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Graph data modeling complex systems are everywhere.
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nodes are people VISA nodes are accounts

edges are friendships edges are transactions

Elections amaZon Commerce

nodes are regions nodes are products
edges are social / geo E edges are copurchases

[Mark Newman 2012 map]



We often want to predict/estimate/construct/forecast
attributes/labels/outcomes/clusters on nodes.

Bad actors in financial transaction graphs
[Weber+ 18, 19; Pareja+ 20]

 Gender in social networks

[Peel 17; Altenburger-Ugander 18]

» Document classification in citation networks
Lu-Getoor 03; Kipf-Welling 17]

* Product categories from coreview/copurchase
[Huang+ 20; Veldt+ 20]

* Election outcomes from social connections
Jia-Benson 21]

known labels/outcomes

« Might have rich additional info on nodes (features)
transaction history, user interests, document text, product ratings, demographics

« Graph-based semi-supervised learning, clustering, node prediction, relational
learning, collective classification, community detection, ...



The formal problem we are solving.

Problem input.

* Graph G = (V,E).

* |V] x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y, of outcomes on L (real-valued or categorical).

Problem output.
* Length-|U| vector y, of outcomes on U= V'\ L (real-valued or categorical).



We will discuss two broad classes of algorithms.
1. Label Propagation [early 2000s]

2.Graph Neural Networks [tate 2010s]
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* Propagate/spread/diffuse known values.
* Doesn’t use features.

« Combine neighbor features via neural nets.
 Train with known outcomes.

* Produces vector h, for each node v.

Key questions.

1. When should each work well or poorly?
2. How can we combine them?

3. What is the relationship between them?
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* At convergence, everyone is roughly the average over their neighbors — smooth!
* Regression. Start with real values (O/mean at unknown) — smoothed value for each node.
* Classification. For each class, initial values O or 1 — score for each node for each class.



Graph neural networks aggregate features.
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* Regression. Prediction at node A = <f, h,>.
» Classification. Prob(node class A = J) proportional to exp(<f;, h,>).
* Big optimization problem trained with labeled nodes and automatic differentiation.



We will discuss two broad classes of algorithms.

1. Label Propagation [early 2000s] 2.Graph Neural Networks [tate 2010s]

[From Leskovec 224W 2021 slides]
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« Strong modeling assumption: * Strong modeling assumption:

connected nodes have similar labels. labels only depend on neighbor features
* Works because of homophily [McPherson+ 01] » Works because these features are

a.k.a. assortativity [Newman 02] sometimes very informative.
 Why not use additional info/features?  Why not assume labels are correlated?
* FAST « SLOW

a few sparse matrix-vector products many parameters, irreqgular computation
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Adding LP ideas accuracy

computation time

More use of node features —
(bigger & fancier GNNs)

v



Collective Classification
in Network Data

We are building on
established ideas.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic,
Lise Getoor, Brian Gallagher,

Given a network and a node v in the
network, there are three distinct types of
correlations that can be utilized to deter-
mine the classification or label of v: (1)
The correlations between the label of v
and the observed attributes of v. (2) The
correlations between the label of v and the
observed attributes (including observed la-
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etworks have become ubiquitous.
NCommunication networks, finan-

cial transaction networks, net-
works describing physical systems, and so-
cial networks are all becoming increasing-
ly important in our day-to-day life. Often,
we are interested in models of how nodes
in the network influence each other (for
example, who infects whom in an epi-
demiological network), models for pre-
dicting an attribute of interest based on
observed attributes of objects in the net-
work (for example, predicting political af-
filiations based on online purchases and
interactions), or we might be interested in

nected nodes. The simplest types of corre-
lation can be the result of homophily
(nodes with similar labels are more likely
to be linked) or the result of social influ-
ence (nodes that are linked are more like-
ly to have similar labels), but more com-
plex dependencies among labels often ex-
ist.

Within the machine-learning commu-
nity, classification is typically done on
each object independently, without tak-
ing into account any underlying network
that connects the nodes. Collective classi-
fication does not fit well into this setting.
For instance, in the web page classifica-

1 1 ith identifying important nodes in the net- tion problem where web pages are inter-
leS) Of nOd eS ln the nel ghb OrhOOd Of V' x):d e'rrnlf work (for example, critical nodes in com- connected with hyperlinks and the task is
th syn- to assign each web page with a label that

(3) The correlations between the label of v
and the unobserved labels of objects in the
neighborhood of v. Collective classification
refers to the combined classification of a
set of interlinked objects using all three
types of information just described.

Copyright © 2008, Association for the Advancement of Artificial Intelligence. All rights reserved. ISSN 0738-4602

munication networks). In most of these
Ap=irreTn gp in achieving
our fiprdl goal is classifying, or [
pddes in the network.
Given a network and a node v in W
network, there are three distinct types o:
correlations that can be utilized to deter-
mine the classification or label of v: (1)
The correlations between the label of v
and the observed attributes of v. (2) The
correlations between the label of v and the
observed attributes (including observed la-
bels) of nodes in the neighborhood of v.
(3) The correlations between the label of v
and the unobserved labels of objects in the
neighborhood of v. Collective classification
refers to the combined classification of A

ing, the

best indicates its topic, it is common to as-
sume that the labels on interconnected
web pages are correlated. Such intercon-
nections occur naturally in data from a va-
riety of applications such as bibliographic
data, email networks, and social networks.
Vraditional classification techniques
would ignore the correlations represented
by these interconnections and would be
hjird pressed to produce the classification
agcuracies possible using a collective clas-
sffication approach.

Although traditional exact probabilistic
nference algorithms such as variable
elimination and the junction tree algo-
rithm harbor the potential to perform col-
lective classification, they are practical on-
ly when the graph structure of the net-
work satisfies certain conditions. In
general, exact inference is known to be

FALL 2008 93

See also

ReFeX (KDD 2011) and
RolX (KDD 2012) for more
prescient research by you
instructor.
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1.LP on residuals for improving GNN regression algorithms.

Residual Correlation in Graph Neural Network Regression.
Jia & Benson, KDD 2020.

2.Using LP but removing GNNs altogether for good classification performance.

Combining Label Propagation and Simple Models Out-performs Graph Neural Networks.
Huang et al, ICLR 2021.

3. Statistical framework that unifies LP and GNN ideas.
A Unifying Generative Model for Graph Learning Algorithms: Label Propagation, Graph Convolutions,and Combinations.
Jia & Benson, arXiv 2021.
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The formal problem we are solving.

Problem input.

* Graph G = (V,E).

* |V] x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y, of outcomes on L (real-valued or categorical).

Problem output.
* Length-|U| vector y,, of real-valued outcomes on U= V'\ L.

Solution evaluation.
 Coefficient of determination R2=1 - RSS /TSS.
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= true value at u
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Graph neural networks make uncorrelated predictions.
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 Use labels to find representation vectors hy, hg, h¢, hp, he, and h: and coefficients .
 Given representations and coefficients, predictions are independent.

» Something strange? Compared to LP, use of labels is very implicit.

* Pervasive paradigm [Kipf-Welling 16; Hamilton+ 17; Zhou+ 18; ~10,000 papers in 5 years]
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Graph neural networks make uncorrelated predictions.

D/D feature -1.0@__3+1.0 Q training ‘::: testing
Color is -~ -
[ [ :
true label 4 @ NE @ 1. Form local neighborhoods
[] L] ] [] ] ]

2. Combine features to get a

5. Predict outcome given

[Eh;; EE}“ l h representation (learn model
' ' | params w/ training data)

* If node features are overwhelmingly predictive,
these uncorrelated predictions might be OK.

representation h, at node v.
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Uncorrelated GNN predictions can be catastrophic in
simple cases when features are only mildly predictive.

/8 feature  -1.0@ B +1.0 () training ' ’ testing
(o) 102, (v3) (v, @  New labels..
[ O [ [ O H
O 0 O (va)m 0 (v6) O
= O (] O O O O O [ O
' ' ' v ! v
[ [ 1hy [([Ohy [T hs [Thy [([Ohs [[hg
v | ¢ ' ' ;

Q ':,\’ O O ’::' O ... but same predictions

 All we have done is change the label distribution!
* Big problem. Features are no longer super predictive.
* LP (ignoring features) would work much better.
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We can correlate feature-based predictions by
propagating residual errors.

/@ feature -1.0 @ D +1.0 O training " testing WO/' kg wl.ff)
@ @ o @ Just fayon Y G,
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. Standard GNN prediction.

. Compute residual error.

,
O

OO v @
O

. Propagate residuals to estimate
add add errors on test nodes.
) Y 4. Add residual to base prediction.
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The residual propagation algorithm is simple.

1. Make a base prediction on each node with any method.
2. residual = true value - base prediction (on labeled nodes)
3. Label propagation on residual — smooth errors

4. Final prediction = smoothed residual + base prediction (= true value on labeled nodes)

17



There is a simple statistical motivation for o

®
why residual propagation works. o e o
The objective looks like ordinary least squares (OLS). 0'. .
m@in Z Vo — g Xy, {X, :v € NK(U)}’H)]Z - mgin Z [y“ - 'B(H)Thu(e)}z
uelL uel

* |f observations are y, = BTh + g, for i.i.d. g, ~ N(0, o),

then the OLS solution is the MLE (also, Gauss-Markov theorem / BLUE).
* Error g, =y, - B'h,=residual at v.
* We shouldn’t expect i.i.d. error in graph data!

* We are positing that errors are positively correlated along edges
r=g~NQO,(I-aS)?

 Essentially, this is a type of generalized least squares or kriging

[Aitken 36; Xu-Dyer-Owen 10; Chin+ 19]. 8



A little background on multivariate Gaussians.
r=e~NQO,(I—-aS) ™ )=NOTH=N0,%),soXx'=r=I1—as

Facts.
1. 2,71 =T =0 — r;,r; independent given other entries in r
(s0X;*=T;=0 <= (i,j) not an edge)

2. rulI’L ~ N(—I'JUlI'ULrL, I'_L})

3. Mean minimizes mean squared (so we use —I ;T y.r;)

4. —T Ty, = —(I — aSyy)~Y(aSy)r., which is the limit of LP:
r

(t+1) 1 ?
I — a - \/_d_uZ(i,j)eE \/13,7
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Residual propagation works well in practice.

\ learn
\ . —_——
-~

« interpolate P :

Out-of-sample RZ 0.51 — 0.69.
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Residual propagation works well in practice.

County-level Median Household Income Prediction

R? on county-level demographics predictions. Lo
vote share  0.51 — 0.69 Z: ———
income 0.75 — 0.81 = | . 0 . . '
education level 0.70 — 0.72 0'2_
unemployment level 0.55 — 0.75 e T (=1 = oW = o)
005 ; 5 ; 5 5

number of features d

R? on traffic predictions.

Anaheim 0.76 — 0.81
Chicago 0.68 — 0.72



We can also learn the correlation directly.

residual ~ N(O,F™%), T=8(1-aS), S=DY’wp 1?2

(>0 is correlation strength

 a =0 — uncorrelated outcomes (no residual prop)
 a >0 — positively correlated outcomes

* a <0 — negatively

* Jointly maximize likelihood of base model + correlated error.
* Requires lots of numerical tricks to be scalable.
 Some empirical performance boosts.
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We can learn negative correlations.

Ising(+)
— ~+
h
+ —_
Ising(-)
features are grid coordinates
Dataset GCN GCN + standard RP  learned corr. RP
Ising(+) 0.61+0.04 0.72 £ 0.03 0.72 £ 0.03
Ising(-) 0.47 +0.02 0.34 +0.02 0.70 £ 0.03

23



GNNs and label propagation can be combined.

1. Keyidea. Run LP on the residuals for correlated errors.

2. Residual propagation is just a post-processing step that can be used
with any regression method (we never see it hurt)

3. When features are somewhat but not overwhelmingly predictive,
residual propagation can boost performance substantially.
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1.LP on residuals for improving GNN regression algorithms.

Residual Correlation in Graph Neural Network Regression.
Jia & Benson,KDD 2020.

2.Using LP but removing GNNs altogether for good classification performance.

Combining Label Propagation and Simple Models Out-performs Graph Neural Networks.
Huang et al,, ICLR 2021.

3. Statistical framework that unifies LP and GNN ideas.
A Unifying Generative Model for Graph Learning Algorithms: Label Propagation, Graph Convolutions,and Combinations.
Jia & Benson, arXiv 2021.

25



Can we get top performance without GNNs?

o
O‘v B Get Started Updates Datasets ~ Leaderboards ~ Paper Team Github
=0

Leaderboard for ogbn-products

The classification accuracy on the test and validation sets. The higher, the better.

Package: >=1.1.1

Test Validation

Rank Method Accuracy Accuracy Contact References #Params Hardware Date

1 MLP + C&S 0.8418 + 0.9147 + 0.0009 Horace He (Cornell) Paper, 96,247  GeForce RTX 2080 (11GB Oct 27,
0.0007 Code GPU) 2020

2 Linear + C&S 0.8301 0.9134 + 0.0001 Horace He (Cornell) Paper, 10,763  GeForce RTX 2080 (11GB Oct 27,
0.0001 Code GPU) 2020

3 UniMP 0.8256 + 0.9308 + 0.0017 Yunsheng Shi (PGL Paper, 1,475,605 Tesla V100 (32GB) Sep 8,
0.0031 team) Code 2020

4 Plain Linear + C&S 0.8254 + 0.9103 + 0.0001 Horace He (Cornell) Paper, 4,747 GeForce RTX 2080 (11GB Oct 27,
0.0003 Code GPU) 2020

5 DeeperGCN+FLAG 0.8193 + 0.9221 + 0.0037 Kezhi Kong Paper, 253,743  NVIDIA Tesla V100 (32GB Oct 20,
0.0031 Code GPU) 2020

26



The formal problem we are solving.

Problem input.

* Graph G = (V,E).

* |V] x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y, of categorical outcomes (classes) on L.

Problem output.
* Length-|U| vector y, of categorical outcomes (classes) on U= V'\ L.

Solution evaluation.
» Accuracy = fraction of entries in y that are correct labels.

27



We can get great classification accuracy without GNNSs.

(using ideas of residual prop / smoothness, but with some fiddling)

Dataset Correct and Smooth

: ' Smoothed'Résidual
Train Labels Residual Correlation KPrediction Correlation/




We use base predictions that ignore the graph structure
and treat the nodes independently.

* Prob(node class A =) proportional to exp(<f;, h,>).
« Logistic regression: h, = x,
* Multilayer perceptron: h, = ReLU(W ReLU(Wx,) ).

 Much faster to train than GNN.

29



We get a lot of mileage out of smoothness.

. Base predictions.
Base predictor — a vector of class probabilities p, at each node u.

. Residual propogation adaptation (correction step).
Form error vector e, = one_hot(y,) - p, at labeled nodes.
Run residual prop on each component — smoothing residual vector r..
Scaling not quite right, correct with z, = p, + s * r, (tune scalar s).

. Reset on labeled nodes.
z, = one_hot(y,) if u labeled; z, same if v unlabeled (not a probability, though).

. Smooth corrected vectors (smooth step).
Run LP on each coordinate of z to get smoothed vectors y..

. Final predictions.
For unlabeled node v, predict maximum entry in y..

50



Ground truth clusters Log.reg.+ Correct & Smooth GCN++
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Predicting dorm residence with Rice University Facebook friendship network from 2005.



We get better accuracy with fewer parameters while

being much faster to train.

Datasets Classes Nodes Edges Parameter A Accuracy A  Time

Products 47 2,449,029 61,859,140 -93.47% +1.53 170.6 s
Arxiv 40 169,343 1,166,243 -84.9% +0.97 9.89s
Cora / 2,708 5,429 -98.37% +1.09 05s

Citeseer 6 3,327 4,732 -89.68% - 0.69 0.48 s
Pubmed 3 19,717 44,338 -96.00% - 0.30 0.85s
Email 42 1,005 25,571 - 97.89% +4.26 42.83 s
Rice31l 10 4,087 184,828 - 99.02% +1.39 39.33s
US County 2 3,234 12,717 - 74.56% +1.77 39.05s
wikiCS 10 11,701 216,123 - 84.88% +2.03 709 s
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LP + simple models can get top performance.

1. Avoiding GNNs speeds up training substantially.

2. Smoothing errors and final predictions help performance.

3. We also get some benefits by “feature augmentation” such as spectral
embedding (could also use motif counts, community memberships,...)

4. Just principled heuristics at this point.
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1.LP on residuals for improving GNN regression algorithms.

Residual Correlation in Graph Neural Network Regression.
Jia & Benson,KDD 2020.

2.Using LP but removing GNNs altogether for good classification performance.

Combining Label Propagation and Simple Models Out-performs Graph Neural Networks.
Huang et al., ICLR 2021.

3. Statistical framework that unifies LP and GNN ideas.
A Unifying Generative Model for Graph Learning Algorithms: Label Propagation, Graph Convolutions,and Combinations.
Jia & Benson, arXiv 2021.
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We developed a random model for attributes on nodes,
where statistical inference leads to GNN/LP algorithms.

Data Type Corresponding Gaussian MRF Learning Algorithm
X11 X21 X31 e
condition on X : :
%xlz %m %m —— linear regression
y Y2 y; CoTesse Elyy|X] = XyB B = (XTX,)"1XT
i.i.d. data (X, y) 1 Yu v LRLY "RV
V2
.YZ diti '
Vi V3 TR Y  label propagation
e o Elyulyl= — (1 + wN);5(1 + wN)y y,
graph data (y, G)
%) X21
X22 iti ; further condition on y; : >
Vi V3 % yz Sonifomen ¥ linear GC » residual propagation

o {u %XN ElyulX] = [(1+ wN)"1XBly ElyulX, yi] =
X12 X32

graph R pne (X, Y, G) lchange filter
SGC (simple graph convolution)

l+nonlinearity

GCN (graph convolution network)
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Our model is based on smooth random attributes.

* Random real-valued attribute vectors a, = [x,; v,] on each node u.
» A, = jth attribute over all nodes.
« N=1-DY2WD1? is the normalized Laplacian.
* Gaussian MRF random attribute model
p+1 smoothness on attributes

P(AH, h) = = 2§aTHau5 S‘@ ATNA,) He RO gpd, 0 < h e R

correlateﬂ a]ttnbutes ona node = Z(U,v GE(A“'/ Vi, — Al \/d, )

e—PAIHA)
[ dA” e~ ¢ @ 1HA)

p(A=AlH,h) = Smoother attributes are more likely (homophily / assortativity)

vec(A) ~ N(0,T™), T=H® I,+diag(h) @ N lusta multivariate normal random variable in the end
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Now we can treat our graph learning problem as a
statistical inference problem.

Problem input.

* Graph G = (V,E).

* |V] x p matrix X of node features.

» Subset L c V of labeled nodes.

* Length-|L| vector y, of outcomes on L (real-valued or categorical).

Problem output.
* Length-|U| vector y, of outcomes on U= V'\ L.

Problem solution.

* yu=E[ yuy | input data ], under our model
 Different conditioning — different algorithms.

57



Case 1. Linear regression when there are no edges.

(special case of standard theory of linear models)

1 1 22
$AIH,h) = > >  aiHa,+ W,-
u=1 i=1

3 > a7 Hay n — 30, Ha, " | det(H r
o= — [ =) e-tara,
fdA’ 8_7 > o, a, Ha, " fda& e— 79" Haj 1 (27)9
ElyulX = X] = Elya[%, = %,] = xJ@mp+1/Hp+@= X1 P
rather than infer directly,
estimate with OLS
L.mm > B =yl = min [IXu8 — yull;

uel
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Case 2. Label propagation when conditioning on
observed labels, assuming no features.

One attribute, so these are just positive scalars
vec(A) ~ N(0,T™Y), =M% I,+diaglh)@N

control noise, 1/H is variance if no edges

—1
y ~N(©O,T), r @"‘@ control smoothness

Elyyly, =yl =—T Tuy. = — (I, + wN)y (I + wN)y, yi, w=h/H limitof label prop!
_1 +

vuel, y*Y « a.d, ZveN d, 2yl vuel, y"Y vy,

a = @1+ = h/H/1+en/H € (0, 1)

* h 7 — smoothness” — w/” — o/ — more weight on neighbors
« H” — noiseN — w\N — o\ — less weight on neighbors
« Rather than infer directly, estimate a with cross validation
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Case 3. Linear graph convolutions when
conditioning on features.

control noise |nverse varlance

control smoothness

y E[Y|X X] ( p+1p+1I +hp+1N) ( H]Tp,p+1®In)vec(X)

(1, + Ny Rp

LP on features! (no unknown values, though)

_1
Vv eV, Xv )<_(1_a)'XS/O)+a‘dv : ZWENl(V)dW

Vv eV, xv =

Linear graph convolution (LGC).
1. Run LP on each feature — smoothed features.

linear
averaging a
= A
Q<.‘::::::j .......
linear . @
averagmg .
o<y
- 2
linear
averaging

2. Ordinary least squares on these preprocessed, smoothed features.
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Case 3. Linear graph convolutions when
conditioning on features.

Linear Graph Convolution (LGC) (1 —a) (I +aS+a’S*+..)XB S=D ‘WD '/*
[Jia-Benson 21]

Simplified Graph Convolution (SGC) S“Xj S=D+I)"Y2W+I)D+I)"1?
[Wu+ 19]

Graph Convolution Network (GCN) (S ...c(SXOY)...0%)a
[Kipf-Welling 17]

 «is continuous,while K is discrete.

* Does nonlinearity help?

« Does extra parameterization of each “propagation step” in GCN help?
« SGCas K— o is nonsensical.

* No conditioning on label distribution!

41



We should condition on
features and labels in our model.

Similarly, GNN predictions should not
be independent given representations!

4)



Case 4. Residual propagation when conditioning
on both features and observed labels.

y=(I,+wN)"1XB LP on residual errors/

ElyylX = X,y, = yi] = 9 (I + 0N+ oN)u G — 0

Linear graph convolution with residual propagation (LGC/RP).

1.

Run LP on each feature — smoothed features.

2. OLS on these smoothed features — initial predictions.
3.
4. Add smoothed errors to initial predictions.

Run LP on residual errors — smoothed errors.

)

Can substitute in any
initial prediction.
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Dataset Outcome LP LR LGC () SGC (K GCN (K)  LGC/RP  SGC/RP  GCN/RP
income 040 0.63 0.66 (0.46) 0.55(1.3) 0.69 0.55 0.55
UsS education 0.31 0.71 0.71 (0.00) 047 (1.0) 0.71 0.46 0.48
" unemployment 0.47 0.34 0.39 (0.59) 0.45 (2.5 0.54 0.52 0.53
election 0.52 042 0.49 (0.68) 0.52(2.1) 0.64 0.61 0.61
airT 095 0.85 0.86(0.78) 0.95 (3.00 0.96 0.97 0.97
cDC landT 0.89 0.81 0.81(0.09) 09124 0.90 0.93 0.93
precipitation 0.89 0.59 0.61 (0.93) 0.79 3.00 0.89 0.90 0.90
sunlight 096 0.75 0.81(0.97) 0.90 (3.00 0.96 0.97 0.97
pm2.5 096 0.21 0.27 (0.99) 0.78 (3.0) 0.96 0.96 0.97
income 046 0.85 0.85 (0.00) 0.63(1.0) 0.85 0.65 0.64
London education 0.65 0.81 0.83(0.40) 0.79(14) 0.86 0.77 0.79
age 0.65 0.73 0.73(0.17) 0.70 1.7y  0.75 0.72 0.72
election 0.67 0.73 0.81(0.74) 0.76 (2.1) 0.85 0.78 0.78
Twitch  days 0.08 0.58 0.59(0.67) 0.26 1.7)  0.60 0.23 0.26
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We can also evaluate on our generative model.

ho LP(@) LR LGC(a) SGC(K) GCN(K) LGC/RP(a) SGC/RP(K,a) GCN/RP (K,a)

Low homophily. 1 0.19 079 0.68 070028 0.37 @18 034@w7n 0.73029 0.40@s o021 0.37 (17,021
10 0.43 (95 048 0.58 (0577 045021 045020 0.68 056 056 (2.1,046) 0.54 (2.0,0.43)
High homophily. 100 0.59 (0999 0.24 0.42 (085 0.38 23 0.45 @5 0.64 085 0.63 23081 0.62 (25079

* GCN more expressive but prone to overfitting.

* More homophily — larger K, a

* Adding residual prop never hurts!

* GCN better with more homophily?
“memorizing” neighborhood features (zero training error)
+ smoothness in data — better out-of-sample prediction
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Our model helps us understand smoothing.
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Our model helps us understand smoothing.
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Our model helps us understand smoothing.

102
cross validation can

identify the model
parameter.,

“Oversmoothing”=

-
(&)
—

Empirically discussed
problem with GNNs.
[Li+ 18; Oono-Suzuki 20;
Zhou-Akoglu 20]

LGC/RP w
)

Undersmoothing?

Possible but not
discussed in the

1071

10-1 160 101 102 “terature.

Gaussian MRF w

| - T Test R2.
0.16 0.88
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Major takeaway. Label propagation is a powerful tool.

AN

LP can be applied to residuals (correlated errors).

LP can be applied to features (smoothing / de-noising).

LP can be applied to final predictions (more smoothness).

While traditionally seen as separate ideas, LP and basic GNN ideas can
be derived from a common model and combined effectively.

Linear models are often superior to nonlinear ones (GNNSs) in practice.

v = [T+ wN)IXBly — (T + wN) 5 (I + wN)u (yo — [(Zn + wN) "2 XB]L)
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There are lots of open research directions.

1. Theory or more principled approaches for classification?

2. Similar ideas for other graph problems?

link prediction, random walk prediction, graph classification, ...

3. Generative models to explain other GNN ideas?
attention, GraphSAGE, skip connections, ...
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We can examine regression coefficients with LGC.

year shO50m sh100m sh500m income migration birth death education unemployment

2012 0.06 -0.42 0.24 0.22 0.16 -0.13  0.04 -0.90 -0.38
2016 -0.02 -0.38 0.22 0.70 0.21 -0.13  0.51 -1.53 -0.39

Outcome = republican vote share - 0.5
Zero mean / unit variance feature normalization

* Higher income and lower education levels — right-leaning
* |ncome and education level stronger indicators in 2016.
» Positive sh500m coefficient from rural, right-leading counties?
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Our model provides a nice setup for inductive learning.

Problem input.

* Graphs G, = (V,E1) and G, = (V>, E)).

* |Vi| x p matrix X; and |V;| x p matrix X, of node features (same features)
» Subset L, c V of labeled nodes.

* Length-|L,| vector YL, of outcomes on L;.

Problem output.
* Length-| V, | vector y of outcomes on nodes V.
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accuracy (R?)

Our model provides a nice setup for inductive learning.

1.0

0.8

o
o

=
>

o
)

0.0

Predictive features,
low homophily.

High homophily.

I

ho=1 ® transductive ho =10 ho =100
@® inductive
0.70 0.70
0.6.8 g68 o0
0.58 0.57
o
0.48 0.47
0.45 o. 0.45 0.45
e [} 344 ® o0.40 Dg2 [ -
0.37 0.36 o @ s
® 0.34 .33 0.34 &
e ® 0.28
0.24 ®
o
0.14
0.08 ®
@
LR GC GC  GCN LR EGE SGC  GCN LR LGC 8GE GEN
A bit of degradation.

No performance
degradation.

Bad
overfitting!

54



accuracy (R?)

Our model provides a nice setup for inductive learning.
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* Graph G; from 2012 election data.
* Graph G, from 2016 election data.

55



