
Random Spatial Network Models for Core-Periphery Structure
Junteng Jia and Austin R. Benson
jj585@cornell.edu, arb@cs.cornell.edu

Quick overview
What is core-periphery structure?

Ideal core-periphery structure:

◦ tightly connected core vertices

◦ sparse connections between
core & periphery vertices

◦disconnected periphery vertices

adjacency matrix =⇒
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Practically core-periphery structure is:

◦ too complicated to express as 2-block model
◦ commonly found in real-world spatial networks
◦providing a notion of centrality

Our Model:
◦uses core scores θu for each vertex u, larger value→ more in core

◦posits an intuitive random process for edge generation:
� core vertices have higher probability ρuv to connect
� edge probability decays with spatially distance (Kuv)
� a parameter ε specifies decay rate

ρuv = eθu+θv
/

(eθu+θv + Kε
uv)

◦given an adjacency matrix A and spatial vertex coordinates, we
infer vertex core scores via maximum-likelihood (inferred core
scores in the C.elegans network are color-coded below)
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The size of vertices in the network (left panel) is proportional to the
square root of their degree. The vertices in the adjacency matrix
(right panel) are ordered by decreasing core scores.

What does our model preserve?
The following log-likelihood objective function is maximized,

Ω =
∑
u<v

[Auv log ρuv + (1− Auv) log(1− ρuv)] . (1)

The stationary conditions with respective to θ and ε guarantees two
important proprieties of our model.
Stationary Condition 1

∂Ω

∂θw
= 0 ⇐⇒

∑
u6=w

Awu =
∑
u6=w

ρwu (2)

The expected degree of every vertex in the random network model
equals its degree in the input network.
Stationary Condition 2

∂Ω

∂ε
= 0 ⇐⇒

∑
u<v

Auv logKuv =
∑
u<v

ρuv logKuv (3)

The expected aggregated log-distance — which measures the over-
all edge lengths — of the random network model equals the aggre-
gated log-distance of the input network.

Fast computation

During inference, we maximize
the log-likelihood objective with
gradient-based method, notice:

◦directly evaluating objective
and gradients takes O(|V |2) !
◦Equations 1–3 closely resemble

many-body simulation

◦Faraway vertices contribute
very little individually

Use fast multipole method idea:

◦ sum over the long-range vertex
pairs in clusters

◦ algorithm complexity lowers to
O(|V | log |V |) !
◦parameters introduced to trade-

off accuracy and complexity

Scalability testing of our fast algorithms on a family of synthetic
networks. The observed timings are scattered with circles, which
agrees very well with the ideal efficiencies plotted in dashed lines.

How can we further use our model?
There are two important aspects:
◦our model captures a notion of vertex centrality

◦ comparing with other centrality measures, our model
� accounts for spatial positioning of vertices
�gives an explanation for generative core-periphery structure

We compare our core scores against other centrality measures in
downstream data mining tasks, e.g., predicting airport enplanement.

false true

We train a decision tree to correlate different centrality measures to
airport enplanements. Core scores have the highest test accuracy.

degree BC CC EC PR core score
R2 0.762 0.293 0.663 0.542 0.637 0.846

Other centrality measures are degree, betweenness centrality (BC),
closeness centrality (CC), eigenvector centrality (EC), and pagerank
(PR). More data-mining experiments are reported in the paper.
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