Scalable Methods for Nonnegative Matrix Factorizations of Near-separable Tall-and-skinny Matrices

Austin Benson, Jason Lee, Bartek Rajwa, David Gleich

{arbenson, jdl17}@stanford.edu {brajwa, dgleich}@purdue.edu

Introduction to (near-separable) NMF

- NMF Problem: $X \in \mathbb{R}_+^{m \times n}$ is a matrix with nonnegative entries, and we want to compute a nonnegative matrix factorization (NMF) X = WH, where $W \in \mathbb{R}_+^{m \times r}$ and $H \in \mathbb{R}_+^{r \times n}$. When r < m, this problem is NP-hard.
- A separable matrix is one that admits a nonnegative factorization where $W = X(:, \mathcal{K})$, i.e. W is just consists of some subset of the columns of X. A near-separable matrix is one where $X = X(:, \mathcal{K})H + N$, where N represents noise. The set \mathcal{K} of columns are called extreme columns.
- Under the near-separable assumptions, there are efficient algorithms for computing the NMF. The algorithms typically proceed as follows:
- 1. Determine the extreme columns, indexed by \mathcal{K} , and let $W = X(:, \mathcal{K})$.
- 2. With W fixed, solve $H = \arg\min_{Y \in \mathbb{R}^{r \times n}} \|X WY\|$.

Our problem: Compute separable NMF when $m \gg n$.

Convex geometry behind NMF algorithms

- Extreme rays of a cone: In separable NMF, $X = X(:, \mathcal{K})H$ implies that all columns of X lie in the cone generated by the columns indexed by \mathcal{K} . For any $k \in \mathcal{K}$, $\{\alpha X(:,k) \mid \alpha \in \mathbb{R}_+\}$ is an extreme ray of this cone. Computing \mathcal{K} is reduced to finding the extreme rays of a cone [1].
 - d s s z
- Extreme points of a convex hull: If $D_{ii} = ||X(:,i)||_1$ and X is separable, then $XD^{-1} = (XD^{-1})(:,\mathcal{K})\tilde{H}$. The columns of \tilde{H} have non-negative entries and sum to one, so all columns z of XD^{-1} are in the convex hull of the columns indexed by \mathcal{K} . Determining \mathcal{K} is reduced to finding the extreme points of a convex hull [2, 3].

Dimension reduction with an orthogonal transformation

Fact: A vector x generates an extreme ray of a cone \mathcal{C} if and only if Mx generates an extreme ray of $M\mathcal{C} = \{Mz \mid z \in \mathcal{C}\}$, where M is nonsingular. Similarly, for any convex set, invertible transformations preserve extreme points.

Our approach: Let $X=U\tilde{\Sigma}V^T$ be the SVD of X, so that U is $m\times m$ orthogonal. Then

$$U^T X = \begin{pmatrix} \Sigma V^T \\ \mathbf{0} \end{pmatrix},$$

where Σ is the top $n \times n$ block of $\tilde{\Sigma}$. The zero rows provide no information about extreme rays or extreme points. Thus, we can restrict ourselves to finding the extreme columns of ΣV^T .

Key idea 1: ΣV^T is $n \times n$, so we have significantly reduced the problem dimension for finding extreme columns of tall-and-skinny matrices $(m \gg n)$.

Key idea 2: We can also solve for the coefficient matrix H and compute the residual $||X - X(:, \mathcal{K})H||$ by only looking at ΣV^T .

Key idea 3: Since U^T is orthogonal, so it is only a rotation or reflection of the data. Therefore, we have preserved the geometry of the problem.

Key idea 4: We do not need to compute the $m\times m$ matrix U, we just need to apply U^T implicitly.

Implementation

- When the matrix is tall-and-skinny, we only need to read the matrix once!
- Reads can be performed in parallel.
- The key component is the TS-SVD algorithm, which computes ΣV^T without storing the matrix U for tall-and-skinny matrices.
- We use Hadoop MapReduce for convenience: https://github.com/arbenson/mrnmf.

After computing ΣV^T , we use standard NMF algorithms—XRAY [1] and SPA [2]—to find the extreme columns. We also compare against Gaussian Projections [4], another dimension reduction technique.

Heat transfer simulation data analysis

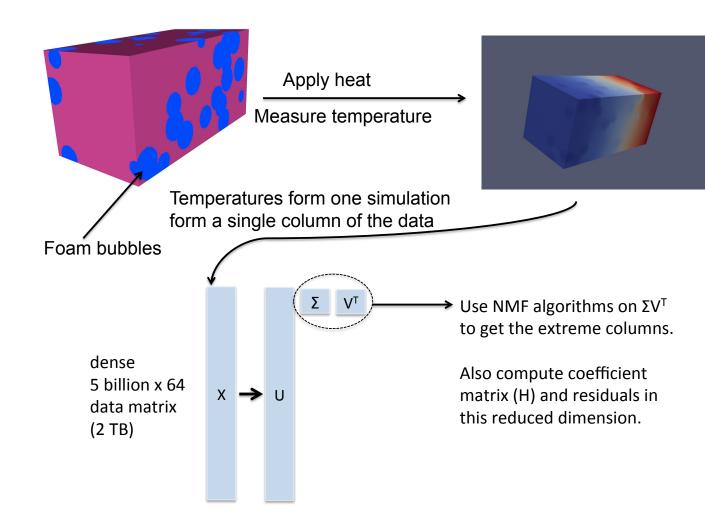


Figure 1: Overview of the heat transfer simulation data analysis pipeline. Our work enables us to compute nonnegative matrix factorizations on the massive simulation data in a scalable matter.

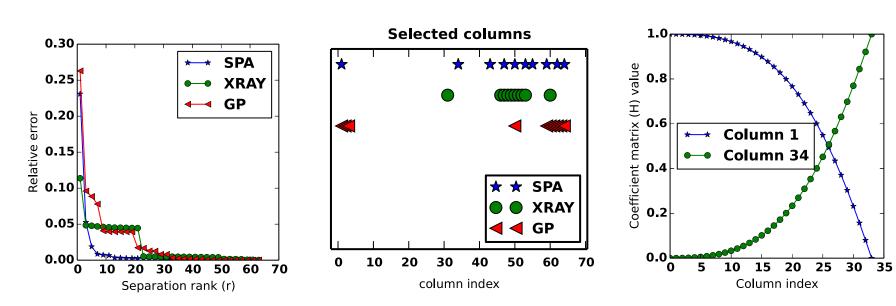


Figure 2: (Left) Relative error in the separable factorization as a function of separation rank (r) for the heat transfer simulation data. Our dimension reduction technique lets us test all values of r quickly. (Middle) The first 10 extreme columns selected by SPA, XRAY, and GP. (Right) Values of $H(\mathcal{K}^{-1}(1),j)$ and $H(\mathcal{K}^{-1}(34),j)$ computed by SPA for $j=2,\ldots,33$, where $\mathcal{K}^{-1}(1)$ and $\mathcal{K}^{-1}(34)$ are the indices of the extreme columns 1 and 34 in W (X=WH).

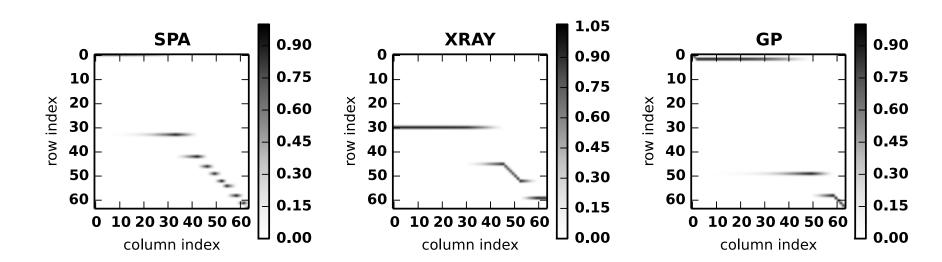


Figure 3: Coefficient matrix H for SPA, XRAY, and GP for the heat transfer simulation data when r=10. In all cases, the non-extreme columns are conic combinations of two of the selected columns, i.e., each column in H has at most two non-zero values.

Computational details

• **Residual**: Given \mathcal{K} , how do we compute H in $X \approx X(:, \mathcal{K})H$? Choosing the Frobenius norm error results in a set of n NNLS problems:

$$H(:,i) = \arg\min_{y \in \mathbb{R}^r_+} \|X(:,\mathcal{K})y - X(:,i)\|_2^2 = \|\Sigma V^T(:,\mathcal{K})y - \Sigma V^T(:,i)\|_2^2,$$

as the 2-norm is unitarily invariant (X = QR). Thus, we can solve the NNLS problem with matrices of size $n \times n$. This is a major advantage because a challenge with NMF is finding the correct size of $|\mathcal{K}|$.

• Column normalization: Some algorithms require column normalization of X. If D is the diagonal matrix of column norms, then

$$X = QR \to XD^{-1} = Q(RD^{-1}).$$

The matrix $\hat{R}=RD^{-1}$ is upper triangular, so $Q\hat{R}$ is the thin QR factorization of the column-normalized data. With X=QR and $R=U_R\Sigma V^T$, we have the decomposition $X=(QU_R)\Sigma V^T$. Therefore, we simultaneously compute D and ΣV^T in just one pass over the data.

Flow cytometry data analysis

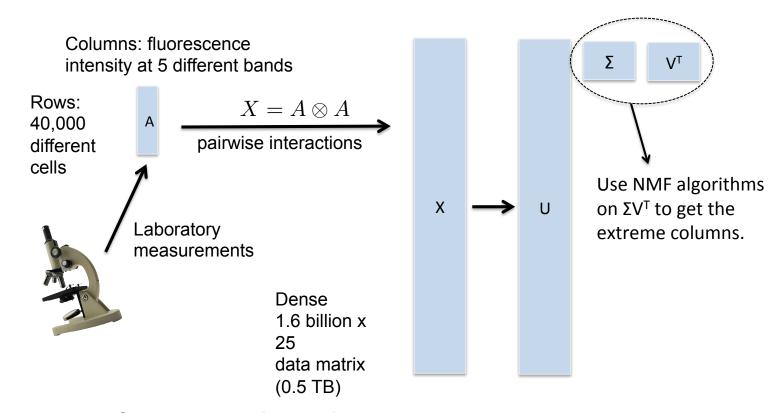


Figure 4: Overview of the flow cytometry data analysis pipeline.

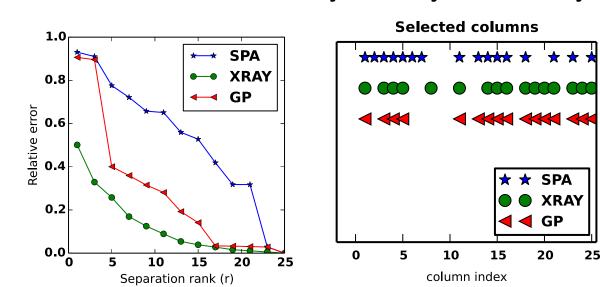


Figure 5: (Left) Relative error in the separable factorization as a function of nonnegative rank (r) for the flow cytometry data. (Right) The first 16 extreme columns selected by SPA, XRAY, and GP.

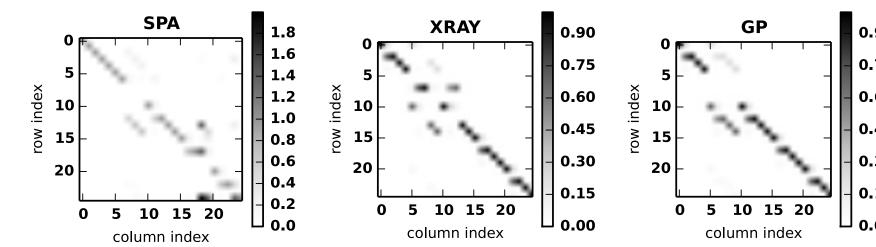


Figure 6: Coefficient matrix H for SPA, XRAY, and GP for the flow cytometry data when r=16. The coefficients tend to be clustered near the diagonal. This is quite different from the coefficients for the heat transfer simulation data.

References

- [1] A. Kumar et al. Fast conical hull algorithms for near-separable non-negative matrix factorization. In ICML, 2013.
- [2] N. Gillis and S. Vavasis. Fast and robust recursive algorithms for separable nonnegative matrix factorization. *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, PP(99):1–1, 2013.
- [3] V. Bittorf, B. Recht, C. Re, and J. A. Tropp. Factoring nonnegative matrices with linear programs. In NIPS, 2012.
- [4] A. Damle and Y. Sun. Random projections for non-negative matrix factorization. arXiv:1405.4275, 2014.