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Abstract

There has been exciting recent progress on explicit constructions of two-source extractors
leading to near optimal constructions. In this article, we survey key new notions and techniques
that led to this progress. We pose some open problems along the way.

1 Introduction

Randomness is a valuable resource in computation. Randomness is used to run various Monte Carlo
simulations of complex systems such as the stock market or weather prediction systems. Various
randomized algorithms have been discovered that often vastly outperform known deterministic
counterparts (see [MR10] for examples). Cryptography is another area that crucially relies on
access to random bits, and it is known that various basic cryptographic primitives fail to be secure
if the quality of the randomness used is poor [DOPS04]. However natural sources of randomness
are typically defective. This leads to the following basic question:

“Can we efficiently produce truly random bits given access to defective sources of randomness?”

Modeling a weak source To answer the above question, of course one needs to work with a
model for defective random sources. In the 1950’s, von Neumann [vN51] considered the simple
model of a weak source being a stream of independent bits, each bit following a Bernoulli distri-
bution with (an unknown) parameter p. He devised an efficient algorithm to extract near uniform
bits from such weak sources. In the 1980’s, Blum [Blu86] generalized this model and studied the
problem of extracting from weak sources that are generated by finite state Markov chains. Santha
and Vazirani [SV86] investigated the model of weak sources as a stream of bits, where each bit
brings in some fresh entropy conditioned on all the previous bits. By now, the most widely used
model of a weak source is using the notion of min-entropy. This model was proposed by Chor and
Goldreich [CG88] and Zuckerman [Zuc90].

Definition 1.1. Let X be a distribution on some finite universe Ω. The min-entropy of a distri-
bution X is defined as H∞(X) = minx∈supp(X)(log(1/Pr[X = x])), where supp(X) = {x ∈ Ω :
Pr[X = x] > 0}.
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Note that for a distribution X supported on {0, 1}n, we have 0 ≤ H∞(X) ≤ n. We define an
(n, k)-source to be a distribution on {0, 1}n with min-entropy at least k.

Randomness extractors Informally, a randomness extractor is a deterministic algorithm that
produces nearly uniform bits given access to a weak random source. We measure the quality of
the output of an extractor using the notion of statistical distance, defined as follows: let D1, D2

be two distributions on some universe Ω. The statistical distance between D1 and D2, denoted by
∆(D1;D2) is defined as ∆(D1;D2) = 1

2 ·
∑

x∈Ω |D1(x) −D2(x)|, where Di(x) denotes Pr[Di = x].
We will use the notation D1 ≈ε D2 to denote the fact that ∆(D1;D2) ≤ ε.

We are now ready to define a randomness extractor for a family of distributions. Let Um denote
the uniform distribution on {0, 1}m.

Definition 1.2. Let X be a family of distributions on universe {0, 1}n. A function Ext : {0, 1}n →
{0, 1}m is called an ε-extractor for X if for any distribution X ∈ X , we have

∆(Ext(X);Um) ≤ ε.

The parameter ε is called the error of the extractor.

Given our discussion on modeling weak sources, it is natural to ask if one can design an extractor
for the family of (n, k)-sources, for some k. The following folklore lemma is a strong negative result
in this direction.

Lemma 1.3. There does not exist an ε-extractor Ext : {0, 1}n → {0, 1} for the family of (n, n−1)-
sources, for any ε < 1/2.

Proof. Suppose there exists such an extractor Ext : {0, 1}n → {0, 1}. For b ∈ {0, 1}, define
Sb = {x ∈ {0, 1}n : Ext(x) = b} and Xb to be the source that is uniformly distributed on the set
Sb. Note that at least one of S0 and S1, say S0, has cardinality ≥ 2n−1. Thus, H∞(X0) ≥ n − 1
but the support of Ext(X0) is {0}, yielding the required contradiction.

Despite the impossibility of randomness extraction in such generality, intense research has been
conducted on randomness extraction in more restricted settings over the last 4 decades, leading to
a beautiful and rich theory of randomness extraction. It is well beyond the scope of this article to
provide an exhaustive list of research undertaken on randomness extraction. Instead we will focus
on the concrete problem of extracting from the class of sources where each weak source consists of
two independent weak sources. We formally define two-source extractors as follows.

Definition 1.4 (Two-source extractor). A function 2Ext : {0, 1}n × {0, 1}n → {0, 1}m is called
a (k, ε)-extractor if it satisfies the following: for any two independent (n, k)-sources X and Y , we
have

∆(2Ext(X,Y );Um) ≤ ε.

A simple probabilistic argument shows the existence of 2-source extractors for min-entropy k =
log n+O(1) (setting m, ε to constants). Chor and Goldreich [CG88] asked the question of explicitly
constructing two-source extractors. Using Lindsey’s lemma, they constructed an explicit extractor
that works for min-entropy more than n/2. After nearly two decades, Bourgain [Bou05] broke the
“half entropy rate barrier”, using techniques from additive combinatorics, and constructed a two-
source extractor for min-entropy (1/2 − δ)n, for some tiny constant δ > 0. Based on exponential
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sum estimates of Karatsuba [Kar71, Kar91] it follows that the Paley graph extractor (introduced
in [CG88]) is a two-source extractor requiring min-entropy C log n in one of the sources and min-
entropy (1/2+δ)n in the other source. Raz [Raz05] gave a more general construction of a two-source
extractor in this unbalanced entropy setting. However, it appeared to be a significant challenge to
construct a two-source extractor for min-entropy much smaller than n/2 in both of the sources.

A successful line of work [BIW06, Rao09, Li11, Li13, Li15b] considered the relaxed setting of
extracting with access to more than two sources. This has led to a near optimal three-source
extractor that works for polylogarithmic min-entropy and has negligible error [Li15b].

The task of constructing a two-source extractor that works for min-entropy significantly smaller
than n/2 was achieved by Chattopadhyay and Zuckerman [CZ19], using a new framework for
constructing two-source extractors that they introduced. They constructed a two-source extractor
that works for logC n min-entropy, for some constant C. The extractor in [CZ19] outputs 1 bit and
has error 1/nΩ(1). Li [Li16] soon improved the output length to Ω(k) bits.

It remains a challenging open problem to construct a two-source extractor with error 1/nω(1) for
min-entropy significantly smaller than n/2 (the extractor constructions in [CG88, Bou05] achieve
exponentially small error). This is indeed important for many cryptographic applications that cru-
cially require negligible error. Recently, Lewko [Lew19] used progress in additive combinatorics to
improve the entropy requirement for low-error two-source extractors to roughly 4n/9, which remains
the state-of-art construction in the low-error regime. Ben-Aroya et al. [BACDTS19] constructed a
weaker object known as a two-source condenser that works for polylogarithmic entropy and achieves
negligible error. The output of a condenser is required to be close to a high-min-entropy distribution
(instead of being close to uniform).

An impressive recent line of works by several researchers [BADTS16, CL16, Coh16b, Mek17,
Coh17, Li17, Li19] built on the [CZ19] framework, to lower the min-entropy requirement of the 2-
source extractor in the constant error regime. The state-of art construction by Li [Li19] requires
min-entropy C log n(log log n)/ log log log n, for some constant C > 0.

Ramsey graphs A major motivation for the line of work focusing on constructing near optimal
two-source extractors in terms of min-entropy (with constant error) is that such extractors directly
imply explicit Ramsey graphs, a major open problem raised by Erdös [Erd47] in extremal com-
binatorics. Recall that an undirected graph on N vertices is called a K-Ramsey graph if it does
not contain any independent set or clique of size K. In 1930, Ramsey [Ram30] showed that there
cannot exist a (logN)/2-Ramsey graph on N nodes. In 1947, Erdös [Erd47] used the probabilistic
method to prove the existence of 2 logN -Ramsey graphs and posed it as a challenging open problem
to explicitly construct such graphs.

It turns out that a (k, ε)-two-source extractor 2Ext : {0, 1}n×{0, 1}n → {0, 1} with error ε < 1/2
implies a K/2-Ramsey graph on N nodes, where N = 2n and K = 2k. Thus, plugging in the two-
source extractor from [Li19] implies a (logN)o(log log logN)-Ramsey graph on N nodes. We refer the
interested reader to [Coh19, CZ19] for more references and discussion on explicit constructions of
Ramsey graphs.

Outline The main goal of this article is to provide an accessible introduction to the various
techniques and notions that play a key role in the recent developments of two-source extractors.
We use Section 2 to briefly discuss seeded extractors, a key component in all recent progress
on explicit extractor constructions. In Section 3, we introduce seeded non-malleable extractors
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and give detailed sketches of the new ideas that go into their recent explicit constructions. In
Section 4, we discuss resilient functions and their use in extracting from bit-fixing sources. Finally
in Section 5, we sketch the construction of the two-source extractor from [CZ19] that relies on the
all the ingredients discussed in previous sections.

2 Seeded extractors

Informally, a seeded extractor uses a short independent and uniform string, called a seed, to extract
randomness from a weak source. This notion was introduced by Nisan and Zuckerman [NZ96] in
the context of derandomizing space bounded computation.

Definition 2.1 (seeded extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a (k, ε)-
seeded extractor if the following holds: for any (n, k)-source X, we have

∆(Ext(X,Um);Um) ≤ ε.

Using the probabilistic method, it is possible to show that a random function is a seeded ex-
tractor with d = log(n − k) + 2 log(1/ε) + O(1) and m = k + d − 2 log(1/ε) − O(1). Around
three decades of research on seeded extractors have led to optimal constructions (up to con-
stants) [LRVW03,GUV09,DKSS13] and some remarkable connections to other areas of theoretical
computer science and mathematics [WZ93,Zuc96,Uma99,Tre01,MU02,Zuc06,GUV09,DW11]. We
refer the reader to excellent surveys of Shaltiel [Sha04] and Vadhan [Vad12] (and references therein)
for more details on explicit constructions of seeded extractors and their applications.

A strengthened notion is that of a strong seeded extractor, which can be informally described
as requiring the output of the extractor and the seed to be uncorrelated. Before formally defining
this, we introduce a couple of convenient notations.

Notation For arbitrary random variables A,B,C, we use the notation ∆((A;B)|C) to denote the
quantity ∆((A,C); (B,C)). For a sequence of random variables A1, . . . , At, we use the notation
{Ai}ti=1 to denote the joint random variable (A1, . . . , At).

Definition 2.2 (strong seeded extractor). A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a
(k, ε)-strong seeded extractor if the following holds: for any (n, k)-source X, we have

∆((Ext(X,Ud);Um)|Ud) ≤ ε.

Many of the above mentioned constructions yield strong seeded extractors. In particular,
[DKSS13] constructs a strong seeded extractor that has seed length d = O(log(n/ε)) and output
length m = (1− o(1))k.

Alternate view It is sometimes useful to view a seeded extractor as a collection of functions
indexed by the seed. The following lemma presents this alternate view and reframes a strong seeded
extractor in this view.

Claim 2.3. Let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-strong seeded extractor. For each seed
y ∈ {0, 1}d, define the function hy : {0, 1}n → {0, 1}m as hy(x) = Ext(x, y). Let D = 2d.

For any (n, k)-source X, there exists a subset of seeds SX ⊂ {0, 1}d, |SX |/D ≥ 1−
√
ε such that

for all y ∈ SX , we have
∆(hy(X);Um) ≤

√
ε.
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Proof. It follows from the definition of a strong seeded extractor that

Ey∼Ud [∆(hy(X);Um)] ≤ ε.

Thus, by a Markov argument, it follows that there exists SX ⊂ {0, 1}d, |SX | ≥ (1−
√
ε)D such that

∆(hy(X);Um) ≤
√
ε for all y ∈ SX .

3 Non-malleable extractors

Dodis and Wichs [DW09] introduced the notion of a non-malleable extractor motivated by appli-
cations to a well-studied problem in cryptography, known as privacy amplification [BBR88,Mau92,
BBCM95, MW97]. Informally, the output of a seeded non-malleable extractor looks uniform even
conditioned on its output on a “correlated seed”, where the correlated seed can be thought of as
being produced by an adversary who has access to the seed. We present a more general definition
of non-malleable extractors that was first studied by Cohen, Raz and Segev [CRS14].

Definition 3.1. A function Ext : {0, 1}n × {0, 1}d → {0, 1}m is called a (t, k, ε)-non-malleable
extractor if the following holds: for any (n, k)-source X, any t-tuple of functions (f1, . . . , ft), where
each fi : {0, 1}d → {0, 1}d has no fixed points1, we have

∆
(
(nmExt(X,Ud);Um)|{nmExt(X, fi(Ud))}ti=1, Ud

)
≤ ε.

When the parameters k, ε are clear from context, we sometimes drop these parameters from the
notation and simply write t-non-malleable extractor. The case of t = 1 is the standard definition
of a non-malleable extractor, as introduced in [DW09]. Further note that the degenerate setting of
t = 0 recovers the definition of a strong seeded extractor.

Dodis and Wichs [DW09] used the probabilistic technique in a clever way to prove the existence
of (1, n, k)-non-malleable extractors. This argument was extended in [BACD+18] to prove the
existence of (t, n, k)-non-malleable extractors with k ≥ (t+ 1)m+ 2 log(1/ε) + log d+ 4 log t+O(1)
and d ≤ 2 log(1/ε) + log(n− k) + 2 log(t+ 1) +O(1).

Alternate view As in the case of seeded extractors, we can view non-malleable extractors as a
collection of functions, indexed by the seed. We record an analogue of Claim 2.3 for non-malleable
extractors that was proved in [CZ19]. Informally, it states that for any source X, there exists a
large fraction of the functions in this collection that are almost t-wise independent.

Claim 3.2. Let nmExt : {0, 1}n×{0, 1}d → {0, 1}m be a (t, k, ε)-non-malleable extractor. For each
seed y ∈ {0, 1}d, define the function hy : {0, 1}n → {0, 1}m as hy(x) = nmExt(x, y).

For any (n, k)-source X, there exists a subset of seeds SX ⊂ {0, 1}d, |SX |/D ≥ 1−
√
ε such that

for all such that for any distinct y1, . . . , yt ∈ SX , we have

∆
(
{hyi(X)}ti=1;Umt

)
≤ O(2m · t ·

√
ε).

Proof sketch. Define a “bad” set of seeds as follows:

BAD = {y ∈ {0, 1}d : ∃ distinct y1, . . . , yt ∈ {0, 1}d \ {y},∆
(
(hy(X);Um)|{hyi(X)}ti=1

)
>
√
ε}

1For a function f : Ω → Ω, we say that x ∈ Ω is a fixed point (of f) if f(x) = x.
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The idea is to bound the size of BAD using the fact that nmExt is a (t, k, ε)-non-malleable extractor.
In particular, define t adversarial functions f1, . . . , ft as follows: for any y ∈ BAD, and i ∈ [t], set
fi(y) = yi. It now follows that

∆((nmExt(X,Ud);Um)|{nmExt(X, fi(Ud))}ti=1, Ud) ≥
√
ε · |BAD|/D,

and thus |BAD| ≤
√
εD. Setting SX = {0, 1}d\BAD, the lemma can now be proved using standard

probability lemmas. We skip the details here and refer the reader to Lemma 2.17 in [CZ19].

3.1 Explicit constructions

The task of constructing non-malleable extractors seemed quite challenging even for the simple
case of t = 1 and k = 0.99n. The first explicit (t, k, ε)-non-malleable extractor was constructed by
Dodis, Li, Wooley and Zuckerman [DLWZ14]. Their construction worked for t = 1, k ≥ (1/2 + δ)n
and ε = 2−Ω(n), for any constant δ > 0. Subsequently, Cohen, Raz and Segev [CRS14] constructed
a non-malleable extractor for general t but still required k ≥ (1/2 + δ)n. For the case of t = 1,
Li [Li17] improved the entropy requirement to k ≥ (1/2− γ)n for some tiny constant γ > 0.

A common feature of the non-malleable extractor constructions in [DLWZ14, CRS14, Li17] is
that they are based on existing constructions of two-source extractors. For instance, Dodis et
al. [DLWZ14] show that the Paley graph extractor, that was introduced in [CG88], is a non-
malleable extractor. Cohen et al. [CRS14] proved that the two-source extractor constructed by
Raz [Raz05] is a non-malleable extractor, and Li [Li17] constructed a non-malleable extractor by
adapting Bourgain’s two-source extractor [Bou05]. The best available explicit two-source extractor
at that time was due to Bourgain [Bou05] that required min-entropy rate ≥ (1/2−δ) in each source,
and hence it appeared to be a dead-end to pursue this line of attack (of proving non-malleability
properties of an existing two-source extractor) to construct better non-malleable extractors.

Chattopadhyay, Goyal, and Li [CGL16] introduced a new framework (which, for the rest of
this article, we call as the CGL framework) for constructing non-malleable extractors, and gave
explicit t-non-malleable extractors that work for k ≥ c · t · (log(n/ε))2, for some constant c > 0.
In particular, for t = 1, this provided the first explicit non-malleable extractor that could handle
polylogarithmic min-entropy, providing an exponential improvement over prior work (described in
the previous paragraph). Subsequent refinements and modifications of this framework have led
to near optimal non-malleable extractors. In particular, the state-of-art explicit non-malleable
extractor [Li19] works for k ≥ t · (log log n+ log(1/ε) · o(log log(1/ε))). We focus on presenting the
CGL framework.

3.1.1 The CGL framework for constructing non-malleable extractors

The CGL framework relies on two new pseudorandom objects that we introduce in this section.
We note that [CGL16] used these pseudorandom objects implicitly, and Cohen [Coh16c] distilled
the ideas of this framework and explicitly defined these objects.

Advice correlation breakers Informally, a correlation breaker uses some independent random-
ness to “destroy correlation” that may exist between a sequence of random variables. More formally,
the task of a correlation breaker CB : {0, 1}n × {0, 1}d → {0, 1}m can be formalized as follows:
Let X1, . . . , Xt be a sequence of (possibly) correlated random variables, with each Xi supported on
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{0, 1}n. Further suppose there is an ` ∈ [t] such that X` is “good”, i.e., X` is an (n, k)-source. Let
Y be a uniform independent seed. We then require

∆
(
(CB(X`, Y );Um)|{CB(Xj , Y )}j∈[t]\{`}, Y

)
< ε.

It is not hard to see that such a function CB cannot exist in this generality, with a simple
counterexample being that all the Xi’s are the same random variable. However, it turns out that
one can fix this problem by additionally supplying the correlation breaker with some “advice”.

We now record a formal definition of an advice correlation breaker.

Definition 3.3 (Advice correlation breaker). A function ACB : {0, 1}n×{0, 1}d×{0, 1}a → {0, 1}m
is called a (t, k, ε)-ACB if the following holds:

• Correlated variables: let {Xi}ti=1 be any sequence of (possibly correlated) random variables,
each supported on {0, 1}n. Suppose that there exists ` ∈ [t] such that X` is an (n, k)-source.

• Independent randomness: let {Yi}ti=1 be another sequence of random variables such that Y` is
uniform (on {0, 1}d). Further suppose {Xi}ti=1 and {Yi}ti=1 are independent random variables.

• Advice strings: let α1, . . . αt ∈ {0, 1}a be such that α` 6= αj for all j ∈ [t] \ {`}.

Then,
∆
(
(ACB(X`, Y`, α`);Um)|{ACB(Xj , Yj , αj)}j∈[t]\{`}, {Yi}ti=1

)
< ε.

The first construction of an advice correlation breaker was given in [CGL16], relying on a
beautiful construction known as the flip flop construction, introduced by Cohen [Coh16a]. Indeed
a crucial observation in [CGL16] was that the flip flop construction is just an advice correlation
breaker that works for one bit of advice (i.e., a = 1). We note that techniques introduced by
Li [Li13] can also be adapted to give an alternate construction of an advice correlation breaker that
works for one bit of advice. We think that the flip flop construction is easier to digest, and will
focus on it here.

The flip flop construction makes clever use of a powerful technique introduced by Dziembowski
and Pietrzak [DP07] known as alternating extraction. We note that all existing constructions of
advice correlation breakers rely on alternating extraction (which, as we will see below, composes
seeded extractors in an interesting way). We believe it should be possible to construct such objects
from more elementary techniques, and record it as an open question.

Open Question 3.4. Find a construction of an advice correlation breaker, even for a = 1 and
t = 2, that does not rely on alternating extraction.

We now describe the method of alternating extraction and then sketch the flip flop construction.

Definition 3.5 (Alternating extraction). The setup is the following:

• There are two parties, Quentin with access to a (nq, kq)-source X, and Wendy with access
to a (nw, kw)-source Y and a seed S0 that is uniform on {0, 1}d. The distributions X and
(Y, S0) are independent.

• Quentin and Wendy are equipped with (k, ε)-strong seeded extractors Extq : {0, 1}nq ×
{0, 1}d → {0, 1}d and Extw : {0, 1}nw × {0, 1}d → {0, 1}d respectively.
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Given a parameter h, the alternating extraction protocol consists of the following interactive protocol
between Quentin and Wendy:

• Wendy starts the interaction by sending her seed S0 to Quentin. Quentin uses the seed S0

to extract a new seed R0 from the source X using the strong seeded extractor Extq, i.e.,
R0 = Extq(X,S0). Quentin now sends back the seed R0 to Wendy to end this round of
interaction.

• The next round starts with Wendy creating the seed S1 = Extw(Y,R0), and the interaction
continues in this way. The number of rounds of interaction is given by the parameter h.

Thus, the transcript of the communication between Quentin and Wendy is the following sequence
of random variables:

S0, R0 = Extq(X,S0), S1 = Extw(Y,R0), . . . , Sh = Extw(Y,Rh−1), Rh = Extq(X,Sh).

Informally, the alternating extraction protocol enjoys the property that at any point during
the interaction, a newly created seed (i.e, Si or Ri) is close to uniform on a typical fixing of the
interaction up to this point. We record this in the following claim.

Claim 3.6. Assume that kw, kq ≥ k + 10hd+ 2 log(1/ε). Then, for all i ≤ h, we have

∆ ((Ri;Ud)|{Sj}j≤i, {Rj}j<i, Y ) < O(hε), and ∆ ((Si;Ud)|{Sj}j<i, {Rj}j<i, X) < O(hε).

We only briefly sketch the main ideas here and refer the reader to Appendix E in [DW09] for a
formal proof. The proof goes via induction on i. First consider the base case of i = 0. Clearly S0 is
uniform and is independent of X. Thus, even conditioned on X, the random variable S0 remains
uniform. Further, since Extq is a strong seeded extractor, it follows that for a typical fixing of
S0 = s0, we have that R0 = Extq(X, s0) is ε-close to uniform. Further note that on fixing S0,
the random variable R0 is now a deterministic function of X. Thus, we can fix Y as well without
affecting the distribution of R0. This completes the base case. The inductive step can be proved
using similar arguments and we skip it here.

It turns out that the alternating extraction protocol satisfies a much stronger property. To
state this, we consider the more general setup, some variant of which has been considered in
various works [DW09,Li13,Li15a,Coh16a,CGL16].

• Let {Xi}ti=1, {Yi}ti=1, {Si,0}ti=1 be sequences of random variables, each Xi on {0, 1}nq , each
Yi on {0, 1}nw and each Si,0 on {0, 1}d such that for some ` ∈ [t], X` is an (nq, kq)-source,
Y` is an (nw, kw)-source and S`,0 is uniform on {0, 1}d. Assume that the random variables
{Xi}ti=1 and

(
{Yi}ti=1, {Si,0}ti=1

)
are independent.

• As before, Quentin and Wendy are equipped with (k, ε)-strong seeded extractors Extq :
{0, 1}nq × {0, 1}d → {0, 1}d and Extw{0, 1}nw × {0, 1}d → {0, 1}d, respectively.

• For i ∈ [t], Quentin and Wendy produce the following transcript while executing the alter-
nating extraction protocol for h rounds with access Xi and (Yi, Si,0), respectively:

Si,0, Ri,0 = Extq(Xi, Si,0), Si,1 = Extw(Yi, Ri,0), . . . , Si,h = Extw(Yi, Ri,h−1), Ri,h = Extq(Xi, Si,h).
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Claim 3.7. Assume that kw, kq ≥ k + 10htd+ 2 log(1/ε). Then, for all i ≤ h, we have

∆
(
(R`,i;Ud)|{Se,j}e∈[t]\{`},j≤i, {Re,j}e∈[t]\{`},j<i, {Yj}j∈[t]

)
< O(hε),

and
∆
(
(S`,i;Ud)|{Re,j}e∈[t]\{`},j<i, {Se,j}e∈[t]\{`},j<i, {Xj}j∈[t]

)
< O(hε).

The proof of the above claim uses inductive arguments that are similar to that sketched for
Claim 3.6. We skip the proof and refer the interested reader to Lemma 4.1 in [Li13] for more
details.

We are now finally ready to describe the flip flop construction. Instead of directly presenting
the construction, we try to motivate it in a natural way, given the above properties of alternating
extraction protocols. Recall that the flip flop construction is an advice correlation breaker that uses
one bit of advice. Thus, we want to construct a function FF : {0, 1}n × {0, 1}d × {0, 1} → {0, 1}m
such that if:

• {Xi}ti=1 is any sequence of (possibly correlated) random variables, each supported on {0, 1}n
and there exists ` ∈ [t] such that X` is an (n, k)-source.

• {Yi}ti=1 is another sequence of random variables such that Y` is uniform (on {0, 1}d), and such
that {Xi}ti=1 and {Yi}ti=1 are independent random variables,

• α1, . . . αt ∈ {0, 1} are such that α` 6= αj for all j ∈ [t] \ {`}.

then
∆
(
(FF(X`, Y`, α`);Um)|{FF(Xj , Yj , αj)}j∈[t]\{`}, {Yi}ti=1

)
< ε.

Here is an initial attempt to construct FF: On input (Xi, Yi, αi), we let Si,0 denote the prefix Yi
of length d′ = d/10. Now let Quentin and Wendy play two rounds of alternating extraction using
Xi and (Yi, Si,0) respectively to produce random variables Si,0, Ri,0, Si,1, Ri,1. Finally, define the
output of FF as Ri,αi .

We claim that this works in the case when α` = 1. Indeed note that since α` 6= αj for all
j ∈ [t] \ {`}, it must be that αj = 0. Thus, FF(X`, Y`, α`) = R`,1 and for all j ∈ [t] \ {`},
FF(Xj , Yj , αj) = Rj,0. Thus, we arrive at the desired conclusion using Claim 3.7.

However, it may be the case that α` = 0, in which case this construction fails to work. It turns
out that this can be fixed by doing two additional rounds of alternating extraction, leading to the
actual flip flop primitive.

We sketch the final construction of FF, and refer the reader to [Coh16a,CGL16] for more details
of the proof. On input (Xi, Yi, αi), as described above, we produce the random variable Ri,αi . Now,
define Y ′i = Ext(Y,Ri,αi) for an appropriately chosen strong seeded extractor Ext, and let S′i,0 be the
prefix of Y ′i,0 of length d. Now Quentin and Wendy runs two more rounds of alternating extraction
using Xi and (Y ′i , S

′
i,0) respectively to produce random variables S′i,0, R

′
i,0, S

′
i,1, R

′
i,1. Define the

output of FF to be R′i,1−αi .
The intuition for why this works is the following: in the case when α` = 1, the first two rounds

of alternating extraction leads to the breaking of correlation. One can then show that additional
rounds of alternating extraction does not affect this outcome. Further in the case when α` = 0, the
final two rounds of alternating extraction leads to the desired outcome.

Theorem 3.8. There exist constants c1, c2 > 0 and an explicit (k, t, ε)-advice correlation breaker
FF : {0, 1}n × {0, 1}d × {0, 1} → {0, 1}m for k ≥ c1t · (m+ log(n/ε)) and d = c2t · log(n/ε).
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Recall that our goal was to construct an advice correlation breaker that works for advice strings
of length a, for any integer a > 0. It was shown in [CGL16] that this can be achieved by composing
the FF construction in a natural way. We now sketch this construction.

The setup is exactly as described in the case of FF, except that the advice strings α1, . . . , αt
are now bit strings of length a. We want to construct ACB : {0, 1}n × {0, 1}d × {0, 1}a → {0, 1}m
such that

∆
(
(ACB(X`, Y`, α`);Um)|{ACB(Xj , Yj , sj)}j∈[t]\{`}, {Yi}ti=1

)
< ε.

For any string z, let (z)i denote the i’th bit of z. The following is a sketch of the ACB
construction:

• Let Zi,1 be the prefix of Yi of length n1 = c′ · t log(n/ε) for some large enough constant c′.
Now let Wi,1 = FF(Xi, Zi,1, (αi)1), where FF is the function from Theorem 3.8 with output
length m1 = O(log(n/ε)).

• Using Wi,1, extract Zi,2 = Ext(Yi,Wi,1), for a suitably chosen Ext with output length n1.
Now, define Wi,2 = FF(Xi, Zi,2, (αi)2) and Zi,3 = Ext(Yi,Wi,2). Continuing this way, we
create the sequence of random variables {Wi,j}aj=1. Finally let Ext1(Xi,Wi,a) be the output
of ACB, for a suitably chosen strong seeded extractor Ext′.

We sketch some intuition for the correctness of the above construction, and refer to [CGL16]
for more details. The idea is the following: since the advice string α` 6= αj for any j ∈ [t] \ {`},
there exists index f(j) ∈ [a] such that α` and αj differ on index f(j). Informally, we expect any
correlation between X` and Xj to be broken at the f(j)’th round of applying FF, i.e., the random
variable W`,f(j) is close to uniform for a typical fixing of Wj,f(j) (since FF is an advice correlation
breaker that works for one bit of advice). This intuition turns out to be true, and can be formalized
as follows: for i ∈ [a], define INDi = {j ∈ [t] \ {`} : f(j) ≤ i}. Then, for any i ≤ a,

∆((W`,i;Um1)|{Wi,j}j∈INDi , {Yj}j∈[t]) < O(i · ε).

Noting that INDa = [t]\{`}, the correctness of the ACB construction follows in a straightforward
way from the above guarantee. By appropriate choice of parameters and seeded extractors, one
obtains the following explicit advice correlation breaker.

Theorem 3.9. There exist constants c1, c2 > 0 and an explicit (k, t, ε)-advice correlation breaker
ACB : {0, 1}n×{0, 1}d×{0, 1}a → {0, 1}m for k ≥ c1 ·a ·t ·(m+log(n/ε)) and d = c2 ·a ·t2 · log(n/ε).

Subsequent works [Coh16b, CL16, Coh17, Li17, Li19] further improved parameters of the above
theorem. However the dependence of seed length on t is at least linear in all these constructions,
and it seems to be a bottleneck in current techniques (that are based on alternating extraction).
On the other hand, an application of the probabilistic method shows the existence of such advice
correlation breakers with seed length that is logarithmic in t. As shown in [BACD+18], progress in
this direction will have applications in constructing low-error two-source extractors—a major open
question in pseudorandomness. We record this as an open problem.

Open Question 3.10. Construct an explicit (t, k, ε)-advice correlation breaker ACB : {0, 1}n ×
{0, 1}d × {0, 1}a → {0, 1}m with d = o(t).
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We believe that a good starting point for the above question is to make progress on Open
Question 3.4.

We now introduce the second pseudorandom object that plays a key role in the CGL framework.
Informally, the motivation for this object is supply ACB with the necessary “advice” that it requires
to function.

Advice generators This object can be viewed as a weakening of a non-malleable extractor.
Consider the following setting: let X be an (n, k)-source and let Y, Y ′ be arbitrarily correlated
random variables on {0, 1}d such that

• X and (Y, Y ′) are independent,

• Y is uniformly distributed on {0, 1}d,

• For any y, the support of Y ′|Y = y does not contain y.

A (1, k, ε)-non-malleable nmExt : {0, 1}n × {0, 1}d → {0, 1}m then has the property that
nmExt(X,Y ) looks close to uniform on a typical fixing of nmExt(X,Y ′). An advice generator
Adv : {0, 1}n × {0, 1}d → {0, 1}a instead requires the weaker property that for most α ∈ {0, 1}a,
the support of Adv(X,Y )|Adv(X,Y ′) = α does not contain α.

Given the above (informal) definition, it is trivial to construct an advice generator if we allow
a ≥ d. Indeed, one can just set to output of Adv(x, y) = y. Thus, we are interested in achieving
output length a that is much smaller than d.

We now define advice generators more generally and then sketch a construction from [CGL16].

Definition 3.11. A function Adv : {0, 1}n×{0, 1}d → {0, 1}m is called a (t, k, ε)-advice generator
if the following holds:

• Let {Xi}i∈[t], {Yi}i∈[t] be two sequences of random variables on {0, 1}n and {0, 1}d respectively.

• Suppose for some ` ∈ [t], X` is an (n, k)-source and Y` is uniform on {0, 1}d.

• Suppose for any y` ∈ {0, 1}d, and any j ∈ [t] \ {`}, the support of Yj |Y` = y` does not contain
y`.

Then, with probability at least 1 − ε over fixing {Adv(Xi, Yi)}i∈[t]\{`}, {Yi}i∈[t], we have, for any
i ∈ [t] \ {`},

Adv(X`, Y`) 6= Adv(Xi, Yi).

The main idea in [CGL16] for constructing an advice generator Adv is quite simple, and involves
the following two steps: On input Xi, Yi,

1. encode Yi to Y ′i using a good error correcting code (i.e., constant rate and distance), and

2. sample a small subset of coordinates in Y ′i using X.

Since by assumption we have that Y` 6= Yj for any j ∈ [t] \ {`}, Step 1 ensures that the Hamming
distance between Y ′` and Y ′j is large. Thus, even sampling a small set of coordinates in Step 2
ensures that with high probability we sample a coordinate on which Y ′` and Y ′j are distinct.
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It turns out that for using advice generators to construct non-malleable extractors in the CGL
framework, one needs the additional property that X` contains enough min-entropy even condi-
tioned on a typical fixing of {Adv(Xi, Yi)}i∈[t], {Yi}i∈[t]. This leads to some additional subtlety in
executing Step 2 and we refer the interested reader to the actual construction in [CGL16] for more
details.

We record the parameters achieved by the construction in [CGL16].

Theorem 3.12. There exist constants c1, c2 > 0 and an explicit (k, t, ε)-advice generator Adv :
{0, 1}n × {0, 1}d → {0, 1}a with k ≥ c1t log(n/ε), d = c2t log(n/ε), and a = O(log(n/ε)).

Subsequent work of Cohen [Coh16b] improved the advice length a to O(log(1/ε)) for the case
of t = O(1), which is optimal up to constants.

Explicit non-malleable extractors We are now ready to present the CGL framework [CGL16]
for constructing a (t, k, ε)-non-malleable extractor nmExt : {0, 1}n×{0, 1}d → {0, 1}m. We use the
following ingredients:

• Let ACB : {0, 1}n×{0, 1}d×{0, 1}a → {0, 1}m be a (t+ 1, k/2, , ε)-advice correlation breaker

• Let Adv : {0, 1}n × {0, 1}d → {0, 1}a be an (t+ 1, k, ε)-advice generator.

Define
nmExt(X,Y ) = ACB(X,Y,Adv(X,Y )).

Assume X is an (n, k)-source and Y is a uniform independent seed of length d. Further, for
i ∈ [t], let fi : {0, 1}d → {0, 1}d be a tampering function with no fixed points.

We want to prove that

∆((nmExt(X,Y );Um)|{nmExt(X, fi(Y ))}ti=1, Y ) < C · ε,

for some constant C > 0.
For ease of notation, define Yi = fi(Y ). Note that by assumption, Y 6= Yi for any i ∈ [t]. Thus,

using the fact that Adv is a (t+1, k, ε)-advice generator, we have that with probability 1−O(ε) over
fixing {Adv(X,Yi)}i∈[t], it holds that for any i ∈ [t], Adv(X,Y ) 6= Adv(X,Yi). We also require the
stronger property of Adv that with probability 1−O(ε) over fixing

(
Adv(X,Y ), {Adv(X,Yi)}i∈[t]

)
,

• X remains independent of Y, {Yi}i∈[t], and

• X is O(ε)-close to a distribution with min-entropy at least k/2 and Y is O(ε)-close to a
distribution with min-entropy d(1− o(1)).

It turns out the construction of Adv in [CGL16] (see Theorem 3.12) indeed satisfies the above
properties assuming k > c1at and d = c2at

2, for large enough constants c1, c2 > 0. Thus, assume a
fixing of Adv(X,Y ) = α and {Adv(X,Yi) = αi}i∈[t] such that for all i ∈ [t], we have α 6= αi. The
proof now follows almost directly from the fact that ACB is an advice correlation breaker.

The attentive reader may notice the following problem: for the ACB to work, we require Y to
be uniform, but we are only guaranteed that it has min-entropy rate 1 − o(1). It turns out that
this is not much of a problem, and one can get around this by paying a small price in the error of
the ACB. We refer to [CGL16] for more details of the proof.

By composing the advice correlation breaker and advice generator constructed in [CGL16], they
obtained the following theorem.
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Theorem 3.13. There exist constants c1, c2 > 0 and an explicit (t, k, ε)-non-malleable extractor
nmExt : {0, 1}n × {0, 1}d → {0, 1}m for k ≥ c1t(m+ log(n/ε)) and d = c2t

2 log2(n/ε).

Subsequent work [Coh16b, CL16, Coh17, Li17, Li19] gave better constructions of advice cor-
relation breakers and advice generators, with the state-of-art construction [Li19] yielding a
(t, k, ε)-non-malleable extractor for k ≥ c1t(m + log log(n) + log(1/ε) · o(log log(1/ε))) and d =
c2t

2(log log(n) + log(1/ε) · o(log log(1/ε))).
Similar to the case of advice correlation breakers, we do not have explicit t-non-malleable extrac-

tors with seed length with sublinear dependence on t. Non-explicitly it is known that logarithmic
dependence on t suffice [BACD+18], while it appears to be a fundamental bottleneck of techniques
that are based on alternating extraction to break the linear barrier. It was proved in [BACD+18]
that progress in this direction will lead to better low-error two-source extractors.

4 Resilient functions and bit-fixing extractors

An important ingredient in the construction of two-source extractors in [CZ19] is the seemingly
unrelated notion of a resilient function, which arises in distributed computing [BOL85]. Informally,
a (q, δ)-resilient function f : {0, 1}n → {0, 1} has the property that no subset of coordinates of
size at most q can “influence” the outcome of the function by more than δ. The influence of a
subset of coordinates S (on f) is defined to be the probability that on randomly fixing values of
coordinates outside S, the value of the function f is still undetermined (and thus the coordinates
in S determine the outcome of f).

We record more general definitions of influence and resilient functions. First, we recall that
a distribution X on {0, 1}n is called (t, γ)-wise independent if for any set S ⊂ [n], |S| = t, we
have ∆({Xi}i∈S , Ut) ≤ γ, where Xi denotes the i’th bit of X. Such distributions are referred to as
almost t-wise independent distributions.

Definition 4.1. Let IQ,D(f) denote the probability that f is undetermined when the variables
outside Q are set by sampling from the distribution D. Now, define IQ,t,γ(f) = maxD∈Dt,γ IQ,D(f),
where Dt,γ denotes the family of all (t, γ)-wise independent distributions. Finally, define Iq,t,γ(f)
as the maximum value of IQ,t,γ(f) over all subsets of coordinates Q of size q.

When γ = 0, we simply drop γ from the notations and use IQ,t(f) and Iq,t. Further, when
t = n, (i.e., all the bits outside Q are uniform and independent), we drop the parameter t and use
the notations IQ(f) and Iq(f).

Definition 4.2. A function f : {0, 1}n → {0, 1} is (q, t, γ, ε)-resilient if Iq,t,γ(f) ≤ ε. Similarly, f
is (q, t, ε)-resilient if Iq,t(f) ≤ ε and is (q, ε)-resilient if Iq(f) ≤ ε.

We record a useful claim that lets us bound IQ,t,γ from a bound on IQ,t. This follows from a
result in [AGM03] which states that every almost t-wise independent distribution is close to some
t-wise independent distribution.

Claim 4.3. Suppose that f : {0, 1}n → {0, 1} is (q, t, ε)-resilient function. Then, for any γ > 0, f
is a (q, t, γ, ε+ γ · nt)-resilient function.
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Explicit resilient functions The usual setting in which resilient functions are studied in dis-
tributed computing assume that the “good bits” (i.e., bits outside Q) are completely uniform and
independent. Thus, the most well studied notion is that of (q, ε)-resilient functions. It is known
that the MAJORITY function (which we will denote by Maj) is a (q,O(q/

√
n))-resilient function.

It turns out that there are much better resilient functions than Maj. Ajtai and Linial [AL93]
gave a probabilistic construction of Boolean functions that are (q,O(q · (log n)2/n))-resilient, for all
q ≤ n/ log2 n. (In fact, their construction is a distribution over constant depth circuits.) This is
close to optimal, since by a result on Boolean functions [KKL89] it is known that for any for any
Boolean function f , there exists a set of coordinates Q of size cn/ log n with IQ(f) = Ω(1).

However much less was known about (q, t, ε)-resilient functions. Viola [Vio14] proved that

Maj is a
(
q, t, O

(
q√
n

+ log t
t

))
-resilient function for any t. Chattopadhyay and Zuckerman [CZ19]

derandomized the probabilistic construction of Ajtai and Linial [AL93] to obtain the following
result.

Theorem 4.4. There exist constants C, δ > 0 and an explicit function f : {0, 1}n → {0, 1} that
is (q, logC n,O(q/n1−δ))-resilient. Further, f is a monotone constant depth circuit and its bias is
1/nΩ(1).

The above theorem also relied on the breakthrough result of Braverman [Bra10] that polylog-
arithmic independence fools constant depth circuits. Subsequently Meka [Mek17] improved the
above result to exactly match the bound obtained in [AL93].

Non-oblivious bit-fixing sources The primary motivation for obtaining explicit resilient func-
tions in [CZ19] was that they were trying to extract from non-oblivious bit-fixing (NOBF) sources.
Informally, these are distributions which have hidden random coordinates, and the remaining coor-
dinates arbitrarily depend on the values of the random coordinates. We define this more formally.

Definition 4.5 (NOBF sources). A distribution V on {0, 1}` is called a (q, t, γ)-NOBF source if
there exists a subset S ⊂ [`], |S| ≥ q such that for any T ⊂ S, |T | = t, we have ∆({Vi}i∈T , Ut) ≤ γ,
where Vi is the i’th bit of V .

It turns out that (almost) unbiased (q, t, γ, ε)-resilient functions are extractors for (q, t, γ)-NOBF
sources. The intuition for this is that no set of coordinates of cardinality ≤ q are influential, and
thus the set of “bad” coordinates in the NOBF source cannot bias the resilient function by a lot.
The following claim formalizes this.

Lemma 4.6. Let f : {0, 1}n → {0, 1} be a Boolean function that is (q, t, γ, ε1, )-resilient. Further
suppose that for any (t, γ)-wise independent distribution D, |Ex∼D[f(x)] − 1

2 | ≤ ε2. Then f is an
extractor for (q, t, γ)-NOBF sources with error ε1 + ε2.

We skip the proof here and refer to Lemma 2.9 in [CZ19] for more details.

5 An explicit two-source extractor

In this section we sketch the two-source extractor construction of Chattopadhyay and Zuckerman
[CZ19] using ingredients developed in the previous sections. We recall their main result.
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Theorem 5.1. There exists a constant C > 0 and an explicit (k, ε)-two-source extractor 2Ext :
{0, 1}n × {0, 1}n → {0, 1} for k ≥ logC n and ε = 1/nΩ(1).

Let X,Y be independent (n, k)-sources. Let nmExt : {0, 1}n × {0, 1}d → {0, 1} be an explicit
(t, k, ε1)-non-malleable extractor (e.g., the explicit construction from Theorem 3.13 or any of the
subsequently improved constructions). Let D = 2d. The first idea is to use nmExt on X by
“brute forcing” over all the seeds of the non-malleable extractor, i.e., define Zw = nmExt(X,w) for
w ∈ {0, 1}d. It follows from the alternate view of non-malleable extractors (Claim 3.2) that there
exists SX ⊂ {0, 1}d, |SX | ≥ (1−√ε1)D such that for any T ⊂ SX , |T | = t, we have

∆({Zw : w ∈ T}, Ut) ≤ O(t
√
ε1).

Define Z to be the concatenation of all the Zw’s. It follows from the above discussion that Z is
a (
√
ε1 ·D, t,O(t

√
ε1))-NOBF source (see Definition 4.5) on {0, 1}D. Thus, a natural idea is to use

an appropriate (q, t, ε1)-resilient function, which as recorded in Lemma 4.6, is exactly an extractor
for NOBF sources. This almost works except for the following problem: recall that by Claim 4.3,
a (q, t, ε1)-resilient function f : {0, 1}D → {0, 1} is a (q, t, γ, γDt + ε1)-resilient function for any
γ > 0. Hence if the bias of f is bounded by ε1, then by Lemma 4.6 f can extract (one bit) from Z
with error γDt + 2ε1, where γ = O(t

√
ε1). All this is fine, except that D = 2d, where d is the seed

length of nmExt and hence grows with ε1. In fact, it can be shown that through known existing
lower bounds on the seed length of non-malleable extractors, the term γDt is always larger than 1.

It is in fact reassuring that the above does not work since then we would have constructed a
1-source extractor! This is where the second source Y comes in. The idea is to use Y to sample a
small set (with cardinality that is polynomial in n) of pseudorandom coordinates in Z. This can be
accomplished using standard techniques introduced by Zuckerman [Zuc97] of sampling using weak
sources. We skip the details of the sampling step here and refer the interested reader to [CZ19].

As a result of this sampling, we obtain a new source Z ′ that is a (ε′D1, t, γ = O(t
√
ε1))-NOBF

source on D1 = poly(n) bits, where ε′ is still of the same order as ε1. Thus, now we can control the
term γDt

1 since D1 is now disentangled from the error parameter of nmExt (i.e., ε1). By appropriate
choice of parameters one obtains that Z ′ is a (D1−η

1 , t = poly(log n), 1/Dt+2
1 )-NOBF, for some small

η > 0. Thus plugging in the explicit resilient function from Theorem 4.4, we obtain Theorem 5.1.
This completes the sketch of the construction.

It can be shown that using the sampling technique from [Zuc97], the constant η is the above
paragraph is smaller than 1/2. Thus one cannot use Maj as the resilient function in this con-
struction, and has to rely on the derandomization of the Ajtai-Linial function. Subsequent work of
Ben-Aroya, Doron and Ta-Shma [BADTS16] improved on the framework of constructing two-source
extractors described here and indeed uses the Maj function as their resilient function. Using Maj as
the resilient function has the advantage that the parameter t can even be set to a constant (where
as in [CZ19], it is required that t = poly(log n)). This added flexibility has been a crucial ingredient
in the recent line of work, described in the introduction, of obtaining two-source extractors with
near optimal parameters in the constant error regime.

We conclude by recording a couple of natural open questions. We would consider any progress
on these questions to be very interesting.

Open Question 5.2. Construct an explicit (o(n), 1/nω(1))-two-source extractor.

Recall that currently the best known explicit constructions of negligible error two-source con-
structions [Bou05, Lew19] require min-entropy close to n/2. In fact these extractor constructions
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are much simpler (though the analysis is based on sophisticated techniques from additive com-
binatorics) compared to the construction in [CZ19] and follow-up works. The following question
is posed in hope of continuing the spirit of exhibiting extraction properties of functions that are
simple to describe.

Open Question 5.3. Give a simpler construction of a two-source extractor (even for constant
error) that works for entropy 0.1n.
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