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Introduction to (near-separable) NMF
• NMF Problem: X ∈ Rm×n+ is a matrix with nonnegative entries, and

we want to compute a nonnegative matrix factorization (NMF) X = WH,
where W ∈ Rm×r+ and H ∈ Rr×n+ . When r < m, this problem is NP-hard.

• A separable matrix is one that admits a nonnegative factorization where
W = X(:,K), i.e. W is just consists of some subset of the columns of X . A
near-separable matrix is one where X = X(:,K)H+N , where N represents
noise. The set K of columns are called extreme columns.

• Under the near-separable assumptions, there are efficient algorithms for com-
puting the NMF. The algorithms typically proceed as follows:

1. Determine the extreme columns, indexed by K, and let W = X(:,K).

2. With W fixed, solve H = arg minY ∈Rr×n
+
‖X −WY ‖.

Our problem: Compute separable NMF when m� n.

Convex geometry behind NMF algorithms
• Extreme rays of a cone: In separable NMF, X = X(:,K)H

implies that all columns of X lie in the cone generated by the
columns indexed by K. For any k ∈ K, {αX(:, k) | α ∈ R+}
is an extreme ray of this cone. Computing K is reduced to
finding the extreme rays of a cone [1].

• Extreme points of a convex hull: If Dii = ‖X(:, i)‖1 and
X is separable, then XD−1 = (XD−1)(:,K)H̃. The columns
of H̃ have non-negative entries and sum to one, so all columns
of XD−1 are in the convex hull of the columns indexed by K.
Determining K is reduced to finding the extreme points of a
convex hull [2, 3].
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Dimension reduction with an orthogonal
transformation
Fact: A vector x generates an extreme ray of a cone C if and only if Mx
generates an extreme ray of MC = {Mz | z ∈ C}, where M is nonsingular.
Similarly, for any convex set, invertible transformations preserve extreme points.

Our approach: Let X = U Σ̃V T be the SVD of X , so that U is m × m
orthogonal. Then

UTX =

(
ΣV T

0

)
,

where Σ is the top n × n block of Σ̃. The zero rows provide no information
about extreme rays or extreme points. Thus, we can restrict ourselves to finding
the extreme columns of ΣV T .

Key idea 1: ΣV T is n × n, so we have significantly reduced the problem
dimension for finding extreme columns of tall-and-skinny matrices (m� n).

Key idea 2: We can also solve for the coefficient matrix H and compute the
residual ‖X −X(:,K)H‖ by only looking at ΣV T .

Key idea 3: Since UT is orthogonal, so it is only a rotation or reflection of
the data. Therefore, we have preserved the geometry of the problem.

Key idea 4: We do not need to compute the m×m matrix U , we just need
to apply UT implicitly.

Implementation
• When the matrix is tall-and-skinny, we only need to read the matrix once!

• Reads can be performed in parallel.

• The key component is the TS-SVD algorithm, which computes ΣV T without
storing the matrix U for tall-and-skinny matrices.

• We use Hadoop MapReduce for convenience:
https://github.com/arbenson/mrnmf.

After computing ΣV T , we use standard NMF algorithms—XRAY [1] and SPA [2]—
to find the extreme columns. We also compare against Gaussian Projections [4],
another dimension reduction technique.
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Figure 1: Overview of the heat transfer simulation data analysis pipeline. Our
work enables us to compute nonnegative matrix factorizations on the massive
simulation data in a scalable matter.

Figure 2: (Left) Relative error in the separable factorization as a function of
separation rank (r) for the heat transfer simulation data. Our dimension reduc-
tion technique lets us test all values of r quickly. (Middle) The first 10 extreme
columns selected by SPA, XRAY, and GP. (Right) Values of H(K−1(1), j)
and H(K−1(34), j) computed by SPA for j = 2, . . . , 33, where K−1(1) and
K−1(34) are the indices of the extreme columns 1 and 34 in W (X = WH).

Figure 3: Coefficient matrix H for SPA, XRAY, and GP for the heat transfer
simulation data when r = 10. In all cases, the non-extreme columns are conic
combinations of two of the selected columns, i.e., each column in H has at
most two non-zero values.

Computational details
• Residual: Given K, how do we compute H in X ≈ X(:,K)H? Choosing

the Frobenius norm error results in a set of n NNLS problems:

H(:, i) = arg min
y∈Rr

+

‖X(:,K)y −X(:, i)‖22 = ‖ΣV T (:,K)y − ΣV T (:, i)‖22,

as the 2-norm is unitarily invariant (X = QR). Thus, we can solve the NNLS
problem with matrices of size n × n. This is a major advantage because a
challenge with NMF is finding the correct size of |K|.
• Column normalization: Some algorithms require column normalization of
X . If D is the diagonal matrix of column norms, then

X = QR→ XD−1 = Q(RD−1).

The matrix R̂ = RD−1 is upper triangular, so QR̂ is the thin QR factor-
ization of the column-normalized data. With X = QR and R = URΣV T ,
we have the decomposition X = (QUR)ΣV T . Therefore, we simultaneously
compute D and ΣV T in just one pass over the data.
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Figure 4: Overview of the flow cytometry data analysis pipeline.

Figure 5: (Left) Relative error in the separable factorization as a function of
nonnegative rank (r) for the flow cytometry data. (Right) The first 16 extreme
columns selected by SPA, XRAY, and GP.

Figure 6: Coefficient matrix H for SPA, XRAY, and GP for the flow cytometry
data when r = 16. The coefficients tend to be clustered near the diagonal. This
is quite different from the coefficients for the heat transfer simulation data.

References
[1] A. Kumar et al. Fast conical hull algorithms for near-separable non-negative matrix factorization. In ICML, 2013.

[2] N. Gillis and S. Vavasis. Fast and robust recursive algorithms for separable nonnegative matrix factorization. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, PP(99):1–1, 2013.

[3] V. Bittorf, B. Recht, C. Re, and J. A. Tropp. Factoring nonnegative matrices with linear programs. In NIPS, 2012.

[4] A. Damle and Y. Sun. Random projections for non-negative matrix factorization. arXiv:1405.4275, 2014.


