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Introduction to (near-separable) NMF

e NMF Problem: X < RTxn is a matrix with nonnegative entries, and

we want to compute a nonnegative matrix factorization (NMF) X = WH,
where W € R"*" and H € R"*". When r < m, this problem is NP-hard.

e A separable matrix is one that admits a nonnegative factorization where
W = X(:,K), i.e. W is just consists of some subset of the columns of X. A
near-separable matrix is one where X = X (:, )H + N, where N represents
noise. The set KC of columns are called extreme columns.

e Under the near-separable assumptions, there are efficient algorithms for com-
puting the NMF. The algorithms typically proceed as follows:

1. Determine the extreme columns, indexed by IC, and let W = X (;, K).
2. With W fixed, solve H = arg MiNycren | X —WY|.

Our problem: Compute separable NMF when m > n.

Convex geometry behind NMF algorithms

e Extreme rays of a cone: In separable NMF, X = X (:, K)H
implies that all columns of X lie in the cone generated by the *
columns indexed by K. For any k € I, {a X (k) | a € Ry}
is an extreme ray of this cone. Computing /C is reduced to
finding the extreme rays of a cone [1].

e Extreme points of a convex hull: If D;; = || X(:,7)]|1 and

~

X is separable, then XD~ = (XD~H(:, K)H. The columns .
of H have non-negative entries and sum to one, so all columns z s “
of XD~ are in the convex hull of the columns indexed by K. g 2t

Determining K is reduced to finding the extreme points of a
convex hull [2, 3].

Dimension reduction with an orthogonal
transformation

Fact: A vector x generates an extreme ray of a cone C if and only if Mx
generates an extreme ray of MC = {Mz | z € C}, where M is nonsingular.
Similarly, for any convex set, invertible transformations preserve extreme points.

Our approach: Let X = UXV?L be the SVD of X, so that U is m X m

orthogonal. Then
T

where Y is the top n x n block of X.. The zero rows provide no information
about extreme rays or extreme points. Thus, we can restrict ourselves to finding
the extreme columns of SV <.

Key idea 1: V! is n x n, so we have significantly reduced the problem
dimension for finding extreme columns of tall-and-skinny matrices (m > n).

Key idea 2: We can also solve for the coefficient matrix H and compute the
residual || X — X (:, C)H|| by only looking at XV

Key idea 3: Since UL is orthogonal, so it is only a rotation or reflection of
the data. Therefore, we have preserved the geometry of the problem.

Key idea 4: We do not need to compute the m X m matrix U, we just need
to apply Ul implicitly.
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Implementation

e When the matrix is tall-and-skinny, we only need to read the matrix once!
e Reads can be performed in parallel.

e The key component is the TS-SVD algorithm, which computes V< without
storing the matrix U for tall-and-skinny matrices.

e We use Hadoop MapReduce for convenience:
https://github.com/arbenson/mrnmf.

After computing V', we use standard NMF algorithms—XRAY [1] and SPA [2]—
to find the extreme columns. We also compare against Gaussian Projections [4],

another dimension reduction technique.

Heat transfer simulation data analysis
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Figure 1: Overview of the heat transfer simulation data analysis pipeline. Our
work enables us to compute nonnegative matrix factorizations on the massive
simulation data in a scalable matter.
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Figure 2: (Left) Relative error in the separable factorization as a function of
separation rank () for the heat transfer simulation data. Our dimension reduc-
tion technique lets us test all values of r quickly. (Middle) The first 10 extreme

columns selected by SPA, XRAY, and GP. (Right) Values of H(KX~(1), )
and H(IC~1(34), j) computed by SPA for j = 2,...,33, where K~1(1) and
K~1(34) are the indices of the extreme columns 1 and 34 in W (X = W H).
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Figure 3: Coefficient matrix H for SPA, XRAY, and GP for the heat transfer
simulation data when r = 10. In all cases, the non-extreme columns are conic
combinations of two of the selected columns, i.e., each column in H has at
most two non-zero values.
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Computational details

e Residual: Given IC, how do we compute H in X ~ X(:,K)H? Choosing
the Frobenius norm error results in a set of n NNLS problems:

H(:,1) = arg, i |X(K)y = XCillls = [1ZV (5 Ky — V()15
-

as the 2-norm is unitarily invariant (X = QQR). Thus, we can solve the NNLS
problem with matrices of size n X n. This is a major advantage because a
challenge with NMF is finding the correct size of |K|.

e Column normalization: Some algorithms require column normalization of
X. It D is the diagonal matrix of column norms, then

X =QR— XD '=Q(RD™.

The matrix B = RD ! is upper triangular, so Qf{ is the thin QR factor-
ization of the column-normalized data. With X = QR and R = UpZV !,
we have the decomposition X = (QUR)ZV!. Therefore, we simultaneously
compute D and YV 1 in just one pass over the data.

Flow cytometry data analysis

- ~.
- ~
- .

Columns: fluorescence

intensity at 5 different bands 2 v

Rows: X—Aod e

40,000 A >

different pairwise interactions

cells

Use NMF algorithms
X =3 U on IVT to get the

Laboratory extreme columns.
measurements

Dense

L 1.6 billion x

25
data matrix
(0.5TB)

Figure 4: Overview of the flow cytometry data analysis pipeline.
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Figure 5: (Left) Relative error in the separable factorization as a function of
nonnegative rank (r) for the flow cytometry data. (Right) The first 16 extreme

columns selected by SPA, XRAY, and GP.
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Figure 6: Coefficient matrix H for SPA, XRAY, and GP for the flow cytometry
data when r = 16. The coefficients tend to be clustered near the diagonal. This
is quite different from the coefficients for the heat transfer simulation data.
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