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1. An existing simple model augmented with deep learning.
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Predict reason for patient visit in [CU.

Neural Jump Stochastic Differential
Equations,Jia and Benson, Neurips 2019.

2. A model for understanding an existing deep learning method.
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Learning Algorithm

linear regression
ElyulXI=XuB  B=(X[X)" X[y,

label propagation
Elyyly = — (1+ wN)ZA(1 + wN)y YL

. further condition on y, 5 >
linear GC residual propagation

Elyy|X]=[(1+ wN)"1XBly Elyy|X,yi]=+--
lchange filter

SGC (simple graph convolution)

l+non|inearity

GCN (graph convolution network)

Predict air quality in regions of USA
given nearby climate statistics.

A Unifying Generative Model for Graph
Learning Algorithms, Jia and Benson,
arXiv 2021.



Everything should be made as simple as possible,
but no simpler.
— Albert Einstein (paraphrased)




Many real-world systems evolve continuously over time
but are interrupted by random events.

1. Patient health interrupted by clinical visits.
2. Disease progression interrupted by treatments.
3. Social network user interrupted by ads.

Key question
How can we simultaneously learn continuous and discrete dynamics?

Data
t;, 4, ts, ... or (ty, Ky, (t), ky), (tz, Kz), ...

Goals
1. Learn latent dynamics that generated the data.
2. Predict likelihood or label of future events.



Point processes are an established model for the
dynamics of such systems.

Intensity A(t)

= e g / \J\f\\_
Eventtlmes '
(pomtS) \-‘KTEK expt bN

| T g

Prob(event in (t,t + dt) | history) = A(t)-dt

Captures self-exciting, self-inhibiting, delays, background, ...

Problem. The functional form of the process must be specified ahead of time.



We model the dynamics generally with a latent state.

: Prob(event in (t,t + dt) | history) = A(t)-dt
Latent state z(t) evolving as

dz(t) = f(z(t))-dt + w(z(t))-dN(t)
w(z(70),0) a(ti) ‘ A(z(t))
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All of the functions are just parameterized by simple neural networks.
[Based on Neural Ordinary Differential Equations by Chen et al., 2018.]
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Robust automatic differentiation software now makes
learning these models pretty easy.

SciML Open Source Scientific Machine Learning

Open source software for scientific machine learning

] Repositories 112 &) Packages

DifferentialEquations.jl
Multi-language suite for high-performance solvers of differential equations
and scientific machine learning (SciML) components

python I julia ode dde partial-differential-equations

dynamical-systems

@ Julia ? 149 Sf( 1,825 @ 116 (1 issue needs help) I'l 0 Updated 14 days ago

DiffEqJump.jl

Build and simulate jump equations like Gillespie simulations and jump
diffusions with constant and state-dependent rates and mix with differential
equations and scientific machine learning (SciML)

ssa ode stochastic differential-equations sde gillespie
jump-diffusion

Quila %16 ¥ 40 @ 21 I'L 3 Updated 15 hours ago

https://thewinnower.com/papers/22829-neural-jump-sdes-jump-diffusions-and-neural-pdes /

People 33 1]

69 https://sciml.ai ¥ @SciML_Org [ contact@chrisrackauckas.com

Projects

DiffEqFlux.jl

Universal neural differential equations with O(1) backprop, GPUs, and

stiff+non-stiff DE solvers, demonstrating scientific machine learning (SciML)

and physics-informed machine learning methods 1

neural-networks partial-differential-equations differential-equations
ordinary-differential-equations differentialequations

stochastic-differential-equations delay-differential-equations

@ Julia BIA MIT ‘5’ 102 f{ 542 @ 63 (2 issues need help) Il 4  Updated 4 days ago

StochasticDiffEq.jl

Solvers for stochastic differential equations which connect with the scientific
machine learning (SciML) ecosystem

random stochastic noise differential-equations adaptive

differentialequations sde

@ Julia 7-59 37 Y¥139 @ 77 (2 issues need help) Il 7 Updated 14 days ago



Application. Predicting reasons for ICU visits.

« 650 de-identified ICU patients tracked 2001-2007.
« Data for time of visits and reason for visit (75 total reasons).
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Application. Predicting user behavior in social networks.

* 6,665 users of Stack Overflow tracked over 2 years. _SERCTILD T R F
° Users earn badges for Certain actiVities. Home Unclear behaviour of Symmetric() on sparse matrices

PUBLIC Asked yesterday Active yesterday Viewed 32 times
 Data on when badges were earned (22 types). Qs | —
- < audible™
SEE OUR TECHNOLOGY JOBS >
COLLECTIVES [i ] Report this ad

£% Explore Collectives

1 1 3 FIND A JOB 1

| am trying to have a better understanding on how the Symmetric() function acts on
sparseCSC matrices.

5 Jobs | am storing the lower triangular portion of a symmetric matrix A. | then created sA =
silver badges bronze badges . Symmetric(A) to allow Julia libraries functions as "\" and "eigs" to treat the matrix as
Companies
symmetric.
o TEAMS
® Yearl May 29 ® Vox Populi Jul1 If | want to efficiently modify the elements of sA, am | forced to operate on A? | mean, from
Stack Overflow for A | can access the structure attributes as nzval and change its values, yet from sA it seems
Teams - Collaborate : i : :
This user doesn't have any gold e Suffrage Jul1 and share knowledge that | can only access the data using standard slicing operations for dense matrices.
with a private group. = . i
badges yet. For example, let us assume | want to add at position [7,3] a certain value X. Using sparse
® Citizen Patrol Jul1 matrices representation | would just use a binary search on the rows associated to column
3 of A and then add the value at the proper entry of A.nzval. on the other hand, on sA it
looks that | can only call sA[7,3] = X.
View all badges N Is there a way to access the structure attributes directly from sA? Keeping both A and sA
as references to the same object does not look like a clean idea, yet | am unsure on how to
Create a free Team s
avoid it.
What is Teams?
matrix julia sparse-matrix
. ’ . . . 7 Share Improve this question Follow egited yesterday e T
desertnaut &3 Smoop94
Given a user’s history, which badge will they earn next: B OIS

We get ~47% accuracy. - SEEEEE -

While this may or may not be part of the public API, it looks like "keeping A around" is
indeed exactly what Symmetric(A) does internally anyways:

julia> A = sprand(10,10,0.03)
10x10 SparseMatrixCSC{Float64, Int64} with 2 stored entries:

Share Improve this answer Follow edited yesterday answered yesterday

IZ5R cbk




We can capture true dynamics in synthetic data.

51 ground truth (self-correcting)
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* 9% average error in learned dynamics.
* 24% average error with a recurrent neural network (no dynamics).
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latent state z(t)

The latent state can capture complex processes.

I
=

ground truth

(Hawkes delay process)
learned
oce ceme o @ oo e oc@me ®» o ° ° ° ° o o ®eo events
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memory h(t)

0 20 40 60 80 100
t
 17% error in learned dynamics.
* 20% error with a recurrent neural network (no dynamics).

* 10% error if given the functional form.

MLP
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Recap

1. We started with a well-established technique (temporal point processes)
and replaced pre-specified functions with general neural networks.

2. This leads to good empirical performance and out-performs general-purpose DL tools.
3. Also get benefits of original technique, such as sampling, simulation.
4. The neural network part also requires some modeling!

5. Robust high-level software can make learning parameters easy.
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1. An existing simple model augmented with deep learning.
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Predict reason for patient visit in [CU.

Neural Jump Stochastic Differential
Equations,Jia and Benson, Neurips 2019.

2. A model for understanding an existing deep learning method.
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Learning Algorithm

linear regression
ElyulXI=XuB  B=(X[X)" X[y,

label propagation
Elyyly = — (1+ wN)ZA(1 + wN)y YL

. further condition on y, 5 >
linear GC residual propagation

Elyy|X]=[(1+ wN)"1XBly Elyy|X,yi]=+--
lchange filter

SGC (simple graph convolution)

l+non|inearity

GCN (graph convolution network)

Predict air quality in regions of USA
given nearby climate statistics.

A Unifying Generative Model for Graph

Learning Algorithms, Jia and Benson,
arXiv 2021.
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Graphs aka networks are a common abstraction.

T Nodes/ vertices / things

\ Edges connect two nodes

B
ﬁ & So::jiety [ " Fin;nce
nodes are people VISA nodes are accounts

edges are friendships edges are transactions

. Drug interactions Cell biology
nodes are drugs nodes are proteins
Te edge are co-usage by patients edge are interactions
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We often want to predict/estimate/construct/forecast
attributes/labels/outcomes/clusters on nodes.

known labels/outcomes

 Gender in social networks

[Peel 17; Altenburger-Ugander 18]

« Bad actors in financial transaction graphs
[Weber+ 18, 19; Pareja+ 20]

e Protein function in PPl networks
[Hamilton+ 17]

« Might have additional info on nodes (features)
user interests, transaction history, gene sets in proteins

» Graph-based semi-supervised learning, clustering, node prediction, relational
learning, collective classification, community detection, ...
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Graph neural networks (GNNs) are i@« -

2020

method for this problem, based on {Alphalold: a solution to a

50-year-old grand
challenge in biology
b VELLUI.A—' ..................... ' C’s features
Neural net e @& Asfeatures
Neural net..-
[From Leskovec A vector - A C vector 4‘--‘ ..................... ‘ B’s features
224W 2021 Sl|deS] for fma[ A 4_ 4. .................. . : .................... ‘
- \ E's features
prediction .
F's features
&X?C'g Neural net
‘.‘ ----------------- @ As features
° ® L ©
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 BIG optimization problem trained with labeled nodes and automatic differentiation.
* DIFFICULT to implement, interpret, and scale to large datasets.
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Is there a statistical model that gives rise to GNNs?

Do we need the complexity of the neural network parts?
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o
O ‘07 3 Get Started Updates Datasets ~ Leaderboards ~ Paper Team Github
e

Leaderboard for ogbn-products
The classification accuracy on the test and validation sets. The higher, the better.

Package: >=1.1.1

Test Validation

Rank Method Accuracy Accuracy Contact References #Params Hardware Date

1 MLP + C&S 0.8418 + 0.9147 + 0.0009 Horace He (Cornell) Paper, 96,247  GeForce RTX 2080 (11GB Oct 27,
0.0007 Code GPU) 2020

2 Linear + C&S 0.8301 + 0.9134 £ 0.0001 Horace He (Cornell) Paper, 10,763  GeForce RTX 2080 (11GB Oct 27,
0.0001 Code GPU) 2020

3 UniMP 0.8256 = 0.9308 + 0.0017 Yunsheng Shi (PGL Paper, 1,475,605 Tesla V100 (32GB) Sep 8,
0.0031 team) Code 2020

4 Plain Linear + C&S 0.8254 + 0.9103 + 0.0001 Horace He (Cornell) Paper, 4,747  GeForce RTX 2080 (11GB Oct 27,
0.0003 Code GPU) 2020

5 DeeperGCN+FLAG 0.8193 0.9221 £ 0.0037 Kezhi Kong Paper, 253,743 NVIDIA Tesla V100 (32GB Oct 20,
0.0031 Code GPU) 2020

Combining Label Propagation and Simple Models Out-performs Graph Neural Networks.
Q. Huang et al., ICLR 2021.
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Label propagation (LP) is a classical approach that is
simple and is based on inference in a statistical model.

[Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions, Zhu, Ghahramani,and Lafferty, 2003]

7 * ldea connected nodes have similar labels.
S * Works because of homophily [McPherson+ 01] aka

I plc assortativity [Newman 02]
M TR A « Doesn’t use additional info/features, though
o Sl - fast and interpretable

@. .
© " #£8.4, [From Gleich & Mahoney 2015]

 LP algorithm is just
neighbor averaging.

At convergence, everyone
is roughly the average
over their neighbors
— smooth! yéﬁ) = —0.45 (fixed)

y = 0.72 (fixed)
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Our hypothesis was that GNNs are smoothing or
averaging the features, similar to LP.

.......... A
‘A ............ ‘
‘ N (LTI
“““ ’ linear
.... averaging (&
. oA
B < Cerereneeeneens ‘4.3 ..................
linear . B
linear averaging
averaging
o
- A
linear
averaging

Linear graph convolution (LGC).
1. Run LP on each feature — smoothed features.
2. Ordinary least squares on these preprocessed, smoothed features.
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We generalized the LP statistical generative model to a
model for graphs with node features and labels.

Random real-valued attribute vectors a, = [x,; y,] on each node wu.
1 n 1 p+l
$AHh) =5 > alHa, + 5 > hATNA;, H e RFD*EDspd, 0 < he RV
u=1 i=1

N LL

,O(A =A|H, h) = fdA’ e—PA [H,h)

Key ingredients

1. The label is correlated with the features.

2. Connected nodes are more likely to have the same label.
3. Connected nodes are more likely to have similar attributes.
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We developed a random model for attributes on nodes,
where statistical inference leads to GNN/LP algorithms.
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1 function LGC_params(S, X, y, L; a=0.9, num_iters=10)
X_smooth = copy(X)
for _ in 1l:num_iters
X_smooth = (1 — a) * X + a * S * X_smooth
end
return X_smooth, X_smooth[L, :1 \ ylL]
end

function residual_prop(S, y, y, U; a=0.9, num_iters=10)
Femy =y
rful =0
for _ in l:num_iters
z=S=x*xr
rful = a * z[U]
end
return r
end

function LGC_RP_prediction(
S, # normalized adjacency D~{-1/2} A D~{-1/2}
X, # n x d feature matrix for n nodes
U, # indices of unlabeled nodes
L # indices of labeled nodes
y, # n x 1 label vector (zero on y[U])
)
X_smooth, B = LGC_params(S, X, y, L)
y = X_smooth * B
r = residual_prop(S, vy, y, L)
return y[U] + c[U]
end



Dataset Outcome LP LR LGC GCN LGC/RP
landT 089 081 081 0.91 0.90

Climate precipitation 0.89 0.59 061 0.79 0.89
pm2.5 096 0.21 0.27 0.78 0.96

education 0.31 0.71 0.71 047 0.71

U.S. elections unemployment 0.47 0.34 0.39 0.45 0.54
election 052 042 049 0.52 0.64
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Recap

1. We started with a recent DL technique (GNNs) and simplified it to a linear algorithm
based on a statistical generative model.

2. This leads to good empirical performance and out-performs general-purpose DL tools.

3. Also get benefits of model, such as sampling, simulation.
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