Efficient Computation of Co-occurrence Statistics
for Natural Language Processing Tasks

Balazs Kovacs*
Cornell University Gates Hall Ithaca, NY 14853

Jack Hessel*
Cornell University Gates Hall Ithaca, NY 14853

Abstract

Co-occurrence matrices act as the input to
many unsupervised learning algorithms, includ-
ing those that learn word embeddings, and mod-
ern spectral topic models. However, the com-
putation of these inputs often takes longer than
the inference. While much thought has been
given to implementing fast learning algorithms,
there has been little consideration of preprocess-
ing efficiency. Here, we compare state-of-the-
art methods for co-occurrence matrix compu-
tation in both the context-level and document-
level cases. We find that both of these tasks
are well suited to GPU parallelization. In the
context-level case, our implementation outper-
forms an existing optimized single-core version
by 4 times, and scales better. In the document-
level case, we achieve significantly more than
350 times speedup over a naive, single-core base-
line.

1. Introduction

Many unsupervised natural language processing algorithms
rely on heavy precomputation/preprocessing before learn-
ing may take place. In fact, these preprocessing steps often
take longer than the learning itself. When such algorithms
are considered in an end-to-end fashion, current efficiency
bottlenecks are not problems often considered by machine
learning researchers. While considerable effort has been
spent to increase the efficiency of Markov chain sampling
and gradient descent algorithms, for instance, very little has
been addressed to current expensive preprocessing steps.

Proceedings of the 32™* International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

BKOVACS @CS.CORNELL.EDU

JHESSEL @CS.CORNELL.EDU

More specifically, there are several types of large matrices
that act as inputs to unsupervised learning algorithms. Con-
sider Pennington et al.’s (2014) popular algorithm GloVe
for computing word embeddings. A word embedding is a
low-dimensional (100, for example) vector representation
of a given word. The goal is to map each word type to a
vector in a relatively low dimensional space, such that the
relationships between the meaning of the words roughly
correspond to the spatial relationships of the vectors. Given
a set of documents D, GloVe requires the construction of
a word-by-word co-occurrence matrix X where X;; is a
statistic related to how many times word ¢ and word j ap-
pear close together, averaged over all documents. Accord-
ing to their documentation, “populating this matrix requires
a single pass through the entire corpus to collect the statis-
tics. For large corpora, this pass can be computationally
expensive, but it is a one-time up-front cost.”

For many users of natural language processing, however,
corpora are not static. Web search engines, for instance,
are in constant flux, as webpages are added, deleted, and
edited. Also, as users of social media react to world events,
the language of social interaction can very wildly, even on a
minute-by-minute basis. In cases like these, models trained
on a cached matrix are sub-optimal at best, and misleading
at worst. Furthermore, for very large document collections,
the up front cost of precomputation can still be very high.

Even for static corpora, efficiently preprocessing text will
likely become more important not only as datasets get
larger, but also as information with strict privacy require-
ments becomes more available. The differential privacy
framework (Dwork, 2011) gives a method for data sci-
entists to run experiments on aggregate statistics com-
puted from data without learning about individual records
that comprise those datasets. Algorithms that preprocess
by adding a small amount of privacy-preserving noise to

* indicates equal contribution

Efficient Computation of Co-occurrence Statistics

datasets (e.g. Zhu et al. (2010)) will allow experiments
to be run on new types of datasets. To distribute priva-
tized datasets, preprocessing will need to be executed many
times, and so there will be more interest in efficient pro-
cessing methods in the future.

To this point, we have referred only to word embeddings as
a case where co-occurrence counting is applied in natural
language processsing. However, this preprocessing step is
ubiquitous in NLP and an efficient implementation would
be relevant to other learning tasks as well. Arora et al.
(2013) and Lee et al. (2015) require as input a word-word
co-occurrence count matrix at a document-level (rather than
a context-level, as with GloVe) for a spectral topic model-
ing algorithm, for instance.

In this paper, we describe and implement very fast text
processing algorithms using GPUs. Our implementations
will be made freely available. We evaluate our meth-
ods and other previous solutions for computing both co-
occurrence matrices, and report significant improvements
in both cases.

2. Related Work

Unsupervised natural language processing algorithms that
are computable over large, unstructured corpora are in-
creasingly prevalent. These methods allow practitioners to
understand at a high level what is being said in a given set
of text documents. In most cases, these algorithms take as
input a matrix of co-occurrence statistics.

For example, topic modeling algorithms including LSA
(Deerwester et al., 1990) pLSA (Hofmann, 1999) and LDA
(Blei et al., 2003) cluster documents based on word co-
occurrence statistics. These three algorithms operate on
the word-document co-occurrence matrix, which counts the
number of times each word appears in each document. This
matrix is relatively easy to compute, even for large corpora.
In a naive implementation, one could perform a linear scan
through each document, and, upon encountering word ¢ in
document j simply increment X;;.

Recently proposed algorithms rely on word-word, or co-
occurrence matrices. These methods include a number
of algorithms for computing low-dimensional neural word
representations from large corpora (Mikolov et al., 2013;
Levy & Goldberg, 2014; Pennington et al., 2014). Also,
word-word co-occurrences have also been applied to more
traditional topic modeling tasks (Lee et al., 2015; Arora
et al., 2013). The word-word co-occurrence matrix is more
difficult to compute than the word-document co-occurrence
matrix. Consider a naive implementation that counts words
co-occurring in a document: for each word in a document,
an entire pass must be made over the rest document to up-
date the overall statistics. This causes the complexity of

the naive approach to be quadratic in the length of a docu-
ment, rather than linear as in the word-document matrix’s
computation. Some of these algorithms don’t require a full
pass over the document for each word, instead focusing on
small “context windows” around. However, a linear scaling
of runtime with window size still causes the naive approach
to be slow.

In this work, we consider efficient implementations to com-
pute word-word co-occurrence matrices in the document-
level and context-level cases.

State of the art approaches to compute these are compli-
cated. Pennington et al. (2014) provide a context-level im-
plementation based on pthreads that, in an on-line fashion,
identifies a dense subregion of the co-occurrence matrix,
and keeps this matrix in memory while writing the low fre-
quency submatrix to the filesystem dynamically. Their ap-
proach is not designed to run on specialized hardware, and
still represents a significant computational overhead.

Mikolov et al.’s (2013) context-level implementation of
word2vec avoids this problem by computing the machine
learning optimization in an on-line fashion, so the com-
putation of the co-occurrence matrix is interleaved with
the learning. This methods is fast, but has some down-
sides however. For one, learning must begin with only
partial knowledge of the dataset. For normal stochastic
optimization methods, this is not detrimental. However,
it’s not clear that word2vec’s learning couldn’t be signifi-
cantly faster/better if the entire matrix was known a-priori.
Also, without a co-occurrence matrix, learning could not be
restarted with a different set of parameters without passing
over the whole dataset again. Furthermore, it’s less clear
that the online learning approach would lead to speedups if
the precomputed co-occurrence matrix is available. Finally,
it might be harder to guarantee privacy for online learning
algorithms like this.

In contrast, to our knowledge, there are no highly effi-
cient document-level co-occurrence implementations avail-
able publicly. This is likely because spectral topic models
are relatively new.

To our knowledge, GPUs or other specialized hardware,
have never been used to explicitly compute word-to-word
co-occurrence. In the past, they have been used to com-
pute related statistics in medical contexts (Hartley et al.,
2014) with elaborate hardware-aware optimizations using
CUDA. An important difference between our goal and
theirs is that they compute local co-occurrences of image
pixel values, while we work with words and co-occurrences
of a larger memory area — a whole document or a sub-
stantial part of the document. This fact changes the way
the memory access is optimized, which is the usual bottle-
neck in CUDA applications (Hartley et al., 2014). Another

Efficient Computation of Co-occurrence Statistics

Number of CUDA cores 3072
Number of multiprocessors 24
Cores per multiprocessor 128

32-bit Registers per multiprocessor | 64K
Shared memory per multiprocessor | 96K
Threads per multiprocessor 2048

Table 1. CUDA Specifications for the Titan X GPU.

approach uses MapReduce to compute word-to-word co-
occurrences (Lin, 2008), but does not leverage the parallel
computation power of GPUs. Wittek and Dardnyi (2013)
combines MapReduce and GPGPU technologies, but uses
GPU only for computationally intensive tasks like the dis-
tributed self-organizing maps algorithm.

3. The Tools We Use
3.1. CUDA Libraries

For our algorithms, we rely on Nvidia’s CUDA (NVIDIA
Corporation, 2015) libraries. These libraries provide pro-
grammers with access to the parallel computing capabil-
ities of graphics processing units. For the most part, we
utilize the Titan X GPU, whose specifications are provided
in Table 1.

We use the CUDA library in two ways. First, in the case of
document-level co-occurrence, we are able to write the al-
gorithm to compute normalized word-word co-occurrence
in terms of sparse and dense matrix operations. To com-
pute these matrix operations quickly, we make optimized
calls to cuBLAS, CUDA’s implementation of BLAS, and
cuSPARSE, a set of functions for doing matrix algebra on
sparse matrices. In both cases, the Nvidia libraries are sub-
stantially faster when compared to a multi-threaded CPU
implementation. !

Because the GPU has a memory space separate from main
memory, the onus is on the programmer to copy data back
and forth between the GPU device and host via system
calls. However, for simplicity, we utilize the Caffe li-
brary’s “Blob” implementation (Jia et al., 2014) which pro-
vides a high-level, synchronized array abstraction, while
efficiently handling memory copying behind the scenes.

3.2. CUDA Architecture

Before describing our approach, we will give a brief
overview of the CUDA computing architecture for better
understanding.

Nvidia’s CUDA provides a convenient interface to execute
a piece of code (called a kernel) on multiple GPU threads

1http ://tinyurl.com/cuda-benchmark

in parallel. However, because the hardware has it’s own
processors and memory units, there are a lot of important
details which must be kept in mind to achieve peak perfor-
mance (Hartley et al., 2014; NVIDIA Corporation, 2015):

1. The threads are decomposed into blocks defined by
the programmer. Each block is run on exactly one
multiprocessor, and threads in the block share a fast
memory called shared memory, in addition to a texture
cache (for graphics applications). The shared memory
and texture cache share the same memory and the ratio
between them can be changed programmatically.

2. The slower global memory is accessible by all threads
running on the GPU.

3. Multiple blocks can be assigned to a multiproces-
sor by the scheduler. The threads corresponding to
the blocks share the resources of the multiprocessor,
specifically a certain number of registers. Thus, the
number of registers our kernel uses limits the paral-
lelism we can achieve.

cuBLAS and cuSPARSE are proprietary matrix libraries
developed internally by Nvidia, so it is safe to assume
these implementations keep these programming paradigms
in mind. However, some of our approach involves writing
our own kernels, and in those cases, we are careful to pro-
gram with the hardware in mind.

3.3. Building a Vocabulary

In both the document-level and context-level cases, it is
helpful to define a vocabulary of words of interest prior
to any computation. We use Pennington et al.’s (2014) fast
vocabulary finder prior to running our algorithms. Their
approach can compute the most common words in a corpus
of billions of tokens in a few seconds.

While this step is not a computational bottleneck, in the fu-
ture, it might be sufficient to compute the vocabulary over
only a random subset of the documents. Assuming doc-
uments/tokens are well-mixed, sampling a subset should
produce a stable estimate of the most common words. Al-
ternatively, the user may pre-specify their own vocabulary
of interest, given our implementation.

3.4. Sparse Matrices on the GPU

Even though both the word-by-document matrix and the
word-by-word co-occurrence matrix can be very large for
usual datasets (which might consist of millions of docu-
ments and up to 100K vocabulary items), these matrices
often have sparsity we can exploit.

For instance, it is well known that the word-document ma-
trix is usually sparse (Sahlgren & universitet. Institutio-

Efficient Computation of Co-occurrence Statistics

Algorithm 1 Document-level Matrix Formulation
Input: Word-by-document count matrix D
Returns: Normalized word-word matrix X
p = colsums(D)
compute n such that n; = 1/(p; - (1 — p;))
A =D -diag(y/n)

= AAT
Ms = diag(X - n)
return (M; — Ms)/(#Docs)

nen for lingvistik, 2006). This sparsity is a result of Zipf’s
law, which states that the 3t most common word in a lan-
guage appears with frequency proportional to 1/i (Zipf,
1949). In other words: language contains lots of rare
words. This means that any two given words are unlikely to
co-occur. This sparsity helps us fit very large matrices into
the limited GPU memory. We use a compressed row stor-
age format (which is compatible with cuSPARSE) to store
and operate on matrices.

4. Co-occurrence Implementations
4.1. Document-level Co-occurrence

In this case, we are interested in computing a word-to-word
co-occurrence matrix X where X;; is related to the number
of times words ¢ and j appear in the same document. The
matrix we hope to end up with, however, is not a matrix of
raw counts. Instead, the 7,5 entry of this matrix repre-
sents the probability that words ¢ and j co-occur together,
as in Arora et al. (2013) and Lee et al. (2015). This matrix
must also normalize based on the length of the document,
such that the matrix represents a joint distribution and sums
to unity.

Let v; be the vector (whose length is equal to the vocab-
ulary size) of word counts for document ¢, and let n; =
> ; Vij be the length of document . The co-occurrence
matrix we are interested in is computed as a sum over all
documents as

ool — diag(v)
X= zz: ni - (n; — 1) M

In this formulation, note that
Xi; = P(w1 = i, we = j|wy and wo appeared together.)

We investigate three algorithms for the computation of this
matrix. As a baseline, our first implementation uses a
single-thread to compute each term in the sum in Equa-
tion 1 sequentially, on a document-by-document basis.

Next, we note that it is relatively straightforward to com-
pute the word-by-document matrix, D, (potentially in par-
allel) on the CPU. Given this matrix, the expensive aspect

of the computation of X (which can be thought of roughly
as computing DDT) can be decomposed to a small num-
ber of matrix operations. It can be shown that Algorithm 1
is equivalent to Equation 1. Our next implementation uses
this formulation, making cuSPARSE calls directly.

In our experiments, we noted that the most computation-
ally expensive part of Algorithm 1 was computing AAT
for a sparse matrix A. A has dimensions Vount by Deount
where V,.n+ 1S the size of the vocabulary and Dyy,+ iS the
number of documents in the corpus. While A is a sparse
matrix, AA7T is not, and often contains over 85% nonzero
elements. While there are some publicly available bench-
marks, it’s not clear how cuSPARSE performs when con-
structing a dense matrix in a sparse format, as we do in this
case. Also, it’s not clear how the speed of cuSPARSE’s
sparse to dense conversion depends on the sparsity of the
input matrix.

As such, we implement a batched version of our word-word
co-occurrence. This approach calls Algorithm 1 on smaller
batches of 20K documents, and converts and accumulates
the outputs on-line. By reducing the number of documents
per call, we make the input matrix D skinnier, and, con-
sequently, AAT sparser. While the matrix remains rela-
tively dense due to common words frequently co-occurring,
in terms of nonzero elements, the density is decreased to
around 1% for large vocabularies and 20% for small vo-
cabularies. This implementation introduces extra overhead
(memory copying, function calls, etc.) in favor of keeping
AAT sparse, so that cuSPARSE can operate exclusively on
sparse matrices. The batch size is a parameter that could be
optimized on a case-by-case basis.

4.2. Context-level Co-occurrence

For some NLP applications, the co-occurrence statistics re-
quired are not document-level statistics — if two words ap-
pear on the opposite ends of a text document, are they truly
related?

Algorithms for computing word embeddings (Mikolov
et al., 2013; Levy & Goldberg, 2014; Pennington et al.,
2014), for instance, rely on a narrow, local neighborhood
to be considered for co-occurrence and also might have
some weighting function over this neighborhood (exactly
neighboring words are likely more related than words a few
places apart). Thus, we also implement a version of the al-
gorithm which computes the co-occurrences over the local
neighborhood, called the context, of each word.

Notice that the notion of a “document” is less important
in the case of a sliding context window. For the purposes
of this paper, in accordance with previous work, we will
concatenate all documents together and disregard the small
error introduced at the boundaries. These don’t affect the

Efficient Computation of Co-occurrence Statistics

80
e Sparse 35K

70 e Batch 35K
e Sparse 10K

Batch 10K

50

40

30

Elapsed time in seconds

20

10

100K 300K 500K 700K 900K
Dataset Size

Figure 1. Dataset size (in documents) versus runtime for
document-level word-word co-occurrence computation, for vo-
cab sizes of 10K words and 35K words. “Sparse” is Algorithm
1 and “Batch” is the batched version of that approach. Note that
batching is faster than not batching, and that this speedup might
be more pronounced for larger vocabulary sizes.

quality of the final result substantially (see Mikolov et al.’s
(2013) popular implementation).

Let us denote the window size as w and the associated
word-to-word co-occurrence matrix as X. Like in the
document-level case, we do not store raw word-counts in
X; this is because word embedding algorithms assume pre-
processed input. As a proof-of-concept and for easy com-
parison, we implement context weighting as described by
Pennington et al. (2014), though this could be interchanged
with any context-level statistic (e.g. pairwise mutual infor-
mation) very easily.

We make two observations about X to decide what repre-
sentation to use: (1) For large corpora it is not very sparse
(20% — 90% non-zero elements, depending on the vocab-
ulary size) (2) To build a matrix with sparse representation
on the GPU, we need to use locking, which would slow
down the execution significantly. Therefore, we store X
as a dense matrix and use atomic instructions to update its
values from the kernel. Because of memory limitations and
the limitations of the cuSPARSE library, the maximum vo-
cabulary size we can use is 40K. While this size is relatively
small for word-embedding applications (often a vocabulary
of roughly 100K is used) it is usual for topic models to be
computed with this many vocabulary items. We leave a
larger vocabulary implementation to future work.

In our case, we make one pass through the whole corpus
using the CPU and convert each word to an integer ID using
the given vocabulary. This representation is more compact
and facilitates efficient memory access on the GPU.

Second, we initialize X ’s values to zero in the GPU global

Loading from Disk

Assembling Matrix on CPU

Saving to Disk

\
cuBLAS/CuSPARSE\\

Figure 2. Running time of different parts of the processing for the
document-level case on the 900K document dataset with vocab-
ulary size 35K. Processing parts are roughly categorized into in-
put/output, CPU computation, and GPU computation. The full
processing time is 151 seconds, which includes saving.

memory. We launch a CUDA kernel, where each thread
is responsible for computing co-occurrences for one word
context window and adding these values to the correspond-
ing elements of X using atomicAdd.

We can improve the performance of this algorithm if we
use the shared memory of the multiprocessors to cache a
chunk of the document. Each thread block first preloads
a chunk in parallel and synchronizes the threads to ensure
that every load operation has finished. Now we can count
the co-occurrences and add them to X in the global mem-
ory. We report the performance of this final method in the
evaluation section.

5. Evaluation
5.1. Hardware

For all experiments we use a workstation with one Nvidia
Titan-X GPU, Intel Core 17-5820K 3.30 GHz CPU and
three Seagate ST1000DMO003 disks in RAID 5.

5.2. Datasets

To compare our approach to other methods, we compute
document-level and context-level co-occurrence matrices
for various datasets and vocabulary sizes. The corpora we
use for document-level co-occurrence are subsets of 2M
text posts made to reddit .com (Tan & Lee, 2015). The
previous largest real dataset to be processed in this manner
consisted of 300K documents (Sandhaus, 2008).

For the context-level experiments, we use the billion word
language modeling benchmark of Chelba et al. (2013).
This dataset consists of slightly less than 1B tokens (around
719M), and is commonly used to evaluate language mod-
els.

Efficient Computation of Co-occurrence Statistics

600
e GloVe without saving results
GPUcoo without saving results
« GloVe with saving results
GPUcoo with saving results

500

400
300

200
- ///ﬁ

100M 300M 500M 700M Full 1B
Dataset size

Elapsed time in seconds

Figure 3. Context-level co-occurrence results; GPUcoo is our al-
gorithm, and GloVe is an existing single-core baseline. Presented
here are running times with and without saving the results to disk
for increasing dataset sizes with vocabulary size 10K.

5.3. Document-level experiments and results

Because the authors are not aware of any optimized single-
core implementation, we compare the GPU implementa-
tions against a baseline that iterates Equation 1, one docu-
ment at a time. We don’t perform many experiments on this
baseline approach because it is very slow. For reference,
the baseline approach takes over 30 minutes to compute
the document-level co-occurrence matrix in a 10K docu-
ment/5K vocab toy case, compared to the GPU approach
which takes about 6 seconds. This represents an over 350x
speedup. The naive version likely doesn’t scale well either,
so we would expect this speedup to be even greater for lager
corpora/vocabularies. The main goal of the experiments in
this section is to determine if and when the batched version
of Algorithm 1 (which we call “Batch”) outperforms the
non-batched version (which we call “Sparse”).

We run trials for the batched and non-batched versions of
Algorithm 1 for corpora of different sizes (from 100K to
900K documents) and vocabulary of different sizes (from
10K to 35K items, in 5K increments). We summarize the
results of these experiments in Figure 1; we only display re-
sults for 10K/35K vocab for clarity, and don’t consider the
time it takes to save the results because the two approaches
we compare here use the same IO. In general, sparse and
batching perform similarly, which indicates that any differ-
ences are minor. Batching is slightly faster in all cases, and
this effect is perhaps more pronounced as the vocabulary
size increases. This is possibly because the batch AAT be-
comes much more sparse as the vocabulary size increases,
making storage in cuSPARSE faster.

Figure 2 shows a breakdown of how much time time the im-
plementation spends in each part of the computation (out-

600
¢ GPUcoo
Glove
500

N
5]
S

300

Elapsed time in seconds
N}
o
o

100 —_—————————————————*

5000 10000 20000 30000 40000
Vocabulary size

Figure 4. A demonstration of the effect of increasing vocabulary
size. Here, we present running times for the context-level case
with and without saving the results to disk. The x-axis represents
increasing vocabulary size. The total number of tokens analyzed
is around 719M.

put time is included here). Saving accounts for over half of
the processing time.

5.4. Context-level experiments and results

In our context-level experiments, we compare against Pen-
nington et al.’s (2014) optimized single core implemen-
tation. We use context window size of 15 in all experi-
ments. The first experiment compares the running time of
the two algorithms for different corpus sizes using vocabu-
lary size 10K. All running times include loading the corpus
from disc and processing the data. For both algorithms, we
measure the running time with and without saving the fi-
nal word-word co-occurrence matrix to disk. As we can
see in Figure 3, our algorithm outperforms the baseline by
a significant margin, for the full 1B token dataset (which
consists of closer to 719M tokens) it is 4x faster.

Unfortunately we couldn’t measure how much time
the baseline spends separately on computing the co-
occurrences, because that computation is interleaved with
I/O processing. Our GPU implementation finishes the com-
putation in less than 21 seconds in all cases, after having all
data on the GPU. This suggests that we should concentrate
on further optimizing the I/O processing in future work.
Figure 5 shows a breakdown of the processing. Process-
ing parts which take negligible time appear in parentheses
and their processing time is added to the closest processing
part.

In the second experiment we measure the running time for
different vocabulary sizes on the 1B token dataset without
saving the results to disk. We can see in Figure 4 that our
algorithm scales very well for larger vocabulary sizes and is
more than 4x faster than the baseline. Only the cuSPARSE

Efficient Computation of Co-occurrence Statistics

Loading from Disk,
Word Index Conversion
(and Copy to GPU),

\ V
Kernel Computation N

Figure 5. Running time of different parts of the processing for the
context-level case on the 1B token dataset with vocabulary size
40K. Processing parts which take negligible time appear in paren-
theses and their processing time is added to the closest processing
part. The full processing time is 264 seconds, which includes sav-

ing.

Saving to Disk and
(Dense to Sparse, Copy to CPU)

API and memory limits constrain us to stop at vocabulary
size 40K, a concern we save for future work.

6. Conclusion and Future Work

Here, we have presented preliminary implementations to
compute word-word co-occurrence matrices on a GPU for
natural language processing tasks. In cases where the user
is interested in computing co-occurrence on a document-
level basis, we report greater than 350x speedup over a
naive, single-core implementation. In cases where the user
is interested in computing co-occurrence on a context-level
basis, we report 4x over a highly optimized single-core im-
plementation.

There are several directions we hope to take this work in the
future. First, we aim to parallelize our file IO; this aspect
of our computation is currently a bottleneck and the prob-
lem of quickly reading and writing to disk will increasingly
effect overall runtime.

More broadly, however, we hope to use the insights we’ve
gained creating these implementations to speed up ma-
chine learning algorithms. Memory bottlenecks of GPUs
will continue to decline as technology advances, and so re-
stating natural language processing algorithms to be GPU-
friendly will be highly relevant in the future.

Co-occurrence counting has been a part of unsupervised
natural language processing ever since large corpora have
been treated as data (see Deerwester et al. (1990)). Even
when algorithms are designed to go beyond counting, they
often reduce to something very close to counting (Levy &
Goldberg, 2014). A key advantage machine learning prac-
titioners today have when compared to those of the past
is specialized systems and hardware (e.g. high memory
GPUs). These pieces of hardware allow for previously in-
tractable learning algorithms to be run on larger and larger
datasets. Most importantly, we hope this work serves as a
motivating example for researchers interested in fast NLP.

7. Acknowledgments

We would like to thank David Mimno and all the partici-
pants in the Fall 2015 iteration of Cornell’s Advanced Sys-
tems course for their helpful insights and feedback.

References

Arora, Sanjeev, Ge, Rong, Halpern, Yonatan, Mimno,
David, Moitra, Ankur, Sontag, David, Wu, Yichen, and
Zhu, Michael. A practical algorithm for topic modeling
with provable guarantees. In Proceedings of The 30th In-
ternational Conference on Machine Learning, pp. 280—
288, 2013.

Blei, David M, Ng, Andrew Y, and Jordan, Michael I. La-
tent dirichlet allocation. the Journal of machine Learn-
ing research, 3:993-1022, 2003.

Chelba, Ciprian, Mikolov, Tomas, Schuster, Mike, Ge,
Qi, Brants, Thorsten, Koehn, Phillipp, and Robinson,
Tony. One billion word benchmark for measuring
progress in statistical language modeling. arXiv preprint
arXiv:1312.3005, 2013.

Deerwester, Scott C., Dumais, Susan T, Landauer,
Thomas K., Furnas, George W., and Harshman,
Richard A. Indexing by latent semantic analysis. JA-
sls, 41(6):391-407, 1990.

Dwork, Cynthia. Differential privacy. In Encyclopedia
of Cryptography and Security, pp. 338-340. Springer,
2011.

Hartley, Timothy DR, Catalyurek, Umit, Ruiz, Antonio,
Igual, Francisco, Mayo, Rafael, and Ujaldon, Manuel.
Biomedical image analysis on a cooperative cluster of
gpus and multicores. In 25th Anniversary International
Conference on Supercomputing Anniversary Volume, pp.
413-423. ACM, 2014.

Hofmann, Thomas. Probabilistic latent semantic indexing.
In Proceedings of the 22nd annual international ACM
SIGIR conference on Research and development in in-
formation retrieval, pp. 50-57. ACM, 1999.

Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayeyv,
Sergey, Long, Jonathan, Girshick, Ross, Guadarrama,
Sergio, and Darrell, Trevor. Caffe: Convolutional ar-
chitecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014.

Lee, Moontae, Mimno, David, and Bindel, David. Robust
spectral inference for joint stochastic matrix factoriza-

tion. In Advances in neural information processing sys-
tems, 2015.

Efficient Computation of Co-occurrence Statistics

Levy, Omer and Goldberg, Yoav. Neural word embedding
as implicit matrix factorization. In Advances in Neural
Information Processing Systems, pp. 2177-2185, 2014.

Lin, Jimmy. Scalable language processing algorithms
for the masses: A case study in computing word co-
occurrence matrices with mapreduce. In Proceed-
ings of the Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP ’08, pp. 419-428,
Stroudsburg, PA, USA, 2008. Association for Compu-
tational Linguistics. URL http://dl.acm.org/
citation.cfm?id=1613715.16137609.

Mikolov, Tomas, Chen, Kai, Corrado, Greg, and Dean, Jef-
frey. Efficient estimation of word representations in vec-
tor space. arXiv preprint arXiv:1301.3781, 2013.

NVIDIA Corporation. NVIDIA CUDA Compute Unified
Device Architecture Programming Guide v7.5. NVIDIA
Corporation, 2015.

Pennington, Jeffrey, Socher, Richard, and Manning,
Christopher D. Glove: Global vectors for word represen-
tation. Proceedings of the Empiricial Methods in Natural
Language Processing (EMNLP 2014), 12:1532—-1543,
2014.

Sahlgren, M. and universitet. Institutionen for lingvistik,
Stockholms. The Word-Space Model: Using Distribu-
tional Analysis to Represent Syntagmatic and Paradig-
matic Relations Between Words in High-dimensional
Vector Spaces. SICS dissertation series. Department
of Linguistics, Stockholm University, 2006. ISBN
9789171552815. URL https://books.google.
com/books?id=swCOtgAACAAJ.

Sandhaus, Evan. The new york times annotated cor-
pus. Linguistic Data Consortium, Philadelphia, 6(12):
€26752, 2008.

Tan, Chenhao and Lee, Lillian. All who wander: On the
prevalence and characteristics of multi-community en-
gagement. In Proceedings of the 24th International Con-
ference on World Wide Web, pp. 1056-1066. Interna-
tional World Wide Web Conferences Steering Commit-
tee, 2015.

Wittek, Peter and DardNyi, SaNdor. Accelerating text min-
ing workloads in a mapreduce-based distributed gpu en-
vironment. Journal of Parallel and Distributed Comput-
ing, 73(2):198-206, 2013.

Zhu, Yun, Xiong, Li, and Verdery, Christopher. Anonymiz-
ing user profiles for personalized web search. In Pro-
ceedings of the 19th international conference on World
wide web, pp. 1225-1226. ACM, 2010.

Zipf, George Kingsley. Human behavior and the principle
of least effort. 1949.

http://dl.acm.org/citation.cfm?id=1613715.1613769
http://dl.acm.org/citation.cfm?id=1613715.1613769
https://books.google.com/books?id=swCOtgAACAAJ
https://books.google.com/books?id=swCOtgAACAAJ

