Choosing to Grow a Graph

Modeling Network Formation as Discrete Choice

Jan Overgoor Stanford University overgoor@stanford.edu Austin Benson **Cornell University** arb@cs.cornell.edu

Johan Ugander Stanford University jugander@stanford.edu

Introduction

- Network evolution is widely studied and many different models and frameworks have been proposed.
- We frame edge formation as a **discrete choice process**,

Data

- We assume that we have access to a sequence of directed edges (*i*, *j*, *t*), in chronological order.
- For every edge, create a data point for every alternative

Application – PA vs Triadic Closure

- One can test and compare the likelihood of different formation processes for a specific data set.
- For example, preferential attachment can be hard to distinguish from other processes just from outcome data.

- subsuming many existing models in a unified framework.
- This perspective is general, flexible, easily extended and efficiently estimated with existing analysis tools.

Discrete Choice

- Choice models are commonly used in other fields to model how individuals make choices from a slate of discrete alternatives. Alternatives have features and choice models aim to estimate the relative importance of such features.
- Edge formation events in social networks can be viewed as discrete choices. Why did *i* choose to connect to *j* instead of any other node? t=1

with t	hei	r featur	res	at	time	e t a	nd wł	nether	they	got
selecte	ed _	Choice ID	i	j	Color	deg _{j, t}	FoF _{ij,t}	Y		
		1	1	4	•	2	1	0		
		1	1	5	•	1	0	0		

-	-	-		4	-	v	
1	1	5	•	1	0	0	
1	1	6	•	2	0	0	
1	1	7	•	1	0	1	
1	1	8	•	0	0	0	
2	5	1	•	0	0	0	
2	5	2	•	1	0	0	
2	5	3	•	1	0	0	
2	5	7	•	2	1	1	
2	5	8	•	0	0	0	

Estimation

• Logit models with linear utility have a convex (wrt. θ) likelihood function and can be efficiently maximized using standard gradient-based optimization (e.g., BFGS). The functional form of the logit has simple gradients.

- To illustrate, we generate synthetic data with a process that varies the relative role of degree (p) and triadic closure (r).
- We then estimate the power-law exponent γ to test for the presence of PA in the outcome graphs.

• We focus on the **conditional logit model**:

$$P_i(j,C) = \frac{\exp u_{i,j}}{\sum_{\ell \in C} \exp u_{i,\ell}} = \frac{\exp \theta^T x_j}{\sum_{\ell \in C} \exp \theta^T x_\ell}$$

- The logit is a random utility model (RUM), s.t. choices are interpretable as a rational actor acting based on the from random variables that "utility" sampled decompose into the inherent utility of the alternative and a noise term.
- We can use existing optimization routines to estimate model parameters and existing statistical methods to asses the uncertainty of the estimates.

Models

Triadic closure

FoF attachment

PA with fitness

Latent space

Homophily

Individual node fitness

Stochastic block model

PA, FoFs only

• Here are a number of prior proposed models for network growth, and their corresponding functional

 $\alpha \log \eta_{i,j}$

 $\alpha \log d_j$

 θ_i

 $\alpha \log d_i + \theta_i$

 $\beta \cdot d(i,j)$

 ω_{g_i,g_j}

 $h \cdot \mathbb{1}\{g_i = g_j\}$

 $\{j: FoF_{i,j}\}$

 $\{j: FoF_{i,j}\}$

V

V

- There are a number of existing software packages (e.g. mlogit, statsmodels) to fit these models as well.
- For large sparse graphs, the choice sets can become prohibitively large. A reduced data set can be created by sampling *s* negative/non-chosen examples.
- When negative samples are sampled uniformly at random, parameter estimates on the sampled data are **unbiased and consistent** for the estimates on the on the Appletation – Measuring PA

• The conditional logit framework provides a principled and flexible statistical test for the presence of hypothesized tendencies in a network formation

Application – Citation Network

- We apply the logit framework to fit a series of models to a large citation network.
- Here are the resulting regression coefficients (left) and non-parametric estimates for the role of degree in the form of prior citations (right) for two of these models.

Just accounting for degree results in sub-linear

Process	u _{i,j}	С
Uniform attachment	1	V
Preferential attachment	$\alpha \log d_i$	V
Non-parametric PA	θ_{d_i}	V

process.

Relative

For example, the presence of preferential attachment (PA), is tested when the utility specification includes $\alpha \log d_i$.

Degree

preferential attachment, while accounting for age results in linear preferential attachment ($\alpha \approx 1$). The non-parametric estimates are remarkably linear.

• In the paper we also do an analysis with Flickr data.

Future Work

We are currently exploring a number of extensions to this work:

- Stratified negative sampling to improve efficiency
- Node heterogeneity of parameter estimates
- Different processes for choosing *i*
- Modeling edge deletion
- Other feature parity with SAOM models