INTRODUCTION

• Spectral embeddings in data science: low-dimensional subspaces aiming to capture significant behavior of data. Examples: PCA, spectral clustering, etc.

$$X := V\Lambda V^{\top} + V_{\perp}\Lambda_{\perp}V_{\perp}^{\top},$$

with data matrix X (e.g. normalized adjacency matrix) and $V \in \mathbb{R}^{n \times r}$ subspace of interest.

• Essential to efficiently handle data of temporal / sequentially observed nature (e.g. evolving social networks, data streams from sensors, etc.). Observe sequence of data matrices with eigendecomposition

$$X_t := V_t \Lambda_t V_t^\top + \{\text{residual}\} \quad t = 1, 2, \dots, T$$

with V_t subspace of interest at time t.

Prohibitive to compute *V_t* from scratch each time!

How to update V_t in O(1) under minimal assumptions?

SETTING

In our approach, we assume that the data matrix is updated in an additive fashion:

$$X_t := X_{t-1} + E_t, \quad E_t \text{ is "small"}$$

The Davis-Kahan theorem implies (for E_t not too "big"):

dist
$$(V_t, V_{t-1}) \le \frac{\|E_t V_t\|_2}{\operatorname{gap}_r - \|E_t\|_2} \approx \mathcal{O}(\|E_t\|_2)$$

 \rightarrow small changes only slightly perturb V_{t-1} !

Heuristic: Use previously computed estimate V_{t-1} to "seed" some iterative method (subspace / block Krylov iteration).

- avoids restrictive assumptions of direct methods, accelerates under structured / sparse matrices
- similar idea to recycled Krylov methods (e.g. [2]) for sequences of linear systems, but no rigorous guarantees

Incrementally Updated Spectral Embeddings Vasileios Charisopoulos^{*}, Austin R. Benson, Anil Damle **Cornell University**

ALGORITHM & CHALLENGES

The high-level procedure is summarized
• ITERMETHOD is an iterative eigenvect
• δ_t is an upper bound for the true subs
Algorithm 1: Incremental updates
Input: X_0 , V_0 , Λ_0 , update sequence $\{E_t\}$
for $t = 1,, T$ do
$X_t := X_{t-1} + E_t$;
compute $\delta_t \geq dist(V_t, V_{t-1})$
if $\delta_t > \varepsilon$ then
$V_t, \Lambda_t := \text{ITERMETHOD}(V_{t-1}, \varepsilon)$
end
end

Challenges & solutions in implementation and analysis: 1. V_{t-1} is only known *approximately* \rightarrow bound for subspace dis-

- tance under ε -approximate estimates
- 2. convergence of ITERMETHOD depends on $\frac{\lambda_r}{\lambda_{r+1}} \rightarrow$ estimate λ_{r+1} using the "deflated" matrix $(I - V_t V_t^{\top}) X_t (I - V_t V_t^{\top})$

THEORY

Proposition 1 (Informal - details in [1]). When E_t are small, cost per update of Algorithm 1 is upper bounded by

$$\mathcal{O}\left(r(\lambda_r/\lambda_{r+1})\log\frac{\delta_t}{\varepsilon} + r(\gamma)\log\frac{1}{\varepsilon}\right)$$
 eigenvert

where $\gamma \in \mathbb{R}$ controls spectrum decay and $r(\cdot)$ is an eigensolver-specific convergence factor. Moreover, the bound can be computed before *each update.*

- Terms in red are bounded from above in real time.
- For certain applications (e.g. sparse adjacency matrices, random matrices), δ_t simplifies.

(1)

(2)

(3)

(4)

d in Algorithm 1, where: tor method space distance

 $t \in [T]$

▶ see (4)

> *ɛ*-accurate estimate

(5)gensolver iterations,

EXPERIMENTS

tion readings (Figure 3).

outperforms naive initialization.

All code made available under

https://github.com/VHarisop/inc-spectral-embeddings/ Acknowledgements. Supported by NSF DMS-1830274.

References

- 2019, arXiv:1909.01188.

Methods applied to time-evolving social network dataset (Figures 1 and 2) and minute-by-minute household **power consump-**

Figure 1: Maintaining the spectral embedding of a graph dataset. Benchmarking against random initialization of V_t (random). Dashed lines are upper bounds. Warm-starting clearly

Figure 2: Bounds on # iterations using the oracle subspace distance vs. estimate from (5).

Figure 3: Low-rank reconstruction of time-series. Cost is 2 – 3 iterations per update.

[1] Vasileios Charisopoulos, Austin R. Benson, and Anil Damle. Incrementally updated spectral embeddings,

[2] Michael L Parks, Eric De Sturler, Greg Mackey, Duane D Johnson, and Spandan Maiti. Recycling krylov subspaces for sequences of linear systems. *SIAM Journal on Scientific Computing*, 28(5):1651–1674, 2006.