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1. Introduction
This supplementary is organized as follows. First, we de-

tail the parameters used in our experiments to reproduce our
results (sections 2, 3). Second, we show some supplementary
results which could not be included in the main paper (sec-
tion 4). Third, we include visualizations of crowdsourced
annotations and inpainted labels (section 5).

2. Deeplabv3+ and Mobilenetv2
In our experiments, we use the open-

source implementation of Deeplabv3+ found at
https://github.com/tensorflow/models
/tree/master/research/deeplab . For our
comparison against weakly supervised methods, we use
the open-source implementation of Mobilenetv2 found at
https://github.com/tensorflow/models
/tree/master/research/slim/nets/mobilenet.

2.1. Architecture
For Deeplabv3+, we use Xception65 [2] as the backbone.

ASPP atrous rates are set to 6,12,18 for output stride 16 and
12,24,36 for output stride 8 as in [1]. Training uses output
stride 16 while evaluation uses output stride 8. Mobilenetv2
does not use ASPP or decoder.

2.2. Training Procedure
Training hyperparameters are based on [1]. All hyper-

parameters use settings in [1] unless otherwise noted here.
Batch normalization parameters are not finetuned due to
low batch size (GPU memory constraints). Batch normal-
ization parameters are initialized and frozen with the pre-
trained checkpoint. All Deeplabv3+ experiments initialize
the network with the official pretrained model on ImageNet +
MSCOCO + Pascal VOC and are trained for 100K iterations.
Experiments with Mobilenetv2 initialize the network with
the official Mobilenetv2 (width 1.0, input resolution 224)
ImageNet model. We use polynomial learning rate decay as
in [1]. During training time, we ignore the loss for pixels
whose predicted class has a softmax probability greater than
0.95. This can be considered a form of hard negative mining
where samples (pixels) with high confidence are ignored.

Our preliminary experiments suggest that this appears to
improve rate of convergence.

In any experiments that use fewer than 100% of the im-
ages in the training dataset, the images are shuffled and the
first N images are selected. The shuffling order is deter-
mined once and fixed across experiments.

Cityscapes. Deeplabv3+. Learning rate 0.0005. Batch
size 2 with input crop size 769× 769.

ADE20K. Deeplabv3+. Learning rate 0.001. Batch size 4
with input crop size 513× 513.

Pascal VOC. Mobilenetv2. Learning rate 0.001. Batch
size 16 with input crop size 513× 513. Batch norm parame-
ters are finetuned.

2.3. Evaluation Procedure
After training for a fixed 100K iterations (no early stop-

ping), models are tested on the validation set. 100K iterations
is chosen based on settings in [1] which uses 90K iterations
for Cityscapes. For consistency, 100K iterations is also used
for ADE20K and Pascal VOC. Evaluation is performed at
single scale without flipping on full resolution images. For
completeness, we report here the validation mIOU when the
network is trained out-of-the-box with the full training data
using the outlined procedure.

Cityscapes. Validation images are padded to 1025× 2049.
Validation mIOU is 77.7%.

ADE20K. Validation images are padded to 513 × 513.
Validation mIOU is 37.39%.

Pascal VOC. Validation images are padded to 513× 513.
Validation mIOU is 69.6%.

3. Block-Inpainting Model
The block-inpainting model is based on Deeplabv3+ with

some architectural and training modifications.

3.1. Architectural Modifications
The input to the block-inpainting model is a tensor of

shape h× w × (3 +K) where K is the number of classes
in the dataset (see main paper). The weights of the first
layer must be expanded to accommodate the K additional
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Figure 8: Block-Inpainting Model uncertainty versus human
pixel-wise agreement for inpainted labels. Curves for different
pixel budgets shown for comparison.

channels. These weights are initialized from a unit normal
distribution. For each dataset, the weights are initialized
once and then fixed for every experiment.

To compute uncertainty, dropout is added to the mid-
dle and exit flow blocks of the Xception65 backbone. The
dropout keep probability is 0.8 as in [5]. No dropout is
added to the decoder as preliminary experiments suggest
that this will degrade performance.

3.2. Training Details
During training time, the block-inpainting model is

trained with randomly drawn block hints from the set
of block-annotated images (see main paper). The block-
inpainting model is trained for 100K iterations following
section 2. The entire set of block-annotated images are used
as training targets.

3.3. Inference Details
At inference time, the block-inpainting model keeps

dropout activated to estimate uncertainty [4]. The block-
inpainting model outputs are averaged over 100 forward
passes (100 is found to be sufficient in [3]) to form the final
prediction. The uncertainty is computed by taking the sam-
ple variance of the softmax probabilities for the predicted
class (see main paper).

3.4. Ablation Studies
Effect of Uncertainty Threshold vs Pixel Agreement.
How does the uncertainty threshold affect pixel agreement
for block-inpainting? In figure 8, we show the mean pixel
agreement with human labels for varying thresholds. Lower
uncertainty threshold for rejection results in higher pixel
agreement. The pixel agreement with lower pixel budgets
are shown for comparison. The pixel budget is the number of
block-annotated pixels in the dataset with which the block-
inpainting model is trained. All experiments use checker-
board block hints.
Effect of Uncertainty Threshold vs Pixel Coverage.
How does the uncertainty threshold affect pixel coverage
for block-inpainting? In figure 9, we show the mean pixel
coverage for varying uncertainty thresholds as a fraction of
maximum uncertainty. Lower uncertainty threshold for rejec-
tion results in lower pixel coverage. The pixel coverage with

Figure 9: Block-Inpainting Model uncertainty versus pixel cov-
erage for human checkerboard + automatic labels. x-axis truncated
at 0.05 on left. Curves for different pixel budgets shown for com-
parison.

Figure 10: Annotation error rate for block and full annotation
for differently sized ground truth segments. Lower is better.

lower pixel budgets are shown for comparison. The pixel
budget is the number of human block-annotated pixels in
the dataset with which the block-inpainting model is trained.
All experiments use checkerboard block hints.

4. Supplementary Results
We show some supplementary results which could not be

included in the main paper.

4.1. Block Annotation Quality for Small Segments
How do workers perform when annotating small regions

(which may be difficult to annotate)? We look at the an-
notation error rate of small segments in SUNCG. Figure
10 shows the annotation error in regions where the ground
truth segments are within some range of sizes proportional
to the full image size (480×640 px). Block annotations con-
sistently have a lower error rate in these ranges, indicating
that block annotation is advantageous regardless of scale of
segments. For completeness, the rightmost bars show the
error rate for segments of all sizes.

4.2. Semantic Segmentation Performance
Random Blocks vs Checkerboard

How does the location of blocks sampled within an image
affect semantic segmentation performance? The network
trained on randomly sampled blocks achieves 77.1% mIOU
while the network trained on checkerboard blocks achieves



77.7% mIOU. The increase in performance in checkerboard
annotations over randomly sampled blocks is due to pixel
diversity (pixels far apart in an image are less correlated than
neighboring pixels). This is similar to the effect observed in
the first experiment which shows that pixel diversity due to
image diversity increases performance. These observations
are aligned with our expectations (see block selection discus-
sion in main paper). In this experiment, we used all images
from Cityscapes and created: (a) random block annotations
(sample 50% of blocks for each image) and (b) checkerboard
block annotations. To ensure that results are not due to sam-
pling bias, we create split (a) three times (i.e. sample 50%
of blocks per image three times) and average the results over
the three splits.

5. Visualizations
We show samples of crowdsourced annotations and block-

inpainted labels.

5.1. Crowdsourced Annotations
(SUNCG/CGIntrinsics)

Figure 11 shows a sample of five annotated images. This
figure is best viewed in color on screen with high zoom. See
main paper for annotation details.

For each image, segments from block annotation and
segments from full annotation are shown. Synthetic labels
are assigned using majority ground truth voting. Note that
assigning synthetic labels in this way will cause detailed
crowdsourced segmentations to be lost. See main paper
for estimate of cost to assign labels. For regions without
segments, “void” label is assigned (color is black). For
comparison, the dataset ground truth is shown in the final
row. With block annotation, notice that workers segment
small regions (e.g. the stool in image 1, row 2; the chair
back in image 2, row 2; and the faucets in image 4, row 2)
and oversegment regions (e.g. the cushions on the couch in
image 3, row 1). With full annotation, notice that workers
miss large regions, perhaps due to fatigue (e.g. the right
window in image 3, row 4).

5.2. Crowdsourced Annotations
(Cityscapes)

Figure 12 shows a sample of three block-annotated im-
ages. This figure is best viewed in color on screen with high
zoom. Regions that are not block-annotated are masked out
in this visualization. At annotation time, the worker sees the
entire image for context (see main paper). See main paper
for annotation details.

For easier comparison against Cityscapes, crowdsourced
segments are colored. Colors are random because class la-
bels have not been assigned to crowdsourced segments (see
main paper for estimate of cost to assign labels). Crowd-
sourced segments with synthetic class labels are also in-
cluded. Synthetic labels are assigned by taking the majority

class label for the expert-labelled pixels in the crowdsourced
segment. Note that assigning synthetic labels in this way will
cause detailed crowdsourced segmentations to be lost. These
visualizations are included to provide a better sense of the
crowdsourced segments across the entire image rather than
within individual blocks. Cityscapes segments are colored
by class with “void” labels masked out.

In the main text, we compare the number of segments
to expert full-image annotation. To compare the number
of segments, we compute the number of label connected-
components in expert annotations. Blocks with more than
50% void expert labels are ignored for a fair comparison.

5.3. Block-Inpainted Labels
We show set of samples of automatically assigned labels

by the block-inpainting model (trained and tested with Block-
50%) in figures 13, 14. For comparison, we show the human
expert labels and the agreement between the block-inpainting
model labels and the human labels (agreement is in white).
With uncertainty threshold 0.2 on Cityscapes and 0.4 on
ADE20K, over 94% of the pixels in the images are labelled
by the block-inpainting model.
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Figure 11: SUNCG/CGIntrinsics Annotation Samples. Top to bottom: (Row 1) Crowdsourced blocks (boundaries). (Row 2) Crowdsourced
blocks (synthetic labels). (Row 3) Crowdsourced full (boundaries). (Row 4) Crowdsourced full (synthetic labels). (Row 5) Ground truth.
NOTE: Synthetic labels are the majority ground truth label for pixels in each segment. This means finely segmented crowdsourced segments
(such as cushions on couches) will be lost in visualization. White dotted boxes highlight examples where block annotation qualitatively
outperforms full annotation.



Figure 12: Cityscapes Annotation Samples. Top to bottom: (Row 1) Crowdsourced (boundaries). (Row 2) Crowdsourced (randomly
colored). (Row 3) Crowdsourced (synthetic labels). (Row 4) Expert Cityscapes. NOTE: Synthetic labels are the majority expert label for
pixels in each segment. This means finely segmented crowdsourced segments (such as sky between leaves) will be lost in visualization.



Figure 13: Block-Inpainting Cityscapes Samples. Top to bottom: (Row 1) Original image. (Row 2) Human labels. (Row 3) Inpainted
labels (all). (Row 4) Agreement (row 3 vs row 2). (Row 5) Inpainted labels (<20% relative uncertainty). (Row 6) Agreement (row 5 vs row
2). Void labels and rejected inpainted labels are masked out.

Figure 14: Block-Inpainting ADE20K Samples. Top to bottom: (Row 1) Original image. (Row 2) Human labels. (Row 3) Inpainted labels
(all). (Row 4) Agreement (row 3 vs row 2). (Row 5) Inpainted labels (<40% relative uncertainty). (Row 6) Agreement (row 5 vs row 2).
Void labels and rejected inpainted labels are masked out.


