# Graph-based Semi-Supervised and Active Learning for Edge Flows

Junteng Jia, Michael T. Schaub, Santiago Segarra and Austin R. Benson

∑ jj585@cornell.edu, mschaub@mit.edu, segarra@rice.edu, arb@cs.cornell.edu

https://github.com/000Justin000/ssl\_edge







#### Motivation & Problem Statement

Consider the problem of monitoring traffic flows in a region. Setting up sensors on all roads would provide accurate measurements, but is costly. Given traffic flow measurements on a subset of the roads, can we estimate the remaining flows?

#### Problem statement

#### Given:

- $\circ$  a graph topology  $G = (\mathcal{V}, \mathcal{E})$
- $\circ$  flows on a subset of the edges  $\mathcal{E}^{\mathrm{L}}$

#### Infer:

 $\circ$  unknown flows on  $\mathcal{E}^{U} \equiv \mathcal{E}/\mathcal{E}^{L}$ .



Key insight: a suitable learning assumption for edge flows. *Flow conservation* – flows that enter/exit a node must balance.

### Edge- vs. vertex-based semi-supervised learning



Vertex-based learning

- given some vertex labels
- o impose *smoothness* assumption
- o interpolate unknown vertices



Edge-based flow learning

- given some edge flows
- o impose *flow conservation*
- o infer unknown edge flows

## Formulation & Inference Algorithm





- $\circ$  undirected graph  $G = (\mathcal{V}, \mathcal{E})$  with  $|\mathcal{V}| = n$  and  $|\mathcal{E}| = m$  $\circ$  vertex label vector  $\mathbf{y} \in \mathbb{R}^n$
- $\circ$  define (net) edge flow as alternating function  $f: \mathcal{V} \times \mathcal{V} \to \mathbb{R}$

$$f(i,j) = \begin{cases} -f(j,i), & \forall (i,j) \in \mathcal{E} \\ 0, & \text{otherwise.} \end{cases}$$

edge flow vector  $\mathbf{f} \in \mathbb{R}^m$  with  $\mathbf{f}_r = f(i, j)$  if  $\mathcal{E}_r \equiv (i, j)$ , i < j $\circ$  vertex-edge incidence matrix  $\mathbf{B} \in \mathbb{R}^{n \times m}$  (right panel)

### Computations: edge vs. vertex-based learning

Vertex-based learning

 $|\mathbf{B}^{\mathsf{T}}\mathbf{y}||^2 = \sum_{(i,j)\in\mathcal{E}} (y_i - y_j)^2$  measures "unsmoothness" o minimize sum-of-squares difference

$$\mathbf{y}^* = \arg\min_{\mathbf{v}} \|\mathbf{B}^{\mathsf{T}}\mathbf{y}\|^2$$
 s.t.  $y_i = \hat{y}_i$ ,  $\forall \mathcal{V}_i \in \mathcal{V}^{\mathsf{L}}$ .

Edge flow learning

 $\circ$  (**Bf**)<sub>i</sub> measures the flow "divergence" on the i<sup>th</sup> vertex o minimize sum-of-square divergence, with regularization

$$\mathbf{f}^* = \arg\min_{\mathbf{f}} \|\mathbf{B}\mathbf{f}\|^2 + \lambda^2 \cdot \|\mathbf{f}\|^2$$
 s.t.  $\mathbf{f}_r = \hat{\mathbf{f}}_r$ ,  $\forall \mathcal{E}_r \in \mathcal{E}^L$ .

 $\circ$  least-square solution (null space method  $\mathbf{f} = \mathbf{f}^0 + \mathbf{\Phi} \mathbf{f}^U$ )

$$\mathbf{f}^{\mathrm{U}*} = \arg\min_{\mathbf{f}^{\mathrm{U}}} \left\| \begin{bmatrix} \mathbf{B}\mathbf{\Phi} \\ \lambda \cdot \mathbf{I} \end{bmatrix} \mathbf{f}^{\mathrm{U}} - \begin{bmatrix} -\mathbf{B}\mathbf{f}^0 \end{bmatrix} \right\|^2.$$

### Empirical results & Reconstruction error bound

Winnipeg

ratio labeled  $(|\mathcal{E}^{L}|/|\mathcal{E}|)$ 

n = 1052

m = 1595

---- ZeroFill

— LineGraph

FlowSSL





FlowSSL, our proposed semi-supervised edge-flow learning algorithm, outperforms the baselines by a large margin.

**Theorem:** Assume the ground truth flow  $\hat{\mathbf{f}} = \mathbf{f} + \delta$ , where  $\mathbf{f}$ is a divergence free flow; and we have flow measurements on a subset  $\mathcal{C}$  edges with cardinality at least m-n+1. Denote the null-space of the incidence matrix as V = Null(B). Then as the regularization parameter  $\lambda \to 0$  in our method, the reconstruction error is bounded by  $[\sigma_{\min}^{-1}(\mathbf{V}_{\mathcal{C},:})+1]\cdot \|\delta\|$ , where  $\sigma_{\min}(\cdot)$  is the smallest singular value of a matrix.

## Active Learning Problem & Strategies

**Goal:** Select a set of edges  $|\mathcal{E}^L| = m^L$  to minimize reconstruction error (optimal sensor deployment with a limited budget).

- 1. RRQR minimize error bound
- ouse rank revealing QR (RRQR) to select well conditioned rows

$$\mathbf{V}_{\mathcal{C}_{\prime}}^{\mathsf{T}}:\Pi=Q\left[R_{1}\ R_{2}\right].$$

- $\circ \mathcal{E}^{L}$  from leading columns of  $\Pi$
- 2. RB select bottleneck edges
  - o capture global flow trends
  - o recursively bisect (RB) & select edges that bridge clusters



black arrow: edges selected by RB



Findings: RRQR provides additional gains for approximately divergence-free flows (left), RB works well for flows with global trends (right).

This research was supported by NSF award DMS-1830274, ARO Award W911NF-19-1-0057, and European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 702410.