
Cloud-Hosted Intelligence for Real-time IoT Applications

Ken Birman, Bharath Hariharan, Christopher De Sa
Computer Science, Cornell University. {kpb3, bh497, cmd353}@cs.cornell.edu

May 31, 2019

Abstract

Deploying machine learning into IoT cloud settings will
require an evolution of the cloud infrastructure. In this
white paper, we justify this assertion and identify new
capabilities needed for real-time intelligent systems. We
also outline our initial efforts to create a new edge archi-
tecture more suitable for ML. Although the work is still
underway, several components exist, and we review them.
We then point to open technical problems that will need
to be solved as we progress further in this direction.

1 Introduction

Today’s datacenters employ a wide variety of distributed
services to support forms of edge computing. In the pop-
ular press, edge computing often refers to computing that
occurs directly on the sensors, but we have a different
concept in mind: a model in which intelligent tasks are
hosted in the cloud data center, but triggered by events
initiated from outside the data center. Moreover, our in-
telligent cloud subsystems are presumed to interact with
the sensors, configuring them in a continuous and highly
dynamic control loop. This vision of an edge partnership
changes the computational roles of the external devices:
a camera might pivot, focus, change its image sensing
parameters and so forth, but wouldn’t try to understand
the image. The cloud brings intelligence to bear yet also
leverages the unique capabilities of the sensors.

One should understand cloud infrastructures as a shared
environment, in which each “ecosystem” has specialized
roles, tools and services, but shares standard elements.
For example, the developer of a web-page-oriented ap-
plication finds existing three-tier infrastructures and tools
that cover most elements of most web development tasks,
and will guide the creation of an efficient solution, and
the similarly for a developer of a database app, a stream-
ing media platform, a mobility solution, etc. However,
we lack such an ecosystem for the new kind of edge com-
puting envisioned here. In today’s prevailing cloud in-
frastructure, machine learning occurs in batched back-end
infrastructures (such as MapReduce), while real-time ac-

tions occur as close to the edge as possible. The delay
between acquiring new knowledge and starting to use it at
the edge can be substantial. Moreover, we are not aware
of any situation in which a back-end system dynamically
reconfigures an edge sensor under time pressure.

The puzzle is that nobody wants to discard the pow-
erful existing technology base. Thus the challenge is to
reuse standard cloud technology when possible, but in a
very different environment. Further considerations center
on cost: today’s back-end machine learning infrastructure
was shaped by costs, and its pervasive batching of updates
reflects trade-offs between overhead and scalability. In the
edge, where learning would sometimes occur in response
to individual events, treating each event as a batch of size
one would be ineffective. This, in turn, suggests that for
some tasks, new kinds of incremental machine learning
algorithms will be key.

2 Real-time machine learning
To illustrate the new capabilities that will be required by
truly real-time machine learning, consider a somewhat
contrived concrete example. Suppose that Alice wishes
to trap and relocate a skunk that has nested somewhere
on her property, while not wanting to disrupt her neigh-
bor’s cats, which also roam her property. Her plan is to
track the movements of the skunk with a network of cam-
eras and then place several baited IoT-enabled intelligent
(animal-friendly!) traps, which will close when the skunk
is known to be inside. The novelty is that Alice’s cameras
and traps will also recognize the cats, closing the traps to
safeguard the bait and avoid trapping the wrong animals.

On the one hand, cats look similar to skunks,1 so ac-
curately distinguishing between the two requires compu-
tationally heavy machine learning models that cannot be
run on the meager computational resources of the cam-
eras. Alice’s plan is to improve the quality of classifica-
tion by combining data across cameras. However, the re-
sulting models will be computationally intensive and will
therefore need to run at least partially in the cloud. Ad-
ditionally, they will need to be responsive in real-time so

1As famously illustrated in the Pepé Le Pew cartoon animations.



that the traps can decide whether to remain open (if the
skunk is nearby) or close (if non-skunk animals are nearby
or if the skunk is caught).

We now encounter some of the many new elements of
the problem. A first issue is that the cameras probably
will not be able to do much of the heavy lifting: they will
be power and bandwidth constrained, with limited com-
putational capabilities. On the other hand, Alice probably
wants to leverage the features they do support, and those
could include parameterized preprocessing of value to her
ML pipeline. For example, video cameras might be able
to auto-focus, might support dynamic range control, could
have infrared or other unusual spectral options, and might
even have hardware able to help detect when an animal is
present in the frame. Video cameras also have substantial
storage: data is initially captured into on-camera storage,
and Alice will want to configure it to only report thumb-
nails. Then she can implement an intelligent algorithm
to decide which videos to actually download and process.
The video-acquisition “event” would thus trigger Alice’s
cloud-hosted logic, and her logic would decide whether or
not to initiate a download, determine whether to close the
trap or keep it open, etc.

Recent progress in computer vision can enable these
kinds of classification tasks and support the associated
models [3, 5]. Even so, Alice’s system would be difficult
to build on top of present IoT and cloud-edge technolo-
gies. Current IoT infrastructures are designed mostly to
employ models acquired in the past, and any learning in-
volves saving data into files for batch-processing outside
of the real-time event path. As a result, the existing plat-
forms do not offer a suitable place to host the kind of low-
latency ML model learning that Alice’s IoT application
will need.

Worse, when Alice’s application does initiate a down-
load, the ensuing pipeline might require rapid but heavy
processing to perform tasks such as coalescing multiple
events from different devices into a single event for uni-
fied processing, even when those events all represent the
same real-world occurrence (e.g. multiple camera views
of the skunk). In today’s systems, such tasks lean heavily
on hardware accelerators such as GPU, TPUs and FPGA
clusters. But for cost reasons, these are deployed primar-
ily at the back end, where they can be assigned to one
long-running task at a time and then used to process an
entire batch of new data. This approach makes sense in
existing systems, and amortizes overheads, but it requires
a tolerance of substantial processing delays.

As Alice works to move this sort of functionality to
the edge, she will encounter a number of puzzles. One
is that the edge is “opinionated” about how one interfaces
devices like video cameras to the cloud. In the prevail-
ing model, the devices themselves are managed by some
form of hub, and it reports on new events by trigger-

ing lightweight functions, which run within elastic multi-
tenant servers. A function, in this terminology, is just a
simple program coded in a standard language, but func-
tions are small, run in containers, and can be launched
in as little as a few milliseconds. They would normally
compute very briefly, after which the container is garbage-
collected. Thus, this entire model is mismatched with Al-
ice’s needs!

There is another edge option, albeit one that has not re-
ceived as much attention. Today’s IoT edge is supported
by heavier vendor-supplied services, which are used by
the function layer in many ways. Some just cache data
that functions can rapidly load through a key-value API.
Others perform tasks like image compression and still oth-
ers provide message bus or message queue functionality,
whereby a function can dispatch work to some kind of
back-end layer. One could imagine augmenting the hand-
ful of existing services with a new tier of user-created
µ-services, consisting of one or a few long-running pro-
cesses hosted on more powerful servers with attached ac-
celerators. Such approaches are common for web appli-
cations, but the needs of intelligent real-time applications
are sufficiently different so that creating a µ-service ca-
pability for the reactive edge poses interesting research
challenges.

If this were solved, Alice could implement a two-tier
solution: she would create a set of customized intelli-
gent functions to handle events as rapidly as possible,
but then use a cloud “app-service” to deploy a collection
of µ-services. These services would construct the real-
time knowledge models her applications will need, per-
form real-time classification and data fusion, and carry
out other tasks with real-time or online intelligence roles.
Because the µ-services will be long-running, any initial
setup delays would off the critical path that determines
real-time responsiveness.

Thus, we could solve the platform technology gap by
offering Alice a set of tools to enable this kind of applica-
tion development. But she will then be faced with doing
some fundamental research on what might be categorized
as real-time machine learning.

To see this, consider the ML side of Alice’s applica-
tion. An always-on ML system cannot know a priori of
all possible scenarios it will encounter in deployment. For
example, if a hitherto-unseen animal, such as raccoon or
possum enters Alice’s property, she’ll need to be careful
or the very dumb preprocessing occurring in the video
cameras themselves might dismiss the unfamiliar shape as
noise. Conversely, Alice wouldn’t want to trap these ani-
mals, given that her only real goal is to capture the skunk
so that she can move it to a skunk paradise far from her
home. In this single example we see a surprising num-
ber of relatively unexplored challenges in machine learn-
ing (sometimes called open world recognition and never-



Sensor detects
an unexpected
object or event.

IoT sensor
uses current
configuration.

1

2

CPU

Compute on
the IoT device
sends event
to the cloud.

3 Cloud infrastructure
rapidly allocates
resources and
accelerators for ML
computations.

4

Cloud loads other
necessary data from
other sensors.

5

Cloud updates ML
model to adjust to
unexpected event.

6

Cloud computes new sensor
parameters and/or updates
ML models running inference
on the IoT device and/or
makes decisions.

7

Camera focus
Pivot and tilt

Spectral range

Animal detection
network params
Animal detection
network params

Decisions

Figure 1: Illustration of the proposed capabilities of intelligent real-time IoT.

ending learning [4]). These problems that require sig-
nificant interactions between the cloud edge and the IoT
devices. For example, if Alice’s cameras are modestly
intelligent, it would be plausible that one could upload
a trained convolutional neural network model for image
classification. The cameras would then be able to iden-
tify interesting images that should be uploaded for further
analysis on the cloud. Viewed as a whole, the cloud edge
might need to (1) identify that it has observed anoma-
lous behavior, (2) query the cameras for their recent video
data; (3) add this new kind of animal to its recognition
vocabulary, (4) re-train all Alice’s cameras’ local classi-
fiers to now classify the opossum as interesting; and (5)
push these changes to the cameras, so that they now gen-
erate IoT events for the opossum. And all this needs to
be done in real-time, before the possum gets the chance to
eat all the bait in all the traps. And all of it would need to
be fault-tolerant, scalable and self-managed. This overall
need is for what we call intelligent real-time IoT. To en-
able it we will need to build both new ML technologies
and new IoT infrastructure, while reusing the same cloud-
hosted µ-service management frameworks that work so
well for today’s web applications and three-tier database
solutions.

3 Bridging the gap
To see how this gap can be bridged, lets first drill down on
the existing IoT infrastructure. Today’s cloud support for
IoT centers on security: sensors are managed by a special-
ized IoT hub responsible for securely binding to the de-
vices, managing software version levels, and pushing any
required configuration parameters. Customization entails
writing functions that will be triggered by IoT events and
can carry meta-data (sensor data, thumbnails, etc). The

functions would then either handle the event, or forward
it to µ-services capable of the heavier processing tasks re-
quired for visual analysis or intelligent planning.

But now consider the way that existing ML technolo-
gies are implemented: generally speaking, they are not
designed for long-term active learning in a small pool of
edge-based servers, even ones with the computer power
to run a language like TensorFlow [1] and with attached
accelerators (such as FPGAs, GPUs and TPUs [14]). In
our view, support for these accelerators is not minor:
the importance of using them will only grow as special-
ized architectures for fast inference continue to be devel-
oped [12,17]. Indeed, beyond computational accelerators,
high performance will almost certainly require selective
deployment of high-speed non-volatile memories, and be-
cause we will want to react in real-time as new videos
are captured, the use of remote direct memory (RDMA)
hardware to move the bytes. Since copying within the op-
erating system can actually be far slower than RDMA, a
zero-copy style of computing will also be needed.

We thus are confronted with challenges that could re-
quire compiler extensions (to eliminate copying, at least
for large objects), operating system extensions (to ensure
that these large objects will be placed in parts of mem-
ory properly mapped and registered for RDMA transfers),
RDMA-enabled tools for data handling (for example, to
deliver multi- perspective video data to a GPU config-
ured to fuse them into a 3-D movement model), and out-
of-band control mechanisms for interacting dynamically
with the parameters of the cameras. We might need our
video transfers to bypass host memory entirely, sending
the data directly from the edge sensors into an accelerator
to avoid the delays of first staging it through host mem-
ory. And beyond all of these issues are questions of fault-
tolerance, consistency, security, and privacy.



4 Cloud/Device cooperation

Of great interest is the idea that the host and the sensor
or actuators could work together as an intelligent, au-
tonomous, real-time “solution.” Some tasks can be per-
formed directly on cameras, but the devices would often
have to be parameterized with recently acquired models
prepared on the cloud edge. Conversely, some tasks that
arise in the vision system cannot occur in the cameras
(such as multi-perspective data fusion), and can only be
carried out by sending those data fragments to the cloud,
where we can set up a processing network consisting of
functions and µ-services tailored specifically for that role.

The ML developer today lacks abstractions to describe
this online style of intentional learning, in which the sys-
tem not only learns models, but then might need to split
the learned model between the “device portion” and the
“cloud portion.” To enact such a split, we would also need
platform abstractions to facilitate the needed interactions,
reconfiguring the sensors to change their behavior on the
fly as part of a single real-time knowledge cycle.

Our data fusion example illustrates all aspects of this
puzzle, and the problem will also arise in systems of much
greater societal importance than skunk-relocation. For ex-
ample, consider the challenge of continuously updating a
model of traffic on a highway using a stream of snippets
of video (or videos, showing the same highway lanes from
multiple cameras from multiple angles). Just as Alice’s
“novel animal” scenario exposed problems that no single
camera could perform, here we encounter related needs,
but at a much more ambitious scale. The current high-
way context would itself be a very large and dynamic ML
model. Tracking such a model and performing the inte-
gration of the multi-perspective data could only occur in
the cloud (a term that can include point-of-presence clus-
ters that situate portions of cloud functionality physically
close to some set of sensors).

But even if we cannot perform the desired tasks on the
IoT sensors themselves, it is equally infeasible to simply
send all of this data to the cloud and process everything
off-camera. First, even if cameras have limited capabili-
ties, those capabilities are still powerful, and we may not
be able to recover the lost information if we ignore the on-
camera processing step. Additionally, a genuinely large
IoT sensor deployment could capture immense amounts
of completely useless imagery and video from vast num-
bers of redundant perspectives, and shipping all of this
information to the cloud only to discard it is likely to be
prohibitive both due to the limited bandwidth of edge IoT
network links, and because of the limited power of the IoT
devices themselves.

To address this, ML algorithms running on the cloud
edge will need to (1) select a subset of the event-
associated data that they need, and have ways to request

that the IoT devices send those data, and (2) offload some
storage and compute tasks to the IoT device2, but in a se-
lective manner, and optimized to make use of the lim-
ited device storage and compute capacity. The cloud
might even anticipate a kind of data of interest, and move
quickly to reposition a camera or some other sensor to
capture that data: a tight real-time constraint. Current IoT
infrastructures do not support any of these modalities.

Our conclusion is that much as the big-data frameworks
at the back have evolved, the same must occur on the edge:
we will need a new kind of systems platform, and it will
enable the creation of an exciting new generation of real-
time ML solutions. In the big data, batch processing envi-
ronments, evolution was driven by success on high-value
use cases, and we have seen a steady growth in the sizes of
the data that need to be processed. This created the con-
text within which today’s machine-learning tools, special-
ized hardware and batch-driven execution environments
were created [16]. Tomorrow, we would argue, a sim-
ilarly rapid revolution will transform data-intensive ML
applications aimed at reactive real-time settings.

5 Preliminary steps

In our work at Cornell, we are starting to make inroads on
this agenda.

Systems side. The Derecho platform [13] is a new
C++ library that we created to assist developers of intelli-
gent µ-services3, and designed to integrate easily into the
prevailing IoT computing architecture. With an eye to-
wards the new reactive intelligent edge, we are now tack-
ling the challenge of using Derecho as a component of the
processing pipeline just described. Derecho already in-
tegrates efficiently with user-provided logic, but because
machine-learning algorithms are often expressed in ways
that facilitate the use of existing libraries, we are starting
to explore efficient support for important computational
motifs such as MapReduce and Stochastic Gradient De-
scent that can be expressed using MXNet, a popular C++
package offering a wide variety of ML kernels.

Every step of this undertaking it turning out to be chal-
lenging. When building Derecho itself, we made an early
decision that we would support a virtually synchronous
variant of Paxos, configurable either as an in-memory
multicast or as a persistent data logging mechanism, with
time-indexed versioning. But as we set out to create this
protocol and map it to RDMA, we encountered a puzzle:
RDMA performance is so extremely high that it requires
a whole new programming style, in which protocols must

2For example, a machine learning algorithm could perform dimen-
sionality reduction on the IoT device to compress the data before sending
it to the cloud.

3https://github.com/Derecho-Project/

https://github.com/Derecho-Project/


be split into a control plane and a data plane [15], then fur-
ther modified to be as asynchronous as possible, so as to
keep the RDMA hardware continuously busy. Even com-
mon functionality such as multithreading with lock-based
protection can create delays that significantly impede per-
formance at these data rates. Eventually, we found it
necessary to split Derecho’s data update path completely
away from its query path, so that neither can disrupt the
other. This was successful, and the current Derecho li-
brary can fully load our RDMA network, while read-only
computation chases the update stream, accessing stable
data a few microseconds behind the update frontier.

To fully leverage these features in a complex ML ap-
plication, we will need to consider a number of dimen-
sions. The application itself probably needs to be coded
in C++, avoid unnecessary copying (which is far slower
than RDMA data movement), minimize locking, and shift
unnecessary work off the runtime critical path. Beyond
those steps, one might want to restructure the ML algo-
rithm itself so that its time-sensitive patterns of data flow
will match the sweet spot for RDMA data movement.

Our initial target, MXNet, is well matched to these
goals: MXNet is coded in C++, and the developers who
created it already had a goal of minimizing synchroniza-
tion and copying on the critical paths. Even so, it isn’t triv-
ial to arrange for MXNet kernels to directly access data
held within Derecho’s key-value versioned object store,
and vice versa. Beyond this, the use of a greater variety
of hardware accelerators pose challenges. Derecho itself
focuses primarily on RDMA and NVM, and on the effi-
cient mapping of Derecho’s critical path to the hardware’s
fastest modes of use. If RDMA is available, Derecho
moves bytes entirely via direct DMA transfers from ma-
chine to machine, at data rates that can reach 16GB/s on
our current generation of 100GB Mellanox switches, both
on Infiniband and on RoCE. If NVM is available, Derecho
can leverage the highly efficient SPDK interfaces to offer
persistence via direct memory writes.

But as we integrate ML algorithms that run over
MXNet with Derecho, we might want Derecho’s data
replication paths to support the use of FPGA as a bump
in the wire (or perhaps bump in a group of wires, if we
are replicating data over a cluster). We might want those
data paths to terminate directly in a GPU or TPU clus-
ter, without “staging” all data through host memory first
(which entails an extra DMA transfer). Given that the
raw data can be held on the sensors for a period of time,
we might want to consider forms of fault-tolerance that
would require recomputing certain data, rather than sim-
ply storing one or more replicas of the raw data, or of
computed artifacts. Moreover, as seen above our longer
vision is to focus on a computing model that integrates
lightweight stateless functions with a collection of new µ-
services hosted in an app-service environment. Develop-

ers such as Alice will need to find it easy to use the system
to create these intelligent services, easy to test and deploy
the solutions, and also easy to configure them to lever-
age hardware acceleration as appropriate. Today, none of
these steps would be trivial.

ML research. We are also beginning to make progress
on the ML side of the agenda. Traditional machine learn-
ing systems, especially in complex sensing modalities
such as vision, must be trained offline on large labeled
training sets. This precludes rapid adaptation of the model
to new unseen situations in the real time settings discussed
above. Such rapid adaptation requires that the adaptation
be inexpensive both in terms of computation and in terms
of training data, since it is unlikely that large amounts of
labeled data can be collected in real time.

Unfortunately, it is unclear how the deep learning mod-
els that power modern systems can be trained under such
data and computation constraints. In our recent work
we have begun to build deep learning models that can
incrementally learn new classes from limited training
data without much computation. In terms of techniques,
our work belongs to a class of approaches called meta-
learning, which use simulated experiments to train learn-
ing machines that take training sets as input and pro-
duce trained models as output [9, 18, 19]. However, in
a departure from this paradigm, instead of just searching
for better learning machinery, our key insight is to de-
sign learning machines that leverage additional informa-
tion to make up for limited training data. This might be
through modeling common modes of intra-class variation
so that limited training sets can be automatically “aug-
mented” [10, 20], or by taking into account additional an-
notations that might be available, such as provided or in-
ferred figure-ground information [21]. At the same time,
we have taken care to design these systems so that they fit
real-world data and computational budgets but are effec-
tive in the challenging problems encountered in practice.
This approach has led to significant performance gains
on practical benchmarks: for example, in our most re-
cent work, we doubled the performance of state-of-the-art
models [21].

While these results are promising, they do not address
power and communication constraints that are character-
istic of IoT systems. To address these challenges, ad-
ditional techniques are needed for training with a lim-
ited communication bandwidth between the device and
the cloud and training networks that support low-power
inference. In some of our recent work, we have devel-
oped algorithms that support compressed-communication
learning with theoretical guarantees [2]—such guarantees
could be used to eventually build a system that automati-
cally compresses communication without the user (i.e. Al-
ice) needing to worry about the statistical effects. We have
also developed methods for fast and efficient learning and



inference with limited computational resources [22, 23],
including parallel and low-precision learning [7]. This
work is part of a broader line of research into algorithms
for efficient learning and inference being done in the ma-
chine learning systems community [16], but the special-
ization of these techniques to the IoT domain remains
mostly unexplored.

But there is still a large gap between incremental mod-
els trained quickly on small amounts of training data and
large, offline models. Quick adaptation and learning re-
quires models to have a fairly in-depth, generalizable un-
derstanding of the input domain, something that mod-
ern machine learning models still fail to develop. Future
work will require building models that discover and learn
aspects of the input domain beyond the provided labels
(such as the 3D structure of objects), so that these can
be used as intermediate representations for faster learn-
ing. More generally, however, we will need to make fast,
real-time adaptation a first-class citizen in the design and
evaluation of learning models, as opposed to just the fixed
test-set performance that we focus on today.

One possible way to make real-time adaptation a first-
class citizen is to use Bayesian machine learning methods
that model the time-varying nature of reality with a time-
varying statistical model such as a Markov chain or other
type of graphical model. These approaches can avoid the
difficulties with adapting models based on a fixed test set
by baking the real-time nature of the task into the ma-
chine learning model. To make such a model work in real
time, we will need algorithms to run inference and learn-
ing on graphical models in real time, which will allow
us to support rapid decision making that takes time into
account at all scales. In the IoT space, this is presently
a challenge because existing real-time machine learning
systems are focused almost entirely on inference for fixed
models trained a priori, and cannot be directly applied to
Bayesian ML which reasons on a higher level about dis-
tributions over models. Some of our prior work makes
steps towards this task by applying classic optimization
techniques, such as minibatching [6], parallelism [8], and
streaming memory access orders [11] to graphical model
tasks. But more work will be needed to make these pow-
erful Bayesian methods fully robust and real-time.

6 Conclusion

Machine learning technologies provide an exciting oppor-
tunity to improve the utility of IoT devices. But at present,
there is a mismatch between the abstractions used in ML
and in IoT systems that makes it more difficult to both
deploy ML in the IoT space and develop new ML capa-
bilities for IoT tasks. The overall need is for new abstrac-
tions on both sides that can support what we call intelli-

gent real-time IoT, an ecosystem that can spin up heavy-
weight processing in real-time to actively update an ML
model that can make real-time decisions about IoT events
or actions. We described our approach to bridge the gap
between ML and IoT technologies, and showed how our
preliminary steps at Cornell are starting to make progress
on this agenda.

References
[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M., Kudlur, M., Levenberg, J., Monga, R., Moore,
S., Murray, D. G., Steiner, B., Tucker, P., Vasude-
van, V., Warden, P., Wicke, M., Yu, Y., and Zheng,
X. TensorFlow: A system for large-scale machine
learning.

[2] Acharya, J., De Sa, C., Foster, D. J., and Sridharan,
K. Distributed learning with sublinear communica-
tion. arXiv preprint arXiv:1902.11259 (2019).

[3] Beery, S., Van Horn, G., and Perona, P. Recognition
in terra incognita. In The European Conference on
Computer Vision (ECCV) (September 2018).

[4] Carlson, A., Betteridge, J., Kisiel, B., Settles, B.,
Hruschka, E. R., and Mitchell, T. M. Toward an
architecture for never-ending language learning. In
Twenty-Fourth AAAI Conference on Artificial Intel-
ligence (2010).

[5] Cui, Y., Song, Y., Sun, C., Howard, A., and Be-
longie, S. Large scale fine-grained categorization
and domain-specific transfer learning. In The IEEE
Conference on Computer Vision and Pattern Recog-
nition (CVPR) (June 2018).

[6] De Sa, C., Chen, V., and Wong, W. Minibatch Gibbs
sampling on large graphical models. arXiv preprint
arXiv:1806.06086 (2018).

[7] De Sa, C., Feldman, M., Ré, C., and Olukotun,
K. Understanding and optimizing asynchronous
low-precision stochastic gradient descent. In ACM
SIGARCH Computer Architecture News (2017),
vol. 45, ACM, pp. 561–574.

[8] De Sa, C., Olukotun, K., and Ré, C. Ensuring rapid
mixing and low bias for asynchronous Gibbs sam-
pling. In JMLR workshop and conference proceed-
ings (2016), vol. 48, NIH Public Access, p. 1567.

[9] Finn, C., Abbeel, P., and Levine, S. Model-agnostic
meta-learning for fast adaptation of deep networks.
In ICML (2017).



[10] Hariharan, B., and Girshick, R. Low-shot visual
recognition by shrinking and hallucinating features.
In Proceedings of the IEEE International Confer-
ence on Computer Vision (2017), pp. 3018–3027.

[11] He, B. D., De Sa, C. M., Mitliagkas, I., and Ré,
C. Scan order in Gibbs sampling: Models in which
it matters and bounds on how much. In Advances
in neural information processing systems (2016),
pp. 1–9.

[12] Howard, A. G., Zhu, M., Chen, B., Kalenichenko,
D., Wang, W., Weyand, T., Andreetto, M., and
Adam, H. Mobilenets: Efficient convolutional neu-
ral networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[13] Jha, S., Behrens, J., Gkountouvas, T., Milano, M.,
Song, W., Tremel, E., Renesse, R. V., Zink, S., and
Birman, K. P. Derecho: Fast State Machine Replica-
tion for Cloud Services. ACM Trans. Comput. Syst.
36, 2 (Apr. 2019), 4:1–4:49.

[14] Jouppi, N. P., Young, C., Patil, N., Patterson, D.,
Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden,
N., Borchers, A., Boyle, R., luc Cantin, P., Chao,
C., Clark, C., Coriell, J., Daley, M., Dau, M., Dean,
J., Gelb, B., Ghaemmaghami, T. V., Gottipati, R.,
Gulland, W., Hagmann, R., Ho, C. R., Hogberg, D.,
Hu, J., Hundt, R., Hurt, D., Ibarz, J., Jaffey, A.,
Jaworski, A., Kaplan, A., Khaitan, H., Koch, A.,
Kumar, N., Lacy, S., Laudon, J., Law, J., Le, D.,
Leary, C., Liu, Z., Lucke, K., Lundin, A., MacKean,
G., Maggiore, A., Mahony, M., Miller, K., Nagara-
jan, R., Narayanaswami, R., Ni, R., Nix, K., Norrie,
T., Omernick, M., Penukonda, N., Phelps, A., Ross,
J., Ross, M., Salek, A., Samadiani, E., Severn, C.,
Sizikov, G., Snelham, M., Souter, J., Steinberg, D.,
Swing, A., Tan, M., Thorson, G., Tian, B., Toma,
H., Tuttle, E., Vasudevan, V., Walter, R., Wang, W.,
Wilcox, E., and Yoon, D. H. In-datacenter per-
formance analysis of a Tensor Processing Unit. In
International Symposium on Computer Architecture
(ISCA) (2017).

[15] Peter, S., Li, J., Zhang, I., Ports, D. R. K., Woos,
D., Krishnamurthy, A., Anderson, T., and Roscoe, T.
Arrakis: The operating system is the control plane.
ACM Trans. Comput. Syst. 33, 4 (Nov. 2015), 11:1–
11:30.

[16] Ratner, A., Alistarh, D., Alonso, G., Andersen,
D. G., Bailis, P., Bird, S., Carlini, N., Catanzaro, B.,

Chayes, J., Chung, E., Dally, B., De Sa, C., Dean,
J., Dhillon, I. S., Dimakis, A., Dubey, P., Elkan, C.,
Fursin, G., Ganger, G. R., Getoor, L., Gibbons, P. B.,
Gibson, G. A., Gonzalez, J. E., Gottschlich, J., Han,
S., Hazelwood, K., Huang, F., Jaggi, M., Jamieson,
K., Jordan, M. I., Joshi, G., Khalaf, R., Knight, J.,
Konečný, J., Kraska, T., Kumar, A., Kyrillidis, A.,
Lakshmiratan, A., Li, J., Madden, S., McMahan,
H. B., Meijer, E., Mitliagkas, I., Monga, R., Mur-
ray, D., Olukotun, K., Papailiopoulos, D., Pekhi-
menko, G., Ré, C., Rekatsinas, T., Rostamizadeh,
A., Sedghi, H., Sen, S., Smith, V., Smola, A., Song,
D., Sparks, E., Stoica, I., Sze, V., Udell, M., Van-
schoren, J., Venkataraman, S., Vinayak, R., Weimer,
M., Wilson, A. G., Xing, E., Zaharia, M., Zhang, C.,
and Talwalkar, A. SysML: The new frontier of ma-
chine learning systems. https://www.sysml.
cc/doc/sysml-whitepaper.pdf, 2019.

[17] Sandler, M. B., Howard, A. G., Zhu, M., Zhmogi-
nov, A., and Chen, L.-C. MobileNetV2: Inverted
residuals and linear bottlenecks. In Conference on
Computer Vision and Pattern Recognition (CVPR)
(2018).

[18] Snell, J., Swersky, K., and Zemel, R. S. Prototypical
networks for few-shot learning. In NIPS (2017).

[19] Vinyals, O., Blundell, C., Lillicrap, T., kavukcuoglu,
k., and Wierstra, D. Matching networks for one shot
learning. In NIPS. 2016.

[20] Wang, Y.-X., Girshick, R., Herbert, M., and Hariha-
ran, B. Low-shot learning from imaginary data. In
Computer Vision and Pattern Recognition (CVPR)
(2018).

[21] Wertheimer, D., and Hariharan, B. Few-shot
learning with localization in realistic settings. In
Computer Vision and Pattern Recognition (CVPR)
(2019).

[22] Zhao, R., Hu, Y., Dotzel, J., De Sa, C., and
Zhang, Z. Building efficient deep neural networks
with unitary group convolutions. arXiv preprint
arXiv:1811.07755 (2018).

[23] Zhao, R., Hu, Y., Dotzel, J., De Sa, C., and Zhang,
Z. Improving neural network quantization with-
out retraining using outlier channel splitting. CoRR
abs/1901.09504 (2019).

https://www.sysml.cc/doc/sysml-whitepaper.pdf
https://www.sysml.cc/doc/sysml-whitepaper.pdf

	Introduction
	Real-time machine learning
	Bridging the gap
	Cloud/Device cooperation
	Preliminary steps
	Conclusion

