastic Fabric Glass

Figure 4: t-SNE embeddings for training points. Left: Classifica-
tion loss, Right: Multitask loss. Points with multiple ground truth
labels are shown with one label randomly selected.

7. Classification vs Multitask Confusion Matri-
ces

We show the confusion matrices for Classification (as
well as Multitask, for reference) in Fig. 5. Note that Clas-
sification predictions are more biased towards wood. As a
result, its glass performance drops after CRF since many
glass points tend to lie on surfaces that resemble wood sur-
faces (e.g. flat table tops, flat cabinet doors) – if many local
predictions are wood rather than glass, it is likely that the
CRF will smooth the predictions to wood.



(a) Classification (b) Classification + CRF

(c) Multitask (d) Multitask + CRF

Figure 5: Confusion matrices for Top-1 classification predictions.

8. Confusion Matrices for 3 view MVCNN
The confusion matrices for 3 view MVCNNs (1 view-

point, 3 distances) are in Fig. 6. For reference, the matrices
for the 9 view MVCNNs (3 viewpoints, 3 distances) are also
shown. Note that confusions are reduced when using 9 views
over 3 views. For both Classification and Multitask, fabric
performance is relatively unaffected by reduced views while
plastic suffers. In Classification 3 views, wood predictions
dominate. In Multitask 3 views, metal predictions dominate
– as a consequence, glass does relatively well (since glass is
typically competing with wood) and plastic does extremely
poorly (since plastic parts can often be shaped like metal and
our training dataset contains a high number of “plastic or
metal“ labels relative to “plastic” labels).

9. Confusion Matrix for Contrastive Loss Only
The MVCNN trained with only contrastive loss achieves

a mean class top 1 accuracy of 59% (in comparison to 65%
with Classification and 66% with Multitask). This variant
often confuses plastic for metal, and performs poorly on
glass relative to the Classification or Multitask variants. The
confusion matrix is shown in Fig. 7.

10. Sample of Dataset and Predictions
Here we show some samples from both our high-quality

expert-annotated benchmark dataset as well as our large
crowdsourced training dataset. Please refer to the legend by

(a) Classification 3 views (b) Classification 9 views

(c) Multitask 3 views (d) Multitask 9 views

Figure 6: Confusion matrices for Top-1 classification predic-
tions.

Figure 7: Confusion matrix for Top-1 classification predic-
tions for network trained with contrastive loss only.

each shape for labels. The colors are consistent within each
figure but may not be across figures.

Figure 8 shows a small sample of our benchmark test
shapes with ground truth labels. Figure 9 shows per-point



predictions for each of the 1024 test point samples on these
benchmark test shapes. Figure 10 shows per-part predic-
tions after the 1024 point predictions are smoothed with our
symmetry-aware CRF. Figure 11 shows a small sample of
our MTurk crowdsourced data with the 75 training point
samples per shape shown.



Figure 8: Small selection of benchmark shapes. Ground truth labels are shown. Please refer to legend for each shape for labels.



Figure 9: MVCNN point-predictions on benchmark shapes. Please refer to legend for each shape for labels.



Figure 10: MVCNN+CRF part-predictions on benchmark shapes. Please refer to legend for each shape for labels. (Note that colors are not
consistent with Figs 8, 9)



Figure 11: Small sample of crowdsourced dataset. 75 training point samples with ground truth labels per shape are shown. Please refer to
legend for each shape for labels.


