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INTRODUCTION

• Spectral embeddings in data science: low-dimensional sub-
spaces aiming to capture significant behavior of data. Exam-
ples: PCA, spectral clustering, etc.

X := VΛV >+V⊥Λ⊥V
>
⊥ , (1)

with data matrix X (e.g. normalized adjacency matrix) and
V ∈ Rn×r subspace of interest.

• Essential to efficiently handle data of temporal / sequentially
observed nature (e.g. evolving social networks, data streams
from sensors, etc.). Observe sequence of data matrices with
eigendecomposition

Xt := VtΛtV
>
t + {residual} t = 1,2, . . . ,T , (2)

with Vt subspace of interest at time t.

Prohibitive to compute Vt from scratch each time!

How to update Vt in O(1) under minimal assumptions?

SETTING

In our approach, we assume that the data matrix is updated in
an additive fashion:

Xt := Xt−1+Et, Et is “small” (3)

The Davis-Kahan theorem implies (for Et not too “big”):

dist(Vt,Vt−1) ≤
‖EtVt‖2

gapr − ‖Et‖2
≈ O(‖Et‖2) (4)

→ small changes only slightly perturb Vt−1!

Heuristic: Use previously computed estimate Vt−1 to “seed”
some iterative method (subspace / block Krylov iteration).

• avoids restrictive assumptions of direct methods, accelerates
under structured / sparse matrices

• similar idea to recycled Krylov methods (e.g. [2]) for sequences
of linear systems, but no rigorous guarantees

ALGORITHM & CHALLENGES

The high-level procedure is summarized in Algorithm 1, where:

• ITERMETHOD is an iterative eigenvector method

•δt is an upper bound for the true subspace distance
Algorithm 1: Incremental updates

Input: X0,V0,Λ0, update sequence {Et}t∈[T ]
for t = 1, . . . ,T do
Xt := Xt−1+Et ;

compute δt ≥ dist(Vt,Vt−1) . see (4)
if δt > ε then
Vt,Λt := ITERMETHOD(Vt−1, ε) . ε-accurate estimate

end

end

Challenges & solutions in implementation and analysis:

1.Vt−1 is only known approximately → bound for subspace dis-
tance under ε-approximate estimates

2. convergence of ITERMETHOD depends on λr
λr+1
→ estimate λr+1

using the “deflated” matrix (I −VtV >t )Xt(I −VtV >t )

THEORY

Proposition 1 (Informal - details in [1]). When Et are small, cost
per update of Algorithm 1 is upper bounded by

O
(
r(λr/λr+1) log

δt
ε
+ r(γ) log

1
ε

)
eigensolver iterations, (5)

where γ ∈ R controls spectrum decay and r(·) is an eigensolver-specific
convergence factor. Moreover, the bound can be computed before
each update.

• Terms in red are bounded from above in real time.

• For certain applications (e.g. sparse adjacency matrices, ran-
dom matrices), δt simplifies.

EXPERIMENTS

Methods applied to time-evolving social network dataset (Fig-
ures 1 and 2) and minute-by-minute household power consump-
tion readings (Figure 3).
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Figure 1: Maintaining the spectral embedding of a graph dataset. Benchmarking against
random initialization of Vt (random). Dashed lines are upper bounds. Warm-starting clearly
outperforms naive initialization.
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Figure 2: Bounds on # iterations using the oracle subspace distance vs. estimate from (5).
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Figure 3: Low-rank reconstruction of time-series. Cost is 2− 3 iterations per update.

All code made available under
https://github.com/VHarisop/inc-spectral-embeddings/

Acknowledgements. Supported by NSF DMS-1830274.

References
[1] Vasileios Charisopoulos, Austin R. Benson, and Anil Damle. Incrementally updated spectral embeddings,

2019, arXiv:1909.01188.

[2] Michael L Parks, Eric De Sturler, Greg Mackey, Duane D Johnson, and Spandan Maiti. Recycling krylov
subspaces for sequences of linear systems. SIAM Journal on Scientific Computing, 28(5):1651–1674, 2006.

https://github.com/VHarisop/inc-spectral-embeddings/

