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INTRODUCTION

* Spectral embeddings in data science: low-dimensional sub-
spaces aiming to capture significant behavior of data. Exam-
ples: PCA, spectral clustering, etc.

X:=VAV'+V A V], (1)
with data matrix X (e.g. normalized adjacency matrix) and
V € R™" subspace of interest.

* Essential to efficiently handle data of temporal / sequentially
observed nature (e.g. evolving social networks, data streams
from sensors, etc.). Observe sequence of data matrices with
eigendecomposition

X, := VAV, +{residual} t=1,2,...,T, (2)

with V, subspace of interest at time t¢.

Prohibitive to compute V; from scratch each time!

How to update V, in O(1) under minimal assumptions?

SETTING

In our approach, we assume that the data matrix is updated in
an additive fashion:

X, =X, 1+E, E,;is“small” (3)

The Davis-Kahan theorem implies (for E; not too “big”):

| E.V
dist(V,, V,_y) < —=l o oaE L) (4)

gap, —IEdl, -
— small changes only slightly perturb V,_;!

Heuristic: Use previously computed estimate V,_; to “seed”
some iterative method (subspace / block Krylov iteration).

* avoids restrictive assumptions of direct methods, accelerates
under structured / sparse matrices

e similar idea to recycled Krylov methods (e.g. [2]) for sequences
of linear systems, but no rigorous guarantees

2. convergence of ITERMETHOD depends on

ALGORITHM & CHALLENGES

The high-level procedure is summarized in Algorithm |1, where:

e ITERMETHOD is an iterative eigenvector method

* ¥, is an upper bound for the true subspace distance

Algorithm 1: Incremental updates

IHPUt: Xo, V(), A(), update sequence {Et}tE[T]

fortr=1,...,T do
Xi=Xe + Ey

compute o, > dist(V,, V,_;)
if 6, > ¢ then
V., A; := ITERMETHOD(V,_,, €)

> see (4)

> c-accurate estimate
end

end

Challenges & solutions in implementation and analysis:

1. V,_; is only known approximately — bound for subspace dis-
tance under e-approximate estimates

1 :
1 — estimate Aiiq

using the “deflated” matrix (I — V,V,")X,(I - V,V,")

THEORY

Proposition 1 (Informal - details in [1]). When E, are small, cost
per update of Algorithm 1/is upper bounded by
1

Oy
1 loo —
~t r(y)log -

O(r(A,/A,)]og eigensolver iterations,  (5)

where y € R controls spectrum decay and r(-) is an eigensolver-specific
convergence factor. Moreover, the bound can be computed before
each update.

e Terms in red are bounded from above in real time.

* For certain applications (e.g. sparse adjacency matrices, ran-
dom matrices), o, simplifies.

LFAD

EXPERIMENTS

Methods applied to time-evolving social network dataset (Fig-
ures |l and 2) and minute-by-minute household power consump-
tion readings (Figure 3).
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Figure 1: Maintaining the spectral embedding of a graph dataset. Benchmarking against
random initialization of V; (random). Dashed lines are upper bounds. Warm-starting clearly
outperforms naive initialization.
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Figure 2: Bounds on # iterations using the oracle subspace distance vs. estimate from (5).
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Figure 3: Low-rank reconstruction of time-series. Cost is 2 — 3 iterations per update.

All code made available under

https://github.com/VHarisop/inc—spectral-embeddings/
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