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Graph data modeling complex systems are everywhere.

B
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nodes are people VISA nodes are accounts

edges are friendships edges are transactions

Elections amaZon Commerce

nodes are regions nodes are products
edges are social / geo E edges are copurchases

[Mark Newman 2012 map]



We often want to predict/estimate/construct/forecast
attributes/labels/outcomes/clusters on nodes.

Bad actors in financial transaction graphs
[Weber+ 18, 19; Pareja+ 20]

 Gender in social networks

[Peel 17; Altenburger-Ugander 18]

» Document classification in citation networks
Lu-Getoor 03; Kipf-Welling 17]

* Product categories from coreview/copurchase
[Huang+ 20; Veldt+ 20]

* Election outcomes from social connections
Jia-Benson 21]

known labels/outcomes

« Might have rich additional info on nodes (features)
transaction history, user interests, document text, product ratings, demographics

» Graph-based semi-supervised learning, clustering, node prediction, relational
learning, collective classification, community detection, ...



We will analyze two broad classes of algorithms.
1. Label Propagation [earty 2000s] 2.Graph Neural Networks [tate 2010s]

 Combine neighbor features via neural nets.

« Doesn’t use features  Train with known outcomes.
* Produces vector A, for each node v.

* Propagate/spread/diffuse known values.

Key questions.
1. When should each work well or poorly?

2. What are the computational tradeoffs?
3. How can we combine them?
4. What is the relationship between them? 4



The formal problem we are solving.

Problem input.

* Graph G = (V,E).

* |Vl x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y; of outcomes on L (real-valued or categorical).

Problem output.
* Length-|U| vector y; of real-valued outcomeson U= V\ L.



Label propagation is just neighbor averaging. 4. ",
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* At convergence, everyone is roughly the average over their neighbors — smooth!
* Regression. Start with real values (O/mean at unknown) — smoothed value for each node.



Graph neural networks aggregate features.
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* Regression. Prediction at node A =<p, h,>.
* BIG optimization problem trained with labeled nodes and automatic differentiation.
* DIFFICULT to implement, parallelize, reproduce.
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We will analyze two broad classes of algorithms.

1. Label Propagation [early 2000s)

« Strong modeling assumption:
connected nodes have similar labels.

* Works because of homophily [McPherson+ 01]
a.k.a. assortativity [Newman 02]

 Why not use additional info/features?

* FAST
a few sparse matrix-vector products

2. Graph Neural Networks [tate 2010s]
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* Strong modeling assumption:
labels only depend on neighbor features
* Works because these features are
sometimes very informative.
* Why not assume labels are correlated?
* SLOW
many parameters, irreqular computation

9



Node features Neighborhood features Neighborhood labels

Supervised ML (like OLS) @)
Label propagation @)
Graph neural networks @) @)
Our work @) @) @)

Also see Collective Classification in Network Data [Sen+ 08]
for overview of similar ideas from early 2000s.
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Adding LP ideas accuracy

computation time

More use of node features —
(bigger & fancier GNNs)

v
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Leaderboard for ogbn-products

The classification accuracy on the test and validation sets. The higher, the better.

Package: >=1.1.1

Test Validation

Rank Method Accuracy Accuracy Contact References #Params Hardware Date

1 MLP + C&S 0.8418 + 0.9147 + 0.0009 Horace He (Cornell) Paper, 96,247  GeForce RTX 2080 (11GB Oct 27,
0.0007 Code GPU) 2020

2 Linear + C&S 0.8301 * 0.9134 £ 0.0001 Horace He (Cornell) Paper, 10,763  GeForce RTX 2080 (11GB Oct 27,
0.0001 Code GPU) 2020

3 UniMP 0.8256 * 0.9308 £ 0.0017 Yunsheng Shi (PGL Paper, 1,475,605 Tesla V100 (32GB) Sep 8,
0.0031 team) Code 2020

4 Plain Linear + C&S 0.8254 + 0.9103 + 0.0001 Horace He (Cornell) Paper, 4,747  GeForce RTX 2080 (11GB Oct 27,
0.0003 Code GPU) 2020

5 DeeperGCN+FLAG 0.8193 0.9221 + 0.0037 Kezhi Kong Paper, 253,743  NVIDIA Tesla V100 (32GB Oct 20,
0.0031 Code GPU) 2020
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Joint work with
Qian Huang, Horace He, Abhay Sing (Cornell)

™ Ser-Nam Lim (Facebook)

Datasets Classes Nodes Edges Parameter A Accuracy A Time ()
Arxiv 40 169,343 1,166,243  —84.90% +0.37 12 (+90)
Products 47 2,449,029 61,859,140 —-9347% +1.99 171 (+2959)
Cora / 2,708 5,429 —98.37% +1.28 <1(+7)
Citeseer 6 5,527 4732 —89.68% —0.70 <1(+7)
Pubmed 3 19,717 44,338 —96.00% —0.29 <1 (+14)
Email 42 1,005 25,571 —97.89% +4.33 43 (+17)
Rice31l 10 4,087 184,828 —99.02% +1.39 39 (+12)

US County 2 3,234 12,717 —74.56% +1.77 39 (+12)
wikiCS 10 11,701 216,123 —84.88% +2.03 7 (+11)

Combining Label Propagation and Simple Models Out-performs Graph Neural Networks.

Q. Huang et al., ICLR 2021.
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The core problem is that

(traditional) GNNs
make uncorrelated predictions.
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Graph neural networks make uncorrelated predictions.
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 Use labels to find representation vectors Ay, hg, hc, hp, h:, and h: and coefficients .
» Given representations and coefficients, predictions are independent.

* Something strange? Compared to LP, use of labels is very implicit.

* Pervasive paradigm [Kipf-Welling 16; Hamilton+ 17; Zhou+ 18; ~10,000 papers in 5 years]
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Graph neural networks make uncorrelated predictions.

D/D feature -1.0@__3+1.0 Q training ‘::: testing
Color is -~ -
[ [ :
true label 4 @ NE @ 1. Form local neighborhoods
[] L] ] [] ] ]

2. Combine features to get a

3. Predict outcome given

[Eh;; EE}“ l h representation (learn model
' ' | params w/ training data)

* If node features are overwhelmingly predictive,
these uncorrelated predictions might be OK.

representation A, at node v.

16



Uncorrelated GNN predictions can be catastrophic in
simple cases when features are only mildly predictive.

/8 feature  -1.0@ B +1.0 () training ' ’ testing
(o) 102, (v3) (v, @  New labels..
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Q ':,\’ O O ’::' O ... but same predictions

 All we have done is change the label distribution!
* Big problem. Features are no longer super predictive.
* LP (ignoring features) would work much better.
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We can correlate feature-based predictions by
propagating residual errors.

/@ feature -1.0 @ D +1.0 O training " testing WO/’ kg wl.ff)
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. Standard GNN prediction.

. Compute residual error.

,
O
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O

. Propagate residuals to estimate
add add errors on test nodes.
) Y 4. Add residual to base prediction.
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The residual propagation algorithm is simple.

1. Make a base prediction on each node with any method.
2. residual = true value - base prediction (on labeled nodes)
3. Label propagation on residual — smooth errors

4. Final prediction = smoothed residual + base prediction (= true value on labeled nodes)

19



Residual propagation works well in practice.

\ learn
\ | S, |

« interpolate P :

Out-of-sample R? 0.51 — 0.69.

20



Residual propagation works well in practice.

R? on county-level demographics predictions. R? on traffic predictions.
vote share 0.51 — 0.69 Anaheim 0.76 — 0.81
income 0.75 — 0.81 Chicago 0.68 — 0.72

education level 0.70 — 0.72
unemployment level 0.55 — 0.75

21



Why does this work?

Do we need the NN in GNNs?

22



We developed a random model for attributes on nodes,
where statistical inference leads to GNN/LP algorithms.

Data Type Corresponding Gaussian MRF Learning Algorithm
X11 X21 X31 -
condition on X : :
%xlz %m %m —— linear regression
y Y2 y; CTTeese Elyy|X] = XyB B = (XTX,)"1XT
i.i.d. data (X, y) 1 Yu 2 LAL LY
V2
.YZ diti i '
Vi V3 TR Y:  label propagation
e o Elyulyl= — (1 + wN);5(1 + wN)y y,
graph data (y, G)
Vo X21
X22 iti s further condition on y, : s
Vi V3 % yz Sonditomen ¥ linear GC » residual propagation

o %Xu %XN ElyulX] = [(1+ wN)"1XBly ElyulX, yi] =
X12 X32

graph 5t (X, Y, G) lchange filter
SGC (simple graph convolution)

l+nonlinearity

GCN (graph convolution network)
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Our model is based on smooth random attributes.

* Random real-valued attribute vectors a, = [x;; y,] on each node u.
* A = ith attribute over all nodes.
« N=/- DY2WD1? s the normalized Laplacian.
* Gaussian MRF random attribute model
p+1 smoothness on attributes

P(AH, h) = = 2§aTHau5 S‘@ ATNA,) He RO gpd, 0 < h e R

correlatea a]’[tnbutes ona node = Z(U,v GE(A“'/ Vi, — Al \/d, )

e—PAIHA)
[ dA” e~ ¢ @ 1HA)

p(A=AlH,h) = Smoother attributes are more likely (homophily / assortativity)

vec(A) ~ N(0,T™Y), F=H® I,+diag(h) @ N lusta multivariate normal random variable in the end

24



Graph learning is now just statistical inference.

Ignore graph, condition on features — linear regression.

E[y|X = X] = XTB — min [IX.8 — y.]|7 — Xup
g ) _— i
(classical derivation of linear models)

Ignore features, condition on graph, labels — label prop.

Elyyly, =¥, 6] = — (In + wN)gy (I + wN)y yi, w = h/H
label prop Smoothing amount ~ homophily * variance

Ignore labels, condition on features + graph — linearized GNN.

E[y[X = X,G] = (I, + oN) "' XB — min |[(I, + oN) ' X1.8 — yi|l» — (T2 + wN) " X]up3
label prop P
on features

Condition on features + labels + graph — linearized GNN + residual prop.
ElyylX =X,y =y.,6] = ju + (I + wN)y; (I + wN)u(7. — y1), ¥ = (In + wN) " XP

label prop residual prop
(on features) 25



Linear graph convolutions are linearized GNNs
that come from the conditioning on features.

Linear graph convolution (LGC). o e
1. Run LP on each feature — L averaging @
smoothed features. B « oA ol ®
. . linear .~ E
2. Ordinary least squares on these fnear . averaging ¥
preprocessed, smoothed features. Veraging 0$. _________ |
,,,,,,,,,,,, .
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Linear graph convolutions are linearized GNNs
that come from the conditioning on features.

Linear Graph Convolution (LGC) (1 —a) (I +aS+a’S*+..)XB S=D ‘WD '/*
[Jia-Benson 21]

Simplified Graph Convolution (SGC) S“Xj S=D+I)"Y2W+I)D+I)"1?
[Wu+ 19]

Graph Convolution Network (GCN) (S ...c(SXOY)...0%)a
[Kipf-Welling 17]

 «is continuous,while K is discrete.

* Does nonlinearity help?

« Does extra parameterization of each “propagation step”in GCN help?
« SGCas K— o s nonsensical.

27



Dataset Outcome LP LR LGC () SGC (K GCN (K)  LGC/RP  SGC/RP  GCN/RP
income 040 0.63 0.66 (0.46) 0.55(1.3) 0.69 0.55 0.55
UsS education 0.31 0.71 0.71 (0.00) 047 (1.0) 0.71 0.46 0.48
" unemployment 0.47 0.34 0.39 (0.59) 0.45 (2.5 0.54 0.52 0.53
election 0.52 042 0.49 (0.68) 0.52(2.1) 0.64 0.61 0.61
airT 095 0.85 0.86(0.78) 0.95 (3.00 0.96 0.97 0.97
cDC landT 0.89 0.81 0.81(0.09) 09124 0.90 0.93 0.93
precipitation 0.89 0.59 0.61 (0.93) 0.79 3.00 0.89 0.90 0.90
sunlight 096 0.75 0.81(0.97) 0.90 (3.00 0.96 0.97 0.97
pm2.5 096 0.21 0.27 (0.99) 0.78 (3.0) 0.96 0.96 0.97
income 046 0.85 0.85 (0.00) 0.63(1.0) 0.85 0.65 0.64
London education 0.65 0.81 0.83(0.40) 0.79(14) 0.86 0.77 0.79
age 0.65 0.73 0.73(0.17) 0.70 1.7y  0.75 0.72 0.72
election 0.67 0.73 0.81(0.74) 0.76 (2.1) 0.85 0.78 0.78
Twitch  days 0.08 0.58 0.59(0.67) 0.26 1.7)  0.60 0.23 0.26
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1 function LGC_params(S, X, y, L; a=0.9, num_iters=10)
X_smooth = copy(X)
for _ in 1l:num_iters
X_smooth = (1 — a) * X + a * S * X_smooth
end
return X_smooth, X_smooth[L, :1 \ ylL]
end

function residual_prop(S, y, y, U; a=0.9, num_iters=10)
Femy =y
rful =0
for _ in l:num_iters
z=S=x*xr
rful = a * z[U]
end
return r
end

function LGC_RP_prediction(
S, # normalized adjacency D~{-1/2} A D~{-1/2}
X, # n x d feature matrix for n nodes
U, # indices of unlabeled nodes
L # indices of labeled nodes
y, # n x 1 label vector (zero on y[U])
)
X_smooth, B = LGC_params(S, X, y, L)
y = X_smooth * B
r = residual_prop(S, vy, y, L)
return y[U] + c[U]
end



Our model helps us understand smoothing.
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Our model helps us understand smoothing.

LGC SGC
1.00 | —_— w=10720 K=0 K=0
—_— W= 10—1.0 : — K=1
0.75 | w=10%00 <—low-pass, — K=2
W= 10+1.O —— K=5
- — W= 10+2.0 K=10
< 0.50 w=10%30 — K =20
(@)
0.25
0.00
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
A A
n n n n
1 K
f= E Civi — E CiVi f= E Civi — E (1 — 9@+nA)" v
: — (1 +wA)) : :
i=1 i=1 i=1 i=1
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Our model helps us understand smoothing.

102
cross validation can

identify the model
parameter.

“Oversmoothing”=

=
o
—

Empirically discussed
problem with GNNs.
[Li+ 18; Oono-Suzuki 20;
Zhou-Akoglu 20]

LGC/RP w
S

Undersmoothing?

Possible but not
discussed in the

1071

10-1 160 101 102 “terature.

Gaussian MRF w

T T Test R2.
0.16 0.88
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We can also evaluate on our generative model.

ho LP(@) LR LGC(a) SGC(K) GCN(K) LGC/RP(a) SGC/RP(K,a) GCN/RP (K,a)

Low homophily. 1 019079 0.68 0.70028 0.37 @8 0.34@w7 0.73029 0.40 w8021 0.37 (1.7,021)
10 0.43 (95 048 0.58 (0577 045021 045020 0.68 056 056 (2.1,046) 0.54 (2.0,0.43)
High homophily. 100 0.59 (0999 0.24 0.42 (085 0.38 23 0.45 @5 0.64 085 0.63 23081 0.62 (25079

* GCN more expressive but prone to overfitting.

* More homophily — larger K, a

* Adding residual prop never hurts!

* GCN better with more homophily?
“memorizing” neighborhood features (zero training error)
+ smoothness in data — better out-of-sample prediction

33



Our model provides a nice setup for inductive learning.

Problem input.

* Graphs G, = (V,E1) and G, = (V, E>).

* |Vil x p matrix X; and |V;| x p matrix X; of node features (same features)
» Subset L, c V of labeled nodes.

* Length-|L,| vector M, of outcomes on L;.

Problem output.
* Length-| V, | vector yof outcomes on nodes V.

54



accuracy (R?)

Our model provides a nice setup for inductive learning.

1.0
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o
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Predictive features,
low homophily.

High homophily.

I
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0.6.8 368 Y
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A bit of degradation.

No performance
degradation.

Bad
overfitting!
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accuracy (R?)

Our model provides a nice setup for inductive learning.

1.0
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0.66 @ o
0-% 061 @ 0.61 | |
&
0.51 0-5.3 Hiras 0.4 o,sg
@ 0.47 ~ 47 :
% o 043042 @ g% 082 0.42 ® 040 043
0 3.4 099 ® .. 03 0.32 N %34
@& @ ® 2 ®
@
LR LGC SGC GCN LR LGC SGC GCN LR LGC SGC  GCN LR LGC SGC  GCN

* Graph G; from 2012 election data.
* Graph G, from 2016 election data.
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Major takeaway. Label propagation is a powerful tool.

N

U1

LP can be applied to residuals (correlated errors).

LP can be applied to features (smoothing / de-noising).

While traditionally seen as separate ideas, LP and basic GNN ideas can
be derived from a common model and combined effectively.

LP is scalable and easy to program.Just big SpMVs!

Linear models are often superior to nonlinear ones (GNNSs) in practice...
you just need to find the right one.

y >R = (I + wN) X By — (I + wN) (T + wN)y (v — [(In + wN) 21X B],)
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There are lots of open research directions.

1. Theory or more principled approaches for classification?
2. More formal understanding of computational tradeoffs?

3. Similar ideas for other graph problems?

link prediction, random walk prediction, graph classification, ...

4. Generative models to explain other GNN ideas?
attention, GraphSAGE, skip connections, ...
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