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Abstract

Image datasets with high-quality pixel-level annotations
are valuable for semantic segmentation: labelling every
pixel in an image ensures that rare classes and small ob-
jects are annotated. However, full-image annotations are
expensive, with experts spending up to 90 minutes per image.
We propose block sub-image annotation as a replacement
for full-image annotation. Despite the attention cost of fre-
quent task switching, we find that block annotations can
be crowdsourced at higher quality compared to full-image
annotation with equal monetary cost using existing annota-
tion tools developed for full-image annotation. Surprisingly,
we find that 50% pixels annotated with blocks allows se-
mantic segmentation to achieve equivalent performance to
100% pixels annotated. Furthermore, as little as 12% of
pixels annotated allows performance as high as 98% of the
performance with dense annotation. In weakly-supervised
settings, block annotation outperforms existing methods by
3-4% (absolute) given equivalent annotation time. To re-
cover the necessary global structure for applications such as
characterizing spatial context and affordance relationships,
we propose an effective method to inpaint block-annotated
images with high-quality labels without additional human
effort. As such, fewer annotations can also be used for these
applications compared to full-image annotation.

1. Introduction

Recent large-scale computer vision datasets place a heavy
emphasis on high-quality fully dense annotations (in which
over 90% of the pixels are labelled) for hundreds of thou-
sands of images. Dense annotations are valuable for both
semantic segmentation and applications beyond segmenta-
tion such as characterizing spatial context and affordance
relationships [11, 23]. The long-tail distribution of classes
means it is difficult to gather annotations for rare classes, es-
pecially if these classes are difficult to segment. Annotating
every pixel in an image ensures that pixels corresponding to
rare classes or small objects are labelled. Dense annotations
also capture pixels that form the boundary between classes.
For applications such as understanding spatial context be-
tween classes or affordance relationships, dense annotations

are required for principled conclusions to be drawn. In the
past, polygon annotation tools have enabled partially dense
annotations (in which small semantic regions are densely
annotated) to be crowdsourced at scale with public crowd
workers. These tools paved the way for the cost-effective cre-
ation of large-scale partially dense datasets such as [8, 37].
Despite the success of these annotation tools, fully dense
datasets have relied extensively on expensive expert annota-
tors [60, 14, 41, 64, 42] and private crowdworkers [11].

We propose annotation of small blocks of pixels as a
stand-in replacement for full-image annotation (figure 1).
We find that these annotations can be effectively gathered
by crowdworkers, and that annotation of a sparse number of
blocks per image can train a high performance segmentation
network. We further show these sparsely annotated images
can be extended automatically to full-image annotations.

We show block annotation has:

• Wide applicability. (Section 3) Block annotations can be
effectively crowdsourced at higher quality compared to full
annotation. It is easy to implement and works with existing
advances in image annotation.

• Cost-efficient Design. (Section 3) Block annotation re-
flects a cost-efficient design paradigm (while current re-
search focuses on reducing annotation time). This is remi-
niscent of gamification and citizen science where enjoyable
tasks lead to low-cost high-engagement work.

• Complex Region Annotation. (Section 3) Block annota-
tion shifts focus from categorical regions to spatial regions.
When annotating categorical regions, workers segment sim-
ple objects before complex objects. With spatial regions,
informative complex regions are forced to be annotated.

• Weakly-Supervised Performance. (Section 4) Block an-
notation is competitive in weakly-supervised settings, outper-
forming existing methods by 3-4% (absolute) given equiva-
lent annotation time.

• Scalable Performance. (Section 4) Full-supervision per-
formance is achieved by annotating 50% of blocks per image.
Thus, blocks can be annotated until desired performance is
achieved, in contrast to methods such as scribbles.

• Scalable Structure. (Section 5) Block-annotated images
can be effectively inpainted with high quality labels without
additional human effort.
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Figure 1: (a) Sub-image block annotations are more effective to gather than full-image annotations (b) Training on sparse block annotations
enables semantic segmentation performance equivalent to full-image annotations (c) Block labels can be inpainted with high-quality labels.

2. Related Work
In this section we review recent works on pixel-level anno-

tation in three areas: human annotation, and human-machine
annotation, and dense segmentation with weak supervision.

Human Annotation. Manual labeling of every pixel is
impractical for large-scale datasets. A successful method
is to have crowdsource workers segment polygonal regions
to click on boundaries. Employing crowdsource workers
offers its own set of challenges with quality control and task
design [56, 8, 55]. Although large-scale public crowdsourc-
ing can be successful [37] recent benchmark datasets have
resorted to in-house expert annotators [14, 43]. Annotation
time can be reduced through improvements such as autopan,
zoom [8] and shared polygon boundaries [60]. Polygon seg-
mentation can be augmented by painted labels on superpixel
groups [11] and Bezier curves [60]. Pixel-level labels for
images can also be obtained by (1) constructing a 3D scene
from an image collection, (2) grouping and labeling 3D
shapes and (3) propagating shape labels to image pixels [39].
In our work, we investigate sub-image polygon annotation,
which can be further combined with other methods (sec. 3.)

Human-Machine Annotation. Complex boundaries are
time-consuming to trace manually. In these cases the cost of
pixel-level annotation can be reduced by automating a por-
tion of the task. Matting and object selection [50, 33, 34, 6,
58, 57, 10, 30, 59] generate tight boundaries from loosely an-
notated boundaries or few inside/outside clicks and scribbles.
[44, 38] introduced a predictive method which automatically
infers a foreground mask from 4 boundary clicks, and was
extended to full-image segmentation in [2]. The number
of boundary clicks was further reduced to as few as one
by [1]. Predictive methods require an additional human
verification step since the machine mutates the original hu-
man annotation. The additional step can be avoided with an
online method. However, online methods (e.g., [1, 30, 2])
have higher requirements since the algorithm must be trans-
lated into the web browser setting and the worker’s machine
must be powerful enough to run the algorithm1. Alterna-
tively, automatic proposals can be generated for humans to
manipulate: [5] generates segments, [4] generates a set of
matting layers, [61] generates superpixel labels, and [47]
generates boundary fragments. In our work, we show that

1Offloading online methods onto a cloud service offers a different land-
scape of higher costs (upfront development and ongoing operation costs).

human-annotated blocks can be extended automatically into
dense annotations (sec. 5), and we discuss how other human-
machine methods can be used with blocks (sec. 3.6).

Weakly-Supervised Dense Segmentation. There are al-
ternatives to training with high-quality densely annotated
images which substitute quantity for label quality and/or rich-
ness. Previous works have used low-quality pixel-level an-
notations [65], bounding boxes [45, 28, 49], point-clicks [7],
scribbles [7, 36], image-level class labels [45, 53, 3], image-
level text descriptions [24] and unlabeled related web
videos [24] to train semantic segmentation networks. Com-
bining weak annotations with small amounts of high-quality
dense annotation is another strategy for reducing cost [9, 26].
[52] proposes a two-stage approach where image-level class
labels are automatically converted into pixel-level masks
which are used to train a semantic segmentation network.
We find a small number of sub-image block annotations is a
competitive form of weak supervision (sec. 4.3).

3. Block Annotation

Sub-image block annotation is composed of three stages:
(1) Given an image I , select a small spatial region I ′; (2)
Annotate I ′ with pixel-level labels; (3) Repeat (with different
I ′) until I is sufficiently annotated. In this paper, we explore
the case where I ′ is rectangular, and focus on the use of
existing pixel-level annotation tools.

Can block annotations be gathered as effectively as full-
image annotations with existing tools? In section 3.1, we
show our annotation interface. In section 3.2, we explore the
quality of block annotation versus full-image annotation. In
section 3.3, we examine block annotation for a real-world
dataset. In section 3.4, we discuss the cost of block annota-
tion and show worker feedback. In section 3.5, we discuss
how blocks for annotation can be selected in practice. Fi-
nally, in section 3.6 we discuss the compatibility of block
annotation with existing annotation methods.

3.1. Annotation Interface

Our block annotation interface is given in figure 2 and
implemented with existing tools [8]. For full image annota-
tion, the highlighted block covers the entire image. Studies
are deployed on Amazon Mechanical Turk.



(a) Highlighted block. (b) Finished block annotation.

Figure 2: Block Annotation UI. Annotators are given one high-
lighted block to annotate with the remainder of the image as context.

(a) (b)
Figure 3: Annotation error rate for block and full annotation.
Each point represents one image. The same set of images are both
block annotated and full-image annotated. The stars represent the
centroid (median). Cost/time include estimated cost/time to assign
labels for each segment [8]. Lower-left is better. With block
annotation, workers (a) choose to work for lower wages and (b)
segment more regions for less pay per region. The overall quality
is higher for block annotation.

.

3.2. Quality of Block Annotation
We explore the quality of block annotations compared

to full-image annotations on a synthetic dataset. How does
the quality and cost compare between block and full annota-
tions? We find that the average quality for block-annotated
images is higher while the total monetary cost is about the
same. The average quality of block annotations is consis-
tently higher including for small regions (e.g. fig 4). The
overall block annotation error is 12% lower than full an-
notation. For regions smaller than 0.5% of the image, the
block annotation error is 6% lower. In figure 3, the cost
and quality of block versus full image annotation is shown.
Remarkably, we find that workers are willing to work on
block annotation tasks for a significantly lower hourly wage.
This indicates that block annotation is more intrinsically
palatable for crowdworkers, in line with [27] which shows
task design can influence quality of work. Moreover, work-
ers are more likely to over-segment objects with respect to
ground truth (e.g. individual cushions on a couch, handles
on cabinets) with block annotation tasks. Note that block
boundaries may also divide semantic regions. Table 1 con-
tains additional statistics. Despite similar costs to annotate
an image in blocks or in full, we show in section 4 that com-
petitive performance is achieved with less than half of the
blocks annotated per image.

Study Details. For these experiments, we chose to use a
synthetic dataset. While human annotations may contain mis-

Block Full

Error 0.253 0.286
Error (small regions) 0.636 0.677
$ / hr $1.40 / hr $3.12 / hr
Total cost $2.00 $2.05
Total cost (median) $1.99 $2.23
# segments 95.68 38.95
$ / segment $0.0215 $0.0595

Table 1: Block vs Full Annotation. Average statistics per image.

Figure 4: SUNCG/CGIntrinsics annotation. (a) Ground truth.
(b) Block annotation (zoomed-in) (c) Full annotation (zoomed-in).
White dotted box highlights an example where block annotation
qualitatively outperforms full annotation. More in supplemental.

takes, synthetic datasets are generated with known ground
truth labels with which annotation error can be computed.
The CGIntrinsics dataset [35] contains physically-based ren-
derings of indoor scenes from the SUNCG dataset [54, 63].
We use the more realistic CGIntrinsics renderings and the
known semantic labels from SUNCG. The labels are catego-
rized according to the NYU40[20] semantic categories. Due
to the nature of indoor scenes, the depth and field of view
of each image is smaller than outdoor datasets. The reduced
complexity means that crowdworkers are able to produce
good full-image annotations for this dataset.

We select MTurk workers who are skilled at both full-
image annotation and block annotation in a pilot study (a
standard quality control practice [8]). The final pool consists
of 10 workers. Image difficulty is estimated by counting the
maximum number of ground truth segments in a fixed-size
sliding window. Windows, mirrors, and void regions are
masked out in the images so that workers do not expend
effort on visible content for which ground truth labels do
not exist (such as objects seen through a window or mirror).
We manually cull images that include transparent glass ta-
bles which are not visible in the renderings, or doorways
through which visible content can be seen but no ground
truth labels exist. After filtering, twenty of the one hundred
most difficult images are selected. We choose a block size
so that an average of 3.5 segments are in each block. This
results in 16 blocks per image. For each task, a highlighted
rectangle outlines the block to be annotated. We find that
workers will annotate up to the inner edge of the highlighted
boundary. Therefore, we ensure the edges of the rectangle
do not overlap with the region to be annotated.

Workers are paid $0.062 per block annotation task and
$0.96 per full-image task. Bonuses up to 1.5 times the base
pay are awarded to attempt to raise the effective hourly wage
for difficult tasks to $4 / hr. Our results show that workers

2$ refers to USD in throughout this paper.



Block (Crowd) Full (Expert [14, 42] )
$ / Task $0.13 -
Time / Task 2 min 1.5 hr

Table 2: Real-world cost of annotation. Cost evaluated on
Cityscapes. Each block is annotated by MTurk workers. Full-
image is annotated by experts in [14]. Note: [14] annotates instance
segments. See table 1 for crowd-to-crowd comparison.

are willing to work on block annotation tasks beyond the
time threshold for bonuses, effectively producing work for
an hourly wage significantly lower than the intended $4 / hr.
On the other hand, workers do not often exhibit this behavior
with full annotation tasks. Different workers may work on
different blocks belonging to the same image. We use two
forms of quality control: (1) annotations must contain a num-
ber of segments greater than 25% of the known number of
ground-truth segments for that task and (2) annotations can-
not be submitted until at least 10 seconds / 3 minutes (block
/ full) have passed. All submissions satsifying these condi-
tions are accepted during the user study. For an overview of
QA methods, please refer to [48]. Labels are assigned by
majority ground-truth voting, with cost estimated from [8].

To evaluate the quality of annotations in an image with
K classes, we measure the class-balanced error rate (class-
balanced Jaccard distance):

error rate =
1

K

K∑
c=1

(FPc + FNc)

(TPc + FPc + FNc)
(1)

= 1−mIOU

3.3. Viability of Real-World Block Annotation
How does block annotation fare with a real-world non-

synthetic dataset? To study the viability of block an-
notating real-world datasets with scalable crowdsourcing,
we ask crowdworkers to annotate blocks from images in
Cityscapes [14]. We choose Cityscapes for the annotation
complexity of its scenes – 1.5 hours of expert annotation
effort is required per image. In contrast, other datasets such
as [41, 11] require less than 20 minutes of annotation effort
per image. We expect crowd work to be worse than expert
work, so it is a surprisingly positive result that the quality of
the crowdsourced segments are visually comparable to the
expert Cityscapes segments (figure 5). Some crowdsourced
segments are very high quality. We find that 47% of blocks
have more crowd segments than expert segments (20% have
fewer segments, and 33% have the same # of segments).
A summary of the cost is given in table 2 which compares
public crowdworkers to trained experts. It is feasible block
annotation time will decrease with expert training. Given
100 uniformly sized blocks per image, we ask an expert to
create equal-quality block and full annotations; we find one
block is 1.56% of the effort of a full image.
Study Details. We searched for workers who produce
high-quality work in a pilot study and found a set of 7 work-
ers. These workers were found within a hundred pilot HITs

Figure 5: Crowdsourced vs expert segments. Crowdsourced
block-annotated segments are compared to expert Cityscapes seg-
ments. Crowdsourced segments are colored for easier comparison.
Top-left is a high-quality example. See supplemental for more.

(for a total cost of $4). We approved all of their submissions
during the user study. We do not restrict workers from an-
notating outside of the block, and we do not force workers
to densely annotate the block. We do not include the use of
sentinels or tutorials as in [8].

Thirteen randomly selected validation images from
Cityscapes are annotated by crowdworkers. Each image
is divided into 100 uniformly shaped blocks. A total of 650
(50 per image) are annotated in random order. Workers are
paid $0.06 per task. Workers are automatically awarded
bonuses so that the effective hourly wage at least $5 for each
block, with bonuses capped at $0.24 to prevent abuse. For
one block, the total base payout is $0.06 with an average of
$0.0636 in bonuses over 93 seconds of active work. On aver-
age, each annotated block contains 3.5 segments. Assigning
class labels will cost an additional $0.01 and 26 seconds
[8]. To be consistent with Cityscapes, we instruct workers to
not segment windows, powerlines, or small regions of sky
between leaves. However, workers will occasionally choose
to do so and submit higher quality segments than required.

3.4. Annotation Cost and Worker Feedback

Our costs (tables 1, 2) are aligned with existing large-scale
studies. Large-scale datasets [8, 37] show that cultivating
good workers produces high quality data at low cost. Table
2 of [21] reports a median wage of $1.77/hr to $2.11/hr; the
median MTurk wage in India is $1.43/hr [22]. For “image
transcription”, the median wage is $1.13/hr over 150K tasks.

Workers gave overwhelmingly positive feedback for block
annotation (table 3), and we found that some workers would
reserve hundreds of block annotation tasks at once. Only 3
out of the 57 workers who successfully completed at least
one pilot or user study task requested higher pay. In contrast,
our pilot studies showed that workers are unwilling to accept
full-image annotation tasks if the payment is reduced to
match the wage of block annotation. We conjecture that task
enjoyment leads to long term high-quality output (c.f. [27]).



“Nice”
“Good”
“Great”

“Fun”
“Happy” “Easy” “Okay” Release

More HITs
Increase
Pay

# 8 5 4 2 2 3

Table 3: Block annotation worker feedback. Free-form re-
sponses are aggregated over SUNCG and Cityscapes experiments,
and collected at most once per worker. All 24 sentiments across all
19 worker responses are summarized.

3.5. Block Selection

Our experiments show that workers are comfortable an-
notating between 3 to 6 segments per block. Therefore,
block size can be selected by picking a size such that the
average number of segments per block falls in this range.
For a novel dataset, this can be done fully labelling sev-
eral samples and producing an estimate from the fully la-
belled samples. Without priors on spatial distribution of rare
classes or difficult samples within an image, a checkerboard
or pseudo-checkerboard pattern of blocks focuses attention
(across different tasks) uniformly across the image. Far apart
pixels within an image are less correlated than neighboring
pixels. Therefore, it is good to sample blocks that are spread
out to encourage pixel diversity within images.

3.6. Compatibility with Existing
Annotation Methods

Block annotation is compatible with many annotation
tools and innovations besides polygon boundary annotation.

Point-clicks and Scribbles. Annotations such as point
clicks or scribbles are faster to acquire than polygons, which
leads to a larger and more varied dataset at the same cost.
Combining this with blocks will further increase annotation
variety due to the diversity that come from annotating a
few blocks in many images over annotating fewer number
of images fully. Additionally, [7, 9] show that the most
cost-effective method for semantic segmentation is a combi-
nation of densely annotated images and a large number of
point clicks. The densely annotated images can be replaced
by polygon block annotations since they also contain class
boundary supervision for the segmentation network.

Superpixels. Superpixel annotations enable workers to
mark a group of visually-related pixels at once [11]. This
can reduce the annotation time for background regions and
objects with complex boundaries. Superpixel annotation can
be easily deployed to our block annotation setting.

Polygon Boundary Sharing. Boundary sharing reuses ex-
isting boundaries so that workers do not need to trace each
boundary twice [60]. This approach can be easily deployed
in our block annotation setting.

Curves. Bezier tools allow workers to quickly annotate
curves [60]. It can be easily deployed in our block annotation
setting but it may be less effective on long curves since each
part of the curve must be fit separately.

Interactive Segmentation. Recent advances in interactive
segmentation (e.g., [1, 38, 2]) utilize neural networks to
convert sparse human inputs into high quality segments.
For novel domains without large-scale training data, block-
annotated images can act as cost-efficient seed data to train
these models. Once trained, these methods can be applied
directly to each block, although further analysis should be
conducted to explore the efficiency of such an approach due
to block boundaries splitting semantic regions.

4. Segmentation Performance
How well do block annotations serve as training data for

semantic segmentation? In section 4.1, the experimental
setup is summarized. In section 4.2, we evaluate the ef-
fectiveness of block annotations for semantic segmentation.
In section 4.3, we compare block annotation with existing
weakly supervised segmentation methods.

4.1. Experimental Setup

Pixel Budget. We vary the “pixel budget” in our experi-
ments to explore segmentation performance across a range
available annotated pixels. “Pixel budget” refers to the % of
pixels annotated across the training dataset, which can be
controlled by varying the number of annotated images, the
number annotated blocks per image, and the size of blocks
per image. Our block sizes are fixed in our experiments.

Block Size. We divide images into a 10-by-10 grid for our
experiments.

Block Selection. We experiment with two block selection
strategies: (a) Checkerboard annotation and (b) Pseudo-
checkerboard annotation. Checkerboard annotation means
that every other block in a variable number of images are
annotated. Pseudo-checkerboard annotation means that ev-
ery N blocks are annotated in every image, where N is
# pixels in dataset

pixel budget
. For example, with a pixel

budget equivalent to 25% of the dataset, every fourth block
is annotated for the entire dataset. At pixel budget 50%,
checkerboard and pseudo-checkerboard are identical.

For the remainder of the paper, “Block-X%” refers to
pseudo-checkerboard annotation in which X% of the blocks
per image are annotated.

Sementation Model. We use DeepLabv3+[13] initialized
with the official pretrained checkpoint (pretrained on Im-
ageNet [16] + MSCOCO [37] + Pascal VOC [17]). The
network is trained for a fixed number of epochs. See supple-
mental for additional details.

Datasets. Cityscapes is a dataset with ground truth anno-
tations for 19 classes with 2975 training images and 500
validation images. ADE20K contains ground truth annota-
tions for 150 classes with 20210 training images and 2000
validation images. These datasets are chosen for their high



Figure 6: Semantic segmentation performance. Training
images are annotated with different pixel budgets. Pseudo-
checkerboard block annotation outperforms checkerboard and full
annotation.

quality dense ground truth annotations and for their differ-
ences in number of images / classes and types of scenes
represented. The block annotations are synthetically gener-
ated from the existing annotations.

4.2. Evaluation
Blocks vs Full Image. How does block annotation com-
pare to full-image annotation for semantic segmentation? We
plot the mIOU achieved when trained on a set of annotations
against pixel budget in figure 6.

For both Cityscapes and ADE20K, block annotation sig-
nificantly outperforms full-image annotation. The perfor-
mance gap widens as the pixel budget is decreased – at pixel
budget 12%, the reduction in error from full annotation to
block annotation is 13% (10%) Cityscapes (ADE20K). Our
results indicate that the quantity of annotated images is more
valuable than the quantity of annotations per image. The
pseudo-checkerboard block selection pattern consistently
outperforms the checkerboard block selection pattern and
full annotation. For any pixel budget, pseudo-checkerboard
block annotation annotates fewer pixels per image which
means more images are annotated.

Optimal (Full) Block-50% Block-12%
Cityscapes 77.7 77.7 74.6
ADE20K 37.4 37.2 36.1

Table 4: Semantic segmentation performance when trained on
all images. Training with block annotations uses fewer annotated
pixels than full annotation but achieves equivalent performance.

Blocks vs Optimal Performance. How many blocks need
to be annotated for segmentation performance to approach
the performance achieved by training on full-image anno-
tations for the entire dataset? In table 4, we show results

when the network is trained on the full dataset compared
to pseudo-checkerboard blocks. Remarkably, we find that
checkerboard blocks with 50% pixel budget allow the net-
work to achieve similar performance to the full dataset with
100% pixel budget, indicating that at least 50% of the pix-
els in Cityscapes and ADE20K are redundant for learning
semantic segmentation. Furthermore, with only 12% of the
pixels in the dataset annotated, relative error in segmen-
tation performance is within 12%/2% of the optimal for
Cityscapes/ADE20K. These results suggest that fewer than
50% of the blocks in an image need to be annotated for train-
ing semantic segmentation, reducing the cost of annotation
reported in section 3.

4.3. Weakly Supervised Segmentation Comparison

Block annotation can be considered a form of weakly
supervised annotation where a small number of pixels in
an image are labelled. Representative works in this area
include [36, 7, 46, 45, 15]. Table 3 of [36] is replicated here
(table 5) for reference, and extended with our results. All
existing results show performance with a VGG-16 based
model. We train a MobileNet based model which has been
shown to achieve similar performance to VGG-16 (71.8% vs
71.5% Top-1 accuracy on ImageNet) while requiring fewer
computational resources [25, 51]. Our fully-supervised im-
plementation pretrained on ImageNet achieves 69.6% mIOU
on Pascal VOC 2012 [17]; in comparison, the reference
DeepLab-VGG16 model achieves 68.7% mIOU [12] and
the re-implementation in [36] achieves 68.5% mIOU.

Method Annotations mIOU (%)

MIL-FCN [46] Image-level 25.1
WSSL [45] Image-level 38.2
point sup. [7] Point 46.1
ScribbleSup [36] Point 51.6
WSSL [45] Box 60.6
BoxSup [15] Box 62.0
ScribbleSup [36] Scribble 63.1

Ours: Block-1% Pixel-level Block 61.2
Ours: Block-5% Pixel-level Block 67.6
Ours: Block-12% Pixel-level Block 68.4
Full Supervision Pixel-level Image 69.6

Table 5: Weakly-supervised segmentation performance. Eval-
uated on Pascal VOC 2012 validation set. Original table from
[36]. Blocks (N%) indicates N% of image pixels (N pseudo-
checkerboard blocks) are labelled.

Performance Comparison. With only 1% of the pixels
annotated, block annotation achieves comparable perfor-
mance to existing weak supervision methods. Based on our
results in section 3.2, the cost of annotation for 1% of pixels
with blocks will be 100× less than the cost of full-image
annotation. Increasing the budget to 5%-12% significantly
increases performance. With 12% of pixels annotated with
blocks, the segmentation performance (error) is within 98%



Cityscapes Ours: Block
(7 min)

Coarse
(7 min [14])

Full Supervision
(90 min [14])

mIOU (%) 72.1 68.8 77.7

Pascal Ours: Block
(25 sec)

Scribbles
(25 sec [36])

Full Supervision
(4 min [41])

mIOU (%) 67.2 63.1 [36] 69.6

Table 6: Weakly-supervised segmentation performance given
equal annotation time. For time comparison of scribbles against
other methods, please refer to [36].

(4%) of segmentation performance (error) with 100% of
pixels annotated.

Note that block annotations can be directly transformed
into gold-standard fully dense annotations by simply gath-
ering more block annotations within an image. This is not
feasible with other annotations such as point clicks, scrib-
bles, and bounding boxes. Furthermore, in section 5, we
demonstrate a method to transform block annotations into
dense annotations without any additional human effort.

Equal Annotation Time Comparison. Given equal an-
notation time, block annotation significantly outperforms
coarse and scribble annotations by ∼3-4% mIOU (table 6).
On Pascal, 97% of full-supervision mIOU is achieved with
1/10 annotation time. We convert annotation time to number
of annotated blocks as follows. Block annotation may use up
to 2.2× the time of full-image annotation. Given an image
divided into 100 blocks, an annotation time of T leads to

T
0.022F (eq. 5) blocks annotated, where F is the full-image
annotation time.

5. Block-Inpainting Annotations
Although block annotations are useful for learning se-

mantic segmentation, the full structure of images is required
for many applications. Understanding the spatial context
or affordance relationships [11, 23] between classes relies
on understanding the role of each pixel in an image. Shape-
based retrieval, object counting [32], or co-occurrence rela-
tionships [40] also depend on a global understanding of the
image. The naive approach to recover pixel-level labels is to
use automatic segmentation to predict labels. However, this
does not leverage existing annotations to improve the quality
of predicted labels. In section 5.1, we propose a method to
inpaint block-annotated images by using annotated blocks
as context. In section 5.2, we examine the quality of these
inpainted annotations.

5.1. Block-Inpainting Model
The goal of the block-inpainting model is to inpaint labels

for unannotated blocks given the labels for annotated blocks
in an image. For full implementation details and ablation
studies, please refer to the supplemental.

Architecture. The block-inpainting model is based on
DeepLabv3+. The input layer is modified so that the RGB
image, I ∈ Rh×w×3, is concatenated with multichannel

“hint” (ala [62]) of 1-0 class labels W ∈ Rh×w×K where
K is the number of classes. At inference time, the hint
contains known labels for the annotated blocks of an image
which serve as context for the inpainting task. Hidden layers
are augmented with dropout which will be used to control
quality by estimating epistemic uncertainty [18, 19].

Estimating Uncertainty. Inpainting fills all missing re-
gions without considering the trade off between quantity
and quality. Existing datasets have high-quality annotations
for 92-94% of pixels [64, 11]. Therefore, we modify our
network to produce uncertainty estimates which allow us
to explicitly control this trade off. The uncertainty of pre-
dictions is correlated with incorrect predictions [31, 29].
Uncertainty is computed by activating dropout at inference
time. The predictions are averaged over the g trials giving
us U ∈ Rh×w, a matrix of uncertainty estimates per image.
We take the sample standard deviation corresponding to the
predicted class for each pixel to be the uncertainty. For each
pixel (i, j), the mean softmax vector over g trials is:

µ(i,j) =

g∑
t=1

p(i,j)(y|I,W )

g
(2)

where p(y|I,W ) ∈ RK is the softmax output of the network.
The corresponding uncertainty vector is:

U′(i,j) =

√√√√√ g∑
t=1

(p(i,j)(y|I,W )− µ(i,j))2

g − 1
(3)

Thus, the uncertainty for each pixel (i, j) is:

U (i,j) = U ′(i,j)m , where m = argmax
k

µ
(i,j)
k (4)

Training. Block annotations serve both as hints and tar-
gets. This means that no additional data (or human annota-
tion effort) is required to train the block-inpainting model.
For our experiments, we use (synthetically generated) Block-
50% annotations. For each image, half of annotated blocks
are randomly selected online at training time to be hints. All
of the annotated blocks are used as targets. This encourages
the network to “copy-paste” hints in the final output while
leveraging the hints as context to inpaint labels for regions
where hints are not provided.

5.2. Evaluation
Quality of Inpainted Labels. How good are inpainted la-
bels? We compare labels produced by the block-inpainting
network with low U (i,j) against the known human labels in
Cityscapes and ADE20K. The block-inpainting model pro-
duces labels whose human-agreement is competitive with
that achieved by human annotators. We inpaint Block-50%
annotations in this experiment. At a relative uncertainty



(a) Full human labels (b) Original image

(c) Inpainted labels (all) (d) Label agreement (white)

(e) Inpainted labels (<20% rel-
ative uncertainty)

(f) Label agreement (white)

Figure 7: Block-inpainted labels. Example of human labels vs
human Block-50% + inpainted labels. Void labels are masked out.

threshold of 0.2 (0.4) on Cityscapes (ADE20K), over 94%
of the pixels are labelled. The mean pixel agreement is
99.8% (98.7%) and the class-balanced error rate is 3.1%
(28%). Previous work show that human label agreement
across annotators is 66.8% to 73.6% while annotator self-
agreement is 82.4% to 97.0% [64, 11]. Human annotators
fail to agree in non-trivial fashion – [64] shows that annota-
tor self-agreement fails in three ways: variations in complex
boundaries (32%), incorrect naming of ambiguous classes
(34%), and failure to segment small objects (34%). In figure
7, a visualization of labels generated by the block-inpainting
model is shown. The number of pixel disagreements de-
creases with a higher uncertainty threshold.

Block Inpainting vs Automatic Segmentation. Consider
a scenario in which a small number of pixels in a dataset
are annotated, and the remainder are automatically labelled
to produce dense annotations. Why should block inpaint-
ing be used instead of automatic segmentation? Full pixel-
level labels produced by block inpainting are superior to
automatic segmentation. On Cityscapes, automatic seg-
mentation achieves 78% validation mIOU while block in-
painting Block-50% annotations achieves 92% validation
mIOU. With Block-12% annotations, automatic segmenta-
tion achieves 75% validation mIOU while block inpainting
achieves 82% validation mIOU.

Block Selection vs Block-Inpainting Quality How does
the checkerboard pattern compare to other block selection
strategies as hints to the block-inpainting model? Intuitively,
it is easier to infer labels for pixels that are close to pix-
els with known labels than for pixels that are further away.
Consider a scenario in which every other pixel in an image
is annotated. Reasonably good labels for the unannotated

None Random
(Bndy)

Random
(Full)

Checker
(10x10)

Every oth.
pixel

Rel. mIOU 0.77 0.90 0.92 0.95 1.0

Table 7: Block-inpainting with different types of hints. “Every
other pixel” annotations are infeasible in practice. Relative perfor-
mance of hints with respect to “every other pixel” hints is shown.
Checkerboard blocks outperform no hints, random blocks (only
boundaries within blocks), and random blocks (full blocks).

pixels can be inferred with a simple nearest-neighbors al-
gorithm. In practice, it is impossible to precisely annotate
single pixels in an image. However, we can approximate the
same properties of labelling every other pixel by labelling
every other block instead (i.e., a checkerboard pattern).

In table 7, we show the block-inpainting model mIOU
when different types of hints are given. The rightmost col-
umn (“every other pixel”) is not feasible to collect in practice.
Checkerboard annotations outperform random block annota-
tions even though the network is trained to expect random
block hints. Providing only boundary annotations within
each block (i.e. annotating pixels within 10 pixels of each
boundary in each block) allows the network to achieve nearly
the same performance as full block hints. This suggests that
the most informative pixels for the block-inpainting model
are those near a boundary.

6. Conclusion
In this paper we have introduced block annotation as a

replacement for traditional full-image annotation with public
crowdworkers. For semantic segmentation, Block-12% of-
fers strong performance at 1/8th of the monetary cost. Block-
5% offers competitive weakly-supervised performance at
equal annotation time to existing methods. For optimal
semantic segmentation performance, or to recover global
structure with inpainting, Block-50% should be utilized.

There are many directions for future work. Our crowd-
worker tasks are similar to full-image annotation tasks so it
may be possible to improve the gains with more exploration
and development of boundary marking algorithms. We have
explored some block patterns and further exploration may
reveal even better trade-offs between annotation quality, cost
and image variety. Another interesting direction is acquiring
instance-level anntoations by merging segments across block
boundaries. Active learning can be used to select blocks
of rare classes, and workers can be assigned blocks so that
annotation difficulty matches worker skill.
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and Frédo Durand. On the importance of label quality for
semantic segmentation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1479–1487, 2018. 2


