Higher-order network science
(with hypergraph cuts)

Austin Benson - Cornell University
WPI CS Colloquium - May 7,2021



Graph or network data modeling important complex

systems are everywhere.
e

Communications
nodes are people/accounts
edges show info. exchange

Physical proximity

nodes are people

edges link those that interact
in close proximity

Commerce Cell biology

nodes are products e nodes are proteins

edges link co-purchased edge between two proteins
products that interact

Frequently bought together

Total price: $55.96

This item: 6-Pack LED Dimmable Edison Light Bulbs 40W Equivalent Vintage Light Bulb, 2200K-2400K Wal
Edison Light Bulbs, DORESshop 40Watt Antique Vintage Style Light Bulbs, E26 Base 240LM Dimmable... $
Led Edison Bulb Dimmable, Brightown 6Pcs 60 Watt Equivalent E26 Base Vintage Led Filament Bulb 6W... 2



Network science studies the model to gain insight and
make predictions about these systems.

1. Evolution / changes
What new connections will form? (email auto-fill suggestions, rec. systems)

2. Clustering / partitioning / community detection
How to find groups of related nodes? (similar products, protein functions)

3. Spreading and traversing
How does stuff move over the network? (viruses or misinformation)

4. Ranking
Which things are important? (PageRank and its variants)



Real-world systems are composed of “higher-order”
interactions that we often reduce to pairwise ones.

Communications 9’
nodes are people/accounts i ‘

emails often have several
reciplents, not just one.

Physical proximity
nodes are people
people gather in groups

Commerce Cell biology

nodes are products e nodes are proteins
several proaucts can be protein complexes may
purchased at once involve several proteins

Frequently bought together

Total price: $55.96

This item: 6-Pack LED Dimmable Edison Light Bulbs 40W Equivalent Vintage Light Bulb, 2200K-2400K Wal
Edison Light Bulbs, DORESshop 40Watt Antique Vintage Style Light Bulbs, E26 Base 240LM Dimmable... $
Led Edison Bulb Dimmable, Brightown 6Pcs 60 Watt Equivalent E26 Base Vintage Led Filament Bulb 6W...



Graph with
(pairwise) edges

Hypergraph with
(multiway) hyperedges

What new insights does this give us?



We can ask the same network science questions while
accounting for higher-order structure.

1. Evolution / changes
What new connections will form? (email auto-fill suggestions, rec. systems)

2. Clustering / partitioning / community detection
How to find groups of related nodes? (similar products, protein functions)

3. Spreading and traversing
How does stuff move over the network? (viruses or misinformation)

4. Ranking
Which things are important? (PageRank and its variants)



hips.
I’ structure.

ation, how should

eparate products into
ent departments or aisles?

Or bundle their products?

0 “higher-order” data

Translator
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Network analysis
uses graph abstractions
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1. Temporal evolution of higher-order interactions.
Simplicial Closure and Higher-order Link Prediction, PNAS 2018.

2. Hypergraph cuts for local and global clustering.
Hypergraph Cuts with General Splitting Functions, arXiv, 2020.
Minimizing Localized Ratio Cuts in Hypergraphs, KDD, 2020.
Hypergraph clustering: from blockmodels to modularity, arXiv, 2021.



We collected many datasets of timestamped hyperedges

bit.ly/sc-holp-data

Coauthorship in different domains.
Emails with multiple recipients.
Tags on Q&A forums.

Threads on Q&A forums.
Contact/proximity measurements.
Musical artist collaboration.
Substance makeup and
classification codes applied to
drugs the FDA examines.

U.S. Congress committee
memberships and bill sponsorship.
Combinations of drugs seen in
patients in ER visits.

For a strongly regular graph, there are exactly 3 eigenvalues, all nonzero (I believe). One has
multiplicity 1, which means the other two have pretty high multiplicities. There are tables that give
these eigenvalues and multiplicities:

4
http://www.win.tue.nl/~aeb/graphs/srg/srgtab1-50.html
For example, the Schlaefli graph is order 277 but has an eigenvalue of order 20.
My question is, are there other known graphs (families, types, or just single graphs) that have large
multiplicities of eigenvalues? When I check a random graph in Sage, it seems the max multiplicity is
mostly 1.
< ilinear—algebra) (graph-theory) (eigenvalues-eigenvectors) (algebraic-graph-theo&i >
share cite edit asked Nov 8'
Seen this? Or this? {J. M. i ici t1
@J.M. Thapks, | will look at teee=km-netear® the second one applies. But, the first one seems to be a good
one. @ ‘ t21:2
2 Answers active oldest  votes
One class of examples are distance-regular graphs; strongly regular graphs are (essentially) distance-
regular graphs with diameter. Distance-regular graphs can be constructed from Hadamard matrices,
4 symmetric designs and linear codes.
If all eigenvalues of the adjacency matrix A of a graph are simple, then any matrix P that commutes
with A must be a polynomial in A. It follows from this that all automorphisms have order dividing
Vv two, and also that the graph either is the complete graph K, or cannot be vertex transitive So any
vertex-transitive on more than two vertices has an eigenvalue which is not simple.
+50

You can learn about these things in Biggs's * *Algebraic Graph Theory", for example.

share cite edit
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Thinking of higher-order data as a weighted projected
graph with filled-in structures is a convenient viewpoint.

Data.

fq: {1,2,3,4}

t:{1,3,5} 9
ts: {1,6} \3/
ty: {2,6}

ts: {1,7,8} />5
ts: {3,9) - /
t7:{5,8} /8
lg: {1,2,6}

Projected graph W.
W;; = # of hyperedges containing nodes / and j.

11



Graph Evolution: Densification and
Shrinking Diameters

JURE LESKOVEC
Carnegie Mellon University
JON KLEINBERG

Cornell University

and

CHRISTOS FALOUTSOS
Carnegie Mellon University
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What's more common in empirical data?

Open triangle Closed triangle
each pair has been in a there is some hyperedge
hyperedge together but all 3 that contains all 3 nodes

nodes have never been in the
same hyperedge

13



There is lots of variation in the fraction of triangles that

are open, but datasets from the same domain are similar.

Fraction of triangles open

See also Patania-Petri-Vaccarino (2017) for similar ideas in collaboration networks.

c o =

Ul ~ o

o ol o
1 1 1

0.25 A

0.00 -

o O N .'.00

X
X

Edge density in projected graph

10> 10~* 1073 1072 1071

X coauth-DBLP
X coauth-MAG-geology
X coauth-MAG-history

% congress-bills
Y congress-committees

@ threads-stack-overflow
@ threads-math-sx
@ threads-ask-ubuntu

‘ contact-high-school
¢ contact-primary-school

B tags-stack-overflow
B tags-math-sx

B tags-ask-ubuntu
W email-Eu

o email-Enron

<« NDC-substances
<« NDC-classes

® DAWN
V music-rap-genius
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How do new closed triangles appear?
Can we predict which new higher-order interactions will occur?

15



Triangles “fill in” or “close” over time.

2

1

6

{1,234} 7

:{1,2,3,4}
:{1,3,5}
:{1,6}
:{2,6}
:{1,7,8}

: {3,9}

: {5,8}
:{1,2,6}

A

2

12,6}

»/\

ty

{1,2,6}

tg
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Weak and strong ties are useful characterizations.

Substances in marketed drugs recorded in the National Drug Code directory.

HIV protease
Lok Kalet Kaletra
inhibitors Reyataz Reyataz Pﬁyiiz?ans Promacta Promacta DOH Central Evotaz
RedPharm |~ / Squibb & Sons ﬁ></ Total Care ﬁ.></ \ o GSK (25mg) / \ o GSK (50mg) ></ \ _» Pharmacy / \X Squlbb & Sons
2003 2003 . 2006 ! 2008 2008 2009 2015
UGT1A1 Breast cancer 1 _2

inhibitors resistance protein inhibitors

Bin weighted edges into “weak” and “strong ties” in the projected graph W.
W;; = # of simplices containing nodes / and j.

* Weakties. W =1 (one hyperedge contains /and )
* Strong ties. W > 2 (at least hyperedges contain / and ))

/\
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Closure depends on structure in projected graph.

* First 80% of the data (in time) — record configurations of triplets not in closed triangle.
» Remainder of data — find fraction that are now closed triangles.

Closure probability Closure probability Closure probability
10-2—% Lo-2 ] 1072 X
1073 -
3 1073 107
~Ae 107 ~/\ AN
10-5 _ 1 10-4 _ 1 10-
107° 5 10-5 107
107 1075 10~ 107 10~ 10 107 107 107 10 10 10 1072
~Ae ~Av AN
1 . 2%t .
Increased edge density Increased tie strength Tension between edge
increases closure probability. increases closure probability. density and tie strength.

Left and middle observations are consistent with theory and empirical studies of soc/al networks.

[Granovetter 73; Kossinets-Watts 06; Backstrom+ 06; Leskovec+ 03] 13



We used this for a new higher-order link prediction task.

Data.

t1:{1,2,3,4}

t;:{1,3,5} * Observe simplices up to time t.
ts: {1,6} * Predict which groups of > 2

ty: {2,6} nodes will appear after time t.
ts:{1,7,8}

lg : {3,9} ;

t;: {5,8 We predict structure that graph
| models would not even consider!

time

19



Our structural analysis helps us with prediction.

1. Edge density matters.
Predicting open triangles first is the easiest
way to get a performance boost. O

2. Tie strength matters a lot!
We tried lots of stuff, but simple averaging
works extremely well.

score,(/, J, K)
= (W] + W+ Wit

In contrast...
Long paths help with classical link prediction methods [Liben-Nowell & Kleinberg 07]

Complex k-hop neighborhood computations work well for modern graph neural networks

20



Higher-order network science W/N.Vt J.Kleinberg, Chc;drow

1. Temporal evolution of higher-order interactions.
Simplicial Closure and Higher-order Link Prediction, PNAS 2018.

2. Hypergraph cuts for local and global clustering.
Hypergraph Cuts with General Splitting Functions, arXiv, 2020.
Minimizing Localized Ratio Cuts in Hypergraphs, KDD, 2020.
Hypergraph clustering: from blockmodels to modularity, arXiv, 2021.

21



In network science, a wide array of applications rely on
finding graph clusters and small graph cuts.

Applications *{’A

community detection ;l%/ %\
graph partitioning
semi-supervised learning bfﬂ

routing/flow problems
dense subgraph detection
localized clustering

"

g
o

4." \\\@!'
i.!!.ﬁ\\é\\‘v»\i’
Va

Cluster = densely connected node set that
Is sparsely connected to rest of graph

Cut = number of edges crossing a
cluster boundary

22



Cut and clustering problems are well understood and
widely applied in graph analysis. Types of cut problems
\ minimum s-t cut
v \ A ' if i multiway cut
] o—© 0_/'_6 ncr)]deeolgae résscezl;)talraLfd. m;Jn é\:nvngj/ucutance cut

d sparsest cut

uncut cut

minimizescy cut(S)
subject to seS, t¢gs.

The penalty for cutting an edge is its weight.



How do we define hypergraph cut problems?
Once defined, how do we solve them?

A first thought.

Apply a bipartite graph expansion and solve the cut problem on the graph.

/. O\
® 6
e ©

What exactly is this cut measuring? Is it right for applications? Are there alternatives?

24



There are two major challenges.

1. Modeling Questions. There are many ways
to generalize graph cut and clustering
problems to the hypergraph setting.

2. Scalability Issues. Hypergraphs can grow
not only in terms of nodes and
hyperedges, but also hyperedge size.

We’ll address these with

Generalized and unifying models
for hypergraph cut functions.

Methods that scale up to hypergraphs
with millions of nodes, and millions of
very large hyperedges.

25



A
-Fhe hypergraph cut function has existed for decades.

\ \

vV 0 6 0.0

A hyperedge is cut if its nodes are separated.

The hypergraph cut is the number of cut hyperedges.

The hypergraph minimum s-t cut problem separates s
and t in a way that minimizes the hypergraph cut.

This has a polynomial-time solution [Lawler 19/3].

This cut function seems natural at first, but does it always make sense?

26



There are 14 distinct ways to cut a 4-node hyperedge
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Here's how the standard hypergraph cut function sees them
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Should we really treat

29



We introduce a generalized class of hypergraph cut
functions based on splitting functions.

A splitting function associates a penalty to each configuration of nodes in a hyperedge.

.0\ 0
T w.({1}) = penalty for {1} vs. {2,354} split
© O
Assumptions. Uncut ignoring we(e) = w,(() =0
Non-negativity wg(U) > 0 forall U C e.
Symmetry we(U) = we(e\U) forall U C e.
k “"0\"' © ° @//
- We( {1}) = we({2,5,4})
®© O o

,/
,/
’

50



We focus on a very natural class of splitting functions.

Hypergraph minimum s-t cut problem.
minimizescy ) .cpWe(€N'S) = cuty(S)
subject to seS, té¢S.

Assume all hyperedges of the same size have the same splitting function.

cuty (S) = f(2) + f(1) Intheory, we could assign a completely different function to each hyperedge.

O 6 o ¢ Cardinality-based splitting functions.

— w.(U) = f(min(|U], |U\e
o 0 o o “WImnULUe) /
\\,’Il‘ o //.
U
This allows us to distinguish between : ® g : ! :
. /
(XY ) LY

! 31



Cardinality-based functions are easy to specify.

9\\ 0 ®© 0O Only need to specify f(1),f(2),....f(|r/ 2])
........ ’ . where r = hyperedge size.
© O 9 (4 () =w;
f(1) = f(3) =;1 ~—"scale to 1 WLOG ;
o6 00 o0/0 S
T i P ® 0

© 0 60 0.0 o B0
R \ \ ’ /. 0
. f2) o /Q . O

© 6 ‘6.0 o0 o /e

f0) =0 . N ’

© 0 0.0\ @ 0 | wie-r+f)-m+1




Different weights lead to different min cuts in practice.

s- seed = symplectic- linear- algebra
t- seed = bernoulli- numbers

node is on s side

‘ node is on t side

cayley-graphs

fusion- systems
topological- stacks
graph- invariants
adjacency- matrix
signed- graph
gorenstein
cohen- macaulay
topological- k- theory
ditfference- sets
pushforward
regular- rings
graph- connectivity
lock- matrices
directed- graphs

group-theory

finite-groups eulerian- pat

combinatorial-designs central- extensions
group- extensions
semidirect- product

category-theory
. hypergraphs @
logic @ _
graph-theory terminology wreath- product

o ~ graded- algebras
algebraic-graph-theory - Supergeometry .
~ geometric- complexity

math-software soliton- theory
matrix- congruences

~ teichmueller- theory

~ superalgebra

~ string- theory

~ riemann- surfaces
8roup- cohomology
glas

celestial- mechanics

2.0
33

linear-algebra combinatorics discrete-mathematics

node = tag on math.stackexchange.com
hyperedge = set of tags in same post




We solve hypergraph cut problems with graph reductions

Gadgets (expansions) model a hyperedge with a small graph.

O oo/ &%
oo,’[i'i’l;}\“
o o 00
hyperedge cllque expansion star expansion Lawler gadget [1973]

In a graph reduction, we first replace all hyperedges with graph gadgets...

...and then exactly solve the resulting graph s-t cut problem.

54



Existing gadgets model cardinality-based splitting functions.

o/
Quadratic penalt
Cligue Gadget N P /
/ . . models
o~ Does not require adding > We(U) = ‘U ‘ - ‘E\U ’
new vertices
[Agarwal+ 06; Zhou+ 06; e, w;=1i-(r-)
Benson+ 16] S
O ,"'i Star Gadget Linear penalty
Equivalent to bipartite models _
o N expansion of a >~ We(U) = min{|U|, |e\U|}
hypergraph
[Hu-Moerder 85; Heuer+ 18]
All-or-nothing penalty
1 ifUe{e}

Models the standard models W, (U) =
hypergraph cut function - €
[Lawler 73; Ihler+ 93; Yin+ 17]

Lawler Gadget
{ O otherwise

How can we model other cardinality-based splitting functions?



Other cardinality-based functions are also used in other
hypergraph clustering applications.

/

Discount cut We(U) = min{|U|%, [e\U|*} [Varos-Imielinski 13]

Used for consensus clustering.

L-M submodular ~ w,(U) = 3 +

N[

min {1, 1, o [Li-Milenkovic 18]

Used for hypergraph spectral
clustering.

No graph reduction strateqgy has been designed for these. Can we develop one?

56



We made a new gadget for C-B splitting functions.

P *\\ ,’ C_B WE(U) =f(m|n(‘U" ‘E\U‘))
— X |b X This gadget models min(|Ul, |e\Ul, b).

Theorem [Veldt-Benson-Kleinberg 20a]. Nonnegative linear combinations of the
C-B gadget can model any submodular cardinality-based splitting function.

(F is submodularon X if FANB)+ FIAUB) < F(A)+ F(B) forany A,B C X))

All the data mining / machine learning applications of hypergraph cuts
map to a submodular cardinality-based splitting function.

See also Graph Cuts for Minimizing Robust Higher Order Potentials, Kohli et al., 2008.



Submodularity is key to efficient algorithms.

Cardinality-based splitting functions.
We(U) = f(min(|U], [e\U]))

Theorem [Veldt-Benson-Kleinberg 20a]. The hypergraph min s-t cut problem
with a cardinality-based splitting function is graph-reducible (via gadgets)
if and only if the splitting function is submodular.

What happens when the splitting function isn’t submodular?
Can we use some other algorithm?

38



Hardness and open questions for 4-node case.

\ wi=1
o SN -
U4 # ::_____;IUQ
u -T2 = ) Graph 29
© o NP-hard | peducible ! **
Wo < W1
| | . >
Reduction from max cut 0 1 2 W,

w, = 0.5 solution w, = 1.5 solution w, = 2.5 solution

39



Local Hypergraph Clustering

Minimizing Localized Ratio Cut Objectives in Hypergraphs
Veldt, Benson, Kleinberg KDD 2020

The goal of local graph clustering is to
find a good cluster S near a seed set R.

Examples.

Localize left atrial cavity in full body MRI [Veldt+ 19].
Finding a specific person’s social communities [Fountoulakis+ 20].
Determine related products from co-purchasing data.

Nate Veldt 4()



HyperLocal does localized hypergraph clustering by
repeated hypergraph s-t cuts.

We introduce a new

Hypergraph Local

Conductance objective.
Hypergraph cut

function

i cuty(S)
HLC: . (S) = VO[H(SB%%(S 4 RD

Encourage overlap Discourage overlap
with seed set. outside seed set

Theorem [Veldt-Benson-Kleinberg 2020b]

If cuty(S) is any cardinality-based submodular hypergraph cut function, the HLC

objective can be minimized in polynomial time by solving a bounded number of
hypergraph minimum s-t cut problems.

41



Detecting Amazon product categories from review data

Runtime and accuracy for detecting products of the same category from seed nodes

Cluster | T time (s) HyperLocal Baselinel Baseline2
Amazon Fashion 31 3.5 0.83 0.77 0.6
All Beauty 85 30.8 0.69 0.60 0.28
Appliances 48 9.8 0.82 0.73 0.56
Gift Cards 148 6.5 0.86 0.75 0.71
Magazine Subscriptions 157 14,5 0.87 0.72 0.56
Luxury Beauty 1581 261 0.33 0.31 0.17
Software 802 341 0.74 0.52 0.24
Industrial & Scientific 5334 503 0.55 0.49 0.15
Prime Pantry 4970 406 0.96 0.73 0.36

mean hyperedge size > 17
Product categories provide cluster labels
All-or-nothing penalty (w;=1).

2.3M Amazon products (nodes), reviewed by 4.3M users (hyperedges).

Max hyperedge size ~9.3k nodes!

Customer reviews
4.7 out of 5

352 global ratings

5 star

4 star

3 star

2 star

1 star

83%
12%
0%
1%

4%

4)



Detecting online forum questions on the same topic

. o0
0.8 Neighborhood Our HyperLocal Jo%0t
: ®
Baselines o® °o o
000: @
S 06 eoo0°?® ® o0°
= o ° :.oo.” oo ¢ ® o o,
O [ o © o0 L L
® e o O o s o o
° Oe ®¢ °
— | PY P 000 ® o $ ® o000 ©
o %, ° Clique-Expansion
® o
vs®00° + Graph Method
o0 o
’ IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII — 11111 | \ 1 1 1
EOEHRRAALLREHAOR S AN S A IDO L RARALEEA KOO ECOS
5 ST O R R
| 2 ,
oo((\ \® < {\Oq\ ro*%\@ é(‘ee ooqg ¥ d o \0(« >
& = &

 15M StackOverflow questions (nodescj,answered by 1.1M users (hyperedges).

* mean hyperedge size 23.7, max hyperedge size ~ 60Kk.

* Tags provide cluster labels.

* Delta-linear splitting function w; = min(i, 5000). 43



We carefully apply our graph reduction techniques to
growing subsets of the hypergraph.

The resulting algorithm is very fast because it
doesn’t have to explore the entire hypergraph.

44



HyperLocal has strong theoretical guarantees.

Theorem [Veldt-Benson-Kleinberg 2020b]

Runtime guarantees.

The runtime of HyperLocal depends
only on the size of the seed set R, not

the size of the hypergraph.

Theorem [Veldt-Benson-Kleinberg 2020b]

Cluster detection guarantees.

If R overlaps enough with a target
set T, HyperLocal will find a cluster S

almost as good as T.

HLC, . (S) = Cuty(5)

voly (S N R) — evoly (SN R)
Hypergraph localized conductance

_ cut(S) _ cut(S)

P0) = vol(S)  vol(S)

Hypergraph Normalized Cut

45



Global Clustering and
Community Detection

Generative Hypergraph Clustering:
In global clustering, we from Blockmodels to Modul.arity
assign every node to one cluster.  Chodrow; Veldt, Benson arXiv 2101.09611

Examples.

Find social communities based on group interactions

Separate retail products into different departments/categories

Minimizing communication costs in parallel computing [Catalyurek-Aykanat 99; Kabiljo+ 17]

46



Graph Louvain Graph MLL Hypergraph AON MLL

Teachers41[1]1[1]2]1]1]2 111111 [1]1][1]A1 1T[1[1[1[1[1]1][1]1]1
5B - 24 24 24

5A 22 22 22

4B 23 23 23
Contact hypergraphs 4A 4 21 21 21
3B - 22 22 5D

3A A 23 23 23

2B - 26 26 26

2A - 23 23 23

1B+ |25 25 25

1A 128 23 23

|ooyos Atewiid

PSI*-

PC* -

PCH

Hyperedge = group of mgf:
students that interact MP -
during the day.Measured  2BIO3 -

by wearable sensors 2BI0O2 +

|ooyos ybiH

Our new hypergraph method beats graph methods at identifying groups of
students (nodes) that belong to the same class (cluster) based on group
interactions (hyperedges).



We develop a generative model for hypergraph clustering.

—bRO'(QR)Q(ZR) Q ar
Pr(A | 2,2,6) = [ Priar | 29 = [T = <§§'0<9R> (2r))

RER ReER O ®
® o

.‘ ° 000 Q (‘ C ‘) / hvpe.redge

® o0 00/ — __ oo
[

Ground truth Affinity function decides the P ®
>-tuple of nodes Cluster Labels probability this becomes a hyperedge.

no hyperedge

Maximum likelihood estimation to infer cluster labels and affinity functions
involves minimizing hypergraph cuts.

48



Different affinity functions correspond to different types
of hypergraph cut penalties

Q(%%°

Q%%

) — Q (‘ O ‘) Example 1 (all-or-nothing). The affinity function depends only on
o0 whether all nodes are from the same ground truth cluster.

) — Q ('.‘.’) Optimizing the maximum likelihood function involves
minimizing an AON hypergraph cut penalty.

Example 2 (Group Number). The affinity function depends only on
the number of clusters appearing in a hyperedge.

Q(%%°)

1
fe
O
o2

Q(%%°)

1
fe
O
o

Example 3 (Relative Plurality). The affinity function depends only on
the difference in count of top two most frequent clusters.

49



We can use true cluster labels to evaluate affinities.

Bayesian information criterion (B/C)

all-or-nothing group number relative plurality

trivago-clicks 1.6854 1.6866 2.0257 x 108

house-committees 2.7128 2.7128 2.7119 x10°

senate-committees 9.7934 9.7934 9.7736 % 10%
Trivago hypergraph C"’“,’“ ?f‘?‘?“f“f’,“ bers

. rq
Vacation Rentals

Vice Chairman

% James E. Risch, /daho
&’ Deb Fischer, Nebraska

o — Hyperedge = set of vacation
rentals that a user “clicks out”
on during a browsing session

. James Lankford, Oklahoma

50



We can use max. likelihood estimation to infer clusters.

Trivago hypergraph trivago-clicks: 10-core
(0 = 1,32/ M ='9,340)
Vacation Rentals
0.75 -
= Hypergraph method (AON)
2 0.70-
)=
S 0.65-
o Graph-based method (unweighted)
3 0.60 - 0000000000000 000O0
= ©0000°° .
0.55 - Mraph-based method (weighted)

Hyperedge = set of vacation
rentals that a user “clicks out”

i : : Maximum hyperedge size considered
on during a browsing session ypereag

Our new hypergraph method beats graph methods at identifying vacation rentals
(nodes) from the same country (cluster) based on browsing behavior.
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Recap

Hypergraphs model rich
higher-order structure.

We can revisit classical problems
and gain fresh insights.

This are many new theoretical
and algorithmic questions.

Applications to higher-order data
analysis are abundant!

Vacation Rentals
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Higher-order network science with hypergraph cuts
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