
Learning Material-
Aware Local Descriptors 

for 3D Shapes

Hubert Lin1 Melinos Averkiou2 Evangelos Kalogerakis3 Balazs Kovacs4 Siddhant Ranade5

Vladimir G. Kim6 Siddhartha Chaudhuri6,7 Kavita Bala1

1Cornell Univ. 2Univ. of Cyprus 3UMass Amherst 4Zoox 5Univ. of Utah 6Adobe 7IIT Bombay

Fabric

Wood



Outline

1. Goal

2. Motivation

3. Related Work

4. Data Collection

5. Network Architecture and Training Pipeline

6. Post-Processing

7. Results

8. Future Directions



Outline

1. Goal

2. Motivation

3. Related Work

4. Data Collection

5. Network Architecture and Training Pipeline

6. Post-Processing

7. Results

8. Future Directions



Goal: Learn local shape descriptors 
sensitive to physical material
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Motivation

Understanding physical material properties from 3D 
geometry:

• Jointly reason about materials and geometry

• Interactive design tool

• Robotic perception

• …

[Morrison et al 2018]



Motivation

Jointly reason about materials and geometry

What material is typically used for an object 
part like this?

How can we retrieve objects that are 
composed of similar materials?

…

?



Motivation

Design and fabrication

Which material is suitable for fabrication?
Wood
Metal
Glass



Motivation

Design and fabrication

Suggested materials



Motivation

Robotic Perception

Which one is 
better for an 
emergency 
collision?

Which one 
requires more 
gentle handling?
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Related Work

1. Shape databases

2. Deep learning for shape analysis

3. Material understanding for shapes

4. Material understanding for images



Shape Databases

ShapeNet

• Large-scale database with many object classes

• Some shapes are textured; part segmentation

[https://www.shapenet.org]



Shape Databases

Semantically-Enriched 3D Models for Common-sense 
Knowledge 

• Many different annotations, including category-
level priors over material labels

[Savva et al 2015]



Shape Databases

Text2Shape

• Natural language descriptions for 3D shapes

• Joint text / shape embedding

[Chen et al 2018]



Deep Learning for Shape Analysis

Based on…

• Mesh 

• Canonicalized meshes

• 2D renderings

• Point sets

• Dense Voxels

• Voxel octrees

• Spectral alignment

• Surface patch collection

And more…



Deep Learning for Shape Analysis

• Segmentation, classification

[Qi et al 2017]



Deep Learning for Shape Analysis

• Shape completion

[Han et al 2017]



Deep Learning for Shape Analysis

• Geometric descriptors

[Huang et al 2018]



Material Understanding for Shapes

Material Memex

• Automatic material suggestion for parts

• Requires database of with known part properties

[Jain et al 2012]



Material Understanding for Shapes

Unsupervised Texture Transfer from Images to Shapes

• Image-to-shape, shape-to-shape texture transfer

• Aligns user-specified image to shape

[Wang et al 2016]



Material Understanding for Shapes

Magic Decorator: Indoor Material Suggestion

• Automatically suggest textures for indoor 3D scene

• Used color / texture statistics of 2D  images

• Requires scene segmented and labeled

[Chen et al 2015]



Material Understanding for Images

Flickr Material Database

• Surfaces of common materials; manually curated

• Relatively small dataset (100 per category)

[Sharan et al 2014]



Material Understanding for Images

Describable Textures Dataset

• Textures described by attributes (“striped”, …)

• Dataset of representative textures

[Cimpoi et al 2014]



Material Understanding for Images

OpenSurfaces

• Segmented surfaces from consumer photographs 
labelled with material and appearance properties

[Bell et al 2013]



Material Understanding for Images

Materials in Context Database

• Millions of material points in real-world images

• Strong material recognition performance with deep 
learning

[Bell et al 2015]



Reminder: Learn local shape descriptors 
sensitive to physical material
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Our work :

• Focuses on physical material rather than 
appearance

• Does not strictly require additional input (such as 
semantic segmentation, image-to-shape matching, 
parts, …)

• Only uses shape geometry as input

• Leverages existing deep learning approaches
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Challenge: Existing data 
is insufficient



Crowdsourced Data

• Selected 17K chairs, tables, cabinets from ShapeNet

• Remove hard-to-label shapes for reliable 
crowdsourced annotations

• Remaining shapes (17K)
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• Remove hard-to-label shapes for reliable 
crowdsourced annotations

• Remaining shapes (12K)

No texture



Crowdsourced Data

• Selected 17K chairs, tables, cabinets from ShapeNet

• Remove hard-to-label shapes for reliable 
crowdsourced annotations

• Remaining shapes (8K)

No texture, too many/too few components



Crowdsourced Data

• Selected 17K chairs, tables, cabinets from ShapeNet

• Remove hard-to-label shapes for reliable 
crowdsourced annotations

• Remaining shapes (3K)

No texture, too many/too few components,
low-quality mesh, duplicates



Crowdsourced Data

Material categories (commonly found in furniture):

1. Wood

2. Plastic

3. Metal

4. Glass

5. Fabric (including leather)

6. Stone



Crowdsourced Data



Crowdsourced Data



Crowdsourced Data



Crowdsourced Data



Crowdsourced Data

• 20 questions per task

• 3 sentinels per task

• Ignored labels from workers who incorrectly 
labeled sentinels or selected “Can’t tell” too often

• 5 votes per part, with 4+/5 considered reliable

• Parts with transparent textures labelled as glass 
(manually checked)



Expert-Annotated Data

• Crowdsourced data is noisy

• Only one label assigned per part, but…

• Need high quality annotations for evaluation

• Selected 115 chairs, tables, cabinets from 3D 
Warehouse and Herman Miller

e.g. This seat body 
can be made of 
wood or plastic.

[https://3dwarehouse.sketchup.com/]
[https://www.hermanmiller.com/resources/models/3d-models]



Expert-Annotated Data

Manufacturer 
Product Images

Expert annotators reference product images and descriptions for 
accurate labelling



Expert-Annotated Data

Expert annotators reference product images and descriptions for 
accurate labelling

Manufacturer 
Product Images

WOOD or PLASTIC
METAL



Label Distribution (# Parts / Label)

(Left) Crowdsourced Dataset    (Right) Expert Labeled Dataset
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Challenge: Learning 
Pipeline



Architecture

Based on MVCNN architecture [Huang et al. 2018]



Architecture

• CNN backbone is Googlenet (VGG etc also works)



Architecture

• Input is 9 rendered views around surface point



Architecture

• Input is 9 rendered views around surface point

• Views are selected to maximize surface coverage

• 3 viewing directions at 3 viewing distances

• Camera is oriented upright wrt shape

• Also tried 36 views 



Training

Loss function:

1) Contrastive loss [Hadsell et al. 2006] + classification loss

2) Classification loss only
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Training

Loss function:

1) Contrastive loss [Hadsell et al. 2006] + classification loss

2) Classification loss only

These two variants produced the best results.



Training

Trained in Siamese fashion



Training

Training set is sampled from crowdsourced data 
(>50% parts labeled)

• 75 uniformly separate points are sampled from 
each shape (occluded points ignored)

• Final training set consists of ~150K points.



Training

• Dataset is biased / imbalanced

• Class-balanced training – explicitly cycle through 
each combination of label pairs when sampling

e.g. (wood, wood)

(wood, metal)

(wood, fabric)

…
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Training

• Dataset is biased / imbalanced

• Class-balanced training – explicitly cycle through 
each combination of label pairs when sampling

e.g. (wood, wood)

(wood, metal)

(wood, fabric)

…

• Sample same class pairs 20% of time, sample 
different class pairs 80% of time
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Challenge: Global 
Reasoning



Local Material Predictions



CRF



CRF with symmetry



Comparison



CRF

• Use CRF to smooth local material predictions

• Three pairwise factors between polygons:
• Low dihedral angle ➔ same material

• Low geodesic distance ➔same material

• Rotational / reflective symmetry ➔same material



CRF

• Use CRF to smooth local material predictions

• Three pairwise factors between polygons:
• Low dihedral angle ➔ same material

• Low geodesic distance ➔same material

• Rotational / reflective symmetry ➔same material

Fig from http://mathworld.wolfram.com/DihedralAngle.html
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CRF

• Use CRF to smooth local material predictions

• Three pairwise factors between polygons:
• Low dihedral angle ➔ same material

• Low geodesic distance ➔same material

• Rotational / reflective symmetry ➔same material
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Test Set

1024 uniformly separated points sampled from each 
benchmark shape:

• Occluded points are discarded

• Final test set consists of 117K points



Material Prediction 
Mean Class (Top 1) Accuracy

• Multitask has more balanced predictions and  highest mean accuracy
• +CRF boosts performance across all categories except glass

Network Mean Wood Glass Metal Fabric Plastic

Classification 65 82 53 72 62 55

Classification
+CRF

66 85 36 77 66 65

Multitask 66 68 65 72 70 53

Multitask
+CRF

71 75 64 74 74 68
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Descriptor Retrieval 
Mean Class Precision

• Similar mean class performance
• Multitask outperforms Classification for all materials except wood 

Network Mean Wood Glass Metal Fabric Plastic

Classification

k=1 
k=30
k=100

55.7
56.9
57.3

76.4
75.3
75.1

34.3
41.1
43.0

65.0
64.9
64.9

56.1
55.3
55.5

46.7
47.6
48.0

Multitask

k=1
k=30
k=100

56.2
56.2
56.6

62.2
61.0
60.7

40.8
42.6
44.7

68.6
68.9
68.7

58.0
57.4
57.4

51.2
51.1
51.5



Embedding Visualization (tSNE)

Multitask Descriptor Space

Wood

Fabric

Glass

Metal

Plastic



Effect of # of Input Views

3 views (1 direction, 3 distances) vs 9 views (3, 3)

• Multiple view directions are advantageous

• Top 1 classification accuracy:

Network Mean Wood Glass Metal Fabric Plastic

Classification 
3 views

59 81 41 71 60 40

Classification 
9 views

65 82 53 72 62 55

Multitask
3 views

56 45 71 85 65 15

Multitask
9 views

66 68 65 72 70 53



Material-Aware Part Retrieval



Material-Aware Part Retrieval



Material-Aware Automatic Texturing



Material-Aware Physics Simulation

Applied force Deformation



Material-Aware Physics Simulation

Applied force Deformation



Conclusion

• Two shape datasets with per-part material labels 
through crowdsourcing and expert-labelling

• Material-aware local descriptors computed through 
supervised learning pipeline

• Symmetry-aware CRF for global reasoning



Future Directions

• Increase variety of shapes and materials

• Learn smooth predictions end-to-end without CRF

• Fine-grained materials

• 2D material classification has good performance. 
Leverage this to improve 3D understanding.



Thank you! 


