Label Propagation and
Graph Neural Networks

Austin Benson - Cornell University
SIAM DM: Graph Theory and Machine Learning

July 21,2021

Joint work with
Junteng Jia
Cornell — Facebook

Hj’
;

Graph data modeling complex systems are everywhere.

B
ﬁ & So::jiety [" Fin;nce :
nodes are people VISA nodes are accounts

edges are friendships edges are transactions

Elections amaZon Commerce

nodes are regions nodes are products
edges are social / geo E edges are copurchases

[Mark Newman 2012 map]

We often want to predict/estimate/construct/forecast
attributes/labels/outcomes/clusters on nodes.

Bad actors in financial transaction graphs
Weber+ 18, 19; Pareja+ 20]

 Gender in social networks

[Peel 17; Altenburger-Ugander 18]

» Document classification in citation networks
Lu-Getoor 03; Kipf-Welling 17]

* Product categories from coreview/copurchase
[Huang+ 20; Veldt+ 20]

* Election outcomes from social connections
Jia-Benson 21]

known labels/outcomes

« Might have rich additional info on nodes (features)
transaction history, user interests, document text, product ratings, demographics

» Graph-based semi-supervised learning, clustering, node prediction, relational
learning, collective classification, community detection, ...

Problem input.

* Graph G = (V,E).

* |Vl x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y; of real-valued outcomes on L.

Problem output.
* Length-|U| vector y; of real-valued outcomeson U= V\ L.

We look at two broad classes of algorithms.

1. Label Propagation fearly 2000s] 2. Graph Neural Networks [tate 2010s]

K
o
K
.

ool ®
.
------------------ ...
@ « < O

. o) . .

o o | . O -
Py ¢ e g i o o y
e 9 R o0 ° . h g ® o

K LR .j e m e e
¢ G ® %% oo edsee® ese %%l e° %65, o

Label propagation is just neighbor averaging. 4. ",

® '.o:l

Y, Just need SpMV
\y(“” 7 = D—l/ZAD—l/Zy(t)
(t+1) A L 1 ()
yﬁ? = —0.45 (fixed) v yg-l-l) — (1 _ a)yéjO) + azU if \/gyg)

» At convergence, everyone is roughly the average over their neighbors — smooth!
* Regression. Start with real values (O/mean at unknown) — smoothed value for each node.

Graph neural networks aggregate features.

Neural net .-) As features
Bvector‘A‘ ‘ CSfeatureS
Neural net - A As features
Neural net .

[From Leskovec vectorhy, " Cvector 4_-:»;: @® B’ features

224W 2021 slides] for final (@) < D T— c o
prediction "°~., ‘ E’s features
. F's features

B.yector Neural net
oy

..................... A‘f‘ A’s features

o o °®
“,\ u . N -
.%:.(/{ % é. g g&. : .% @. .S 3
2% 4 s alue "I 2 Y S
i 8 %e see® "eagine’ oee “ei % %6e, e

* Regression. Prediction at node A =<, h,>.
 BIG optimization problem trained with labeled nodes and automatic differentiation.
* DIFFICULT to implement, parallelize, reproduce.

1. Label Propagation [early 2000s)

» Strong modeling assumption:
connected nodes have similar labels.

* Works because of homophily [McPherson+ 01]
a.k.a. assortativity [Newman 02]

 Why not use additional info/features?
 FAST

a few sparse matrix-vector products

2. Graph Neural Networks [late 2010s]

........................ 3
) . A‘< '
.... .
<« @rrerennenannnsl . 3
Ea
@
Wy @
[From Leskovec 224W 2021 slides]
. . * M 4 *
| N 0 ~ T i
.%;(9 P .,%ﬂ—ar,—,{&. : : /. % e
o o) : ‘ [J
¥i% 4w o sdue. = e &%
i e %e e ey et dae %Sy W0 %Gs o

* Strong modeling assumption:

labels only depend on neighbor features
* Works because these features are
sometimes very informative.

* Why not assume labels are correlated?
* SLOW

many parameters, irreqular computation

Are LP and GNNs related?

Can we avoid the complexity of GNNs?

Node features Neighborhood features Neighborhood labels

Supervised ML (like OLS) @)
Label propagation &
Graph neural networks (D) (D)
Our work @ @ @

...and it’s just a few sparse matrix-vector products!

Also see Collective Classification in Network Data [Sen+ 08]
for overview of similar ideas from early 2000s.

10

Joint work with
Qian Huang, Horace He, Abhay Sing (Cornell)

Ser-Nam Lim (Facebook)
Paper Team Github

‘0\
O \:7 3 Get Started

Leaderboard for ogbn-products

The classification accuracy on the test and validation sets. The higher, the better.

Package: >=1.1.1

Test Validation

Rank Method Accuracy Accuracy Contact References #Params Hardware Date

1 MLP + C&S 0.8418 + 0.9147 + 0.0009 Horace He (Cornell) Paper, 96,247 GeForce RTX 2080 (11GB Oct 27,
0.0007 Code GPU) 2020

2 Linear + C&S 0.8301 * 0.9134 £ 0.0001 Horace He (Cornell) Paper, 10,763 GeForce RTX 2080 (11GB Oct 27,
0.0001 Code GPU) 2020

3 UniMP 0.8256 + 0.9308 + 0.0017 Yunsheng Shi (PGL Paper, 1,475,605 Tesla V100 (32GB) Sep 8,
0.0031 team) Code 2020

4 Plain Linear + C&S 0.8254 + 0.9103 + 0.0001 Horace He (Cornell) Paper, 4,747 GeForce RTX 2080 (11GB Oct 27,
0.0003 Code GPU) 2020

5 DeeperGCN+FLAG 0.8193 0.9221 + 0.0037 Kezhi Kong Paper, 253,743 NVIDIA Tesla V100 (32GB Oct 20,
0.0031 Code GPU) 2020

Combining Label Propagation and Simple Models Out-performs Graph Neural Networks.
Q.Huang et al., ICLR 2021. 11

We developed a random model for attributes on nodes.

* Random real-valued attribute vectors a, = [x,; y,] on each node u.
* A = ith attribute over all nodes.
* N=/-D12WD-1/2 s the normalized Laplacian.
* Gaussian MRF random attribute model
p+1 smoothness on attributes

PAH, h) = = ZgaTHa@ S‘@ ATNA,) H e ROD*XC*D gpd, 0 < h € R

correlateﬁ “attributes on a nofle - Z(u,v g/ /dy — A Va)*
e~ ¢@AIHM
p(A=AlH,h) = Smoother attributes are more likely (homophily / assortativity)

[dA” e=6@IHH

vec(A) ~ N(0,T™), F=H® I,+diag(h) @ N lusta multivariate normal random variable in the end

12

Graph learning is now just statistical inference.

Ignore graph, condition on features — linear regression.

E[y|X = X] = XTB — min [IX.8 — y.]|7 — Xup
g) _— i
(classical derivation of linear models)

Ignore features, condition on graph, labels — label prop.

Elyyly, =¥, 6] = — (In + wN)gy (I + wN)y yi, w = h/H
label prop Smoothing amount ~ homophily * variance

Ignore labels, condition on features + graph — linearized GNN.

E[y[X = X,G] = (I, + oN) "' XB — min |[(I, + oN) ' X1.8 — yi|l» — (T2 + wN) " X]up3
label prop P
on features

Condition on features + labels + graph — linearized GNN + residual prop.
ElyylX =X,y =y.,6] = ju + (I + wN)y; (I + wN)u(7. — y1), ¥ = (In + wN) " XP

label prop label prop on “residuals”
(on features) 13

Linear graph convolutions are linearized GNNs
that come from the conditioning on features.

Linear graph convolution (LGC). o e
1. Run LP on each feature — " averaging @
smoothed features. B « oA ol ®
. v. linear . @
2. Ordinary least squares on these fnear . averaging ¥
preprocessed, smoothed features. averaging 0$. ,,,,,,,,,,,,,,,,,
linear S
averaging

14

.'\ v A
4 "a [N SV
":‘:r .l-"{' $
= l._;;_i'- T sl W
E- i L A ey & ° °
F o TR LGC predictions —— »
Bt LA
M :'_?“‘:r: Y :

= £ ~;‘ .l T v. Add tO

Residual propagation smooths errors.

labeled
nodes

: 3y
.. o=y S i
P G Pl
R T S
"‘ ETRR N s
g T Y A S
- R
° ‘ ::t- g 1
residual = : k-

prediction - truth

LPonresiduals = original ‘ e
“residual prop” predictions LGC + RP

15

Dataset Outcome LP LR LGC SGC GCN LGC/RP

USA counties election 052 042 049 043 0.52 0.64
unemployment 0.47 0.34 0.39 0.32 045 0.54

climate landT 089 081 081 0.79 0.91 0.90
pm2.5 096 0.21 0.27 0.23 0.78 0.96

Twitch days 0.08 0.58 059 0.22 0.26 0.60

16

1 function LGC_params(S, X, y, L; a=0.9, num_iters=10)
X_smooth = copy(X)
for _ in 1l:num_iters
X_smooth = (1 — a) * X + a * S * X_smooth
end
return X_smooth, X_smooth[L, :1 \ ylL]
end

function residual_prop(S, y, y, U; a=0.9, num_iters=10)
Femy =y
rful =0
for _ in l:num_iters
z=S=x*xr
rful = a * z[U]
end
return r
end

function LGC_RP_prediction(
S, # normalized adjacency D~{-1/2} A D~{-1/2}
X, # n x d feature matrix for n nodes
U, # indices of unlabeled nodes
L # indices of labeled nodes
y, # n x 1 label vector (zero on y[U])
)
X_smooth, B = LGC_params(S, X, y, L)
y = X_smooth * B
r = residual_prop(S, vy, y, L)
return y[U] + c[U]
end

Linear graph convolutions are linearized GNNs
that come from the conditioning on features.

Linear Graph Convolution (LGC) (1 —a) (I +aS+a’S*+..)XB S=D ‘WD '/?
[Jia-Benson 21]

Simplified Graph Convolution (SGC) S“X3 S=D+I)"?W+I)D+I)1?
[Wu+ 19]

Graph Convolution Network (GCN) o(S...c(5X0OWY)...0%)a
[Kipf-Welling 17]

18

Our model helps us understand smoothing.

0.5

-0.5

A,=0.28

I K

(><|/

\I>_<li\

£
\b‘d/\

0.5

-0.5

n
N =VAVT, feature f = Z CiV;

n
LGC f—) Tron)
i=1

n
SGC f— Y (1 - dwnr) qv;

1
wA))

i=1

CiVi

o
N '_ X

/\1°=3.47)\27=9.42
K RVA
/<’<\\ Ko //’\\\ /5 AN
\/\\{/:7/7\1 . \/ {\/\/
0 y
2

0.5

Low-pass on [0, =),
continuous parameterization.

Low-pass on [0, (d + 1)/d],
discrete parameterization.

—

os Graph Signal Processing:
Overview, Challenges and
Applications, Ortega et al,,
o Proc.IEEE,2018.

-0.5

Encouraging
smoothness.

19

Our model helps us understand smoothing.

LGC SGC
1.00 | —_— w=10720 K=0 K=0
—_— W= 10—1.0 : — K=1
0.75 | w=10%00 <—low-pass, — K=2
W= 10+1.O —— K=5
- — W= 10+2.0 K=10
< 0.50 w=10%30 — K =20
(@)
0.25
0.00
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
A A
n n n n
1 K
f= E Civi — E CiVi f= E Civi — E (1 — 9@+nA)" v
: — (1 +wA)) : :
i=1 i=1 i=1 i=1

20

Our model provides a nice setup for inductive learning.

Problem input.

* Graphs G, = (V,E1) and G, = (V, E>).

* |Vil x p matrix X; and |V;| x p matrix X; of node features (same features)
» Subset L, c V of labeled nodes.

* Length-|L,| vector M, of outcomes on L;.

Problem output.
* Length-| V, | vector yof outcomes on nodes V.

21

accuracy (R?)

Our model provides a nice setup for inductive learning.

1.0

0.8

o
o

o
>

o
()

0.0

Predictive features,
low homophily.

High homophily.

I

ho=1 ® transductive ho =10 ho =100
@® inductive
0.70 0.70
0.6.8 368 Y
0.58 0.57
o
0.48 0.47
0.45 o. 0.45 0.45
e S 344 ® o0.40 DAz o -
0.37 0.36 o @ (i38
® 0.34 .33 0.34 &
o ® 0.28
0.24 @
o
0.14
0.08 ®
@
LR GG GC GCN LR EGE SGC GCN LR LGC SGC GCN
A bit of degradation.

No performance
degradation.

Bad
overfitting!

22

Our model provides a nice setup for inductive learning.

' election ® transductive
inductive
* Graph G; from 2012 election data.

9 * Graph G, from 2016 election data.
) 0.49 0'5.2
O o2 %ow 08 GCN
é B 5> 034] overfitting
O

A bit of degradation.

23

Label propagation is a powerful tool.

1. LP can be applied to features (smoothing / de-noising).

LP can be applied to residuals (correlated errors).

3. While traditionally seen as separate ideas, LP and basic GNN ideas can
be derived from a common model and combined effectively.

4. LP is scalable and easy to program.

Linear models are often superior to nonlinear ones (GNNSs) in practice...

you just need to find the right one.

y >R = (I + wN) X By — (I + wN) (T + wN)y (v — [(In + wN) 21X B],)

N

U1

24

. THANKS! Austin R. Benson
LabEI PTOPagatlon and http://cs.cornell.edu/~arb

Graph Neural Networks ¥ @austinbenson
& arb@cs.cornell.edu

A Unifying Generative Model for Graph Learning Algorithms: Label Propagation, Graph Convolutions,and Combinations.

Junteng Jia and Austin R. Benson. arXiv:2101.07730, 2021.
& julia github.com/@@@Justin@00/GaussianMRF

Graph Belief Propagation Networks.
Junteng Jia, Cenk Baykal, Vamsi K. Potluru, and Austin R.Benson. arXiv:2106.03033, 2021.

B () github.com/000Justin@00/GBPN

Residual Correlation in Graph Neural Network Regression.

Junteng Jia and Austin R.Benson. Proc. of KDD, 2020.
% ju|i'§1 github.com/000Justin@@@/gnn-residual-correlation

Combining Label Propagation and Simple Models Out-performs Graph Neural Networks.
Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin R.Benson. Proc.of ICLR, 2021.

% () github.com/CUAI/CorrectAndSmooth

W, CHASE O

Cornell University

25

