Found Graph Data and Planted Vertex Covers

Austin R. Benson and Jon Kleinberg

arb@cs.cornell.edu, kleinber@cs.cornell.edu

Code & data → https://github.com/arbenson/FGDnPVC (7)

Partially measured graphs & core-fringe structure.

We often measure graph data by recording interactions involving a *core* set of nodes:

- · Email of company employees
- · Phone calls of all customers of a service provider
- · Friendships of a set of users

We end up with a dataset that includes the core along with a potentially much larger set of *fringe* nodes.

Core nodes (set *C*) are a vertex cover of the graph.

Planted vertex covers (unknown cores).

Sometimes we find graph data without core-fringe labels.

- Intelligence and counter-surveillance: find email graph from compromised accounts but don't know who is compromised
- Data provenance: metadata is lost over time

Main question.

Can we recover the core without labels?
Or, can we recover a planted vertex cover in found graph data?

Why? We need the labels for better network analysis (e.g., to to deal with compromised accounts in counter-surveillance).

In general, the answer is "No" but...

Theorem. If C is a minimal planted vertex cover with $|C| \le k$, then we can find a set D of size $O(k^2)$ that must contain C. Specifically, D is the *union of all minimal covers* of size $\le k$.

Computation exponential in k. Need something more practical.

Maximal matchings & partial recovery.

Algorithm 1: Greedy maximal matching.

Input: Graph G = (V, E)Output: Vertex cover M with $|M| \le 2k^*$ $M \leftarrow \emptyset$ for $e = (u, v) \in E$ do

if $u, v \notin M$ then $M \leftarrow M \cup \{u, v\}$

A simple building block.

Greedy maximal matching finds 2-approximation to minimum vertex cover.

Theorem. If C is any planted vertex cover with $|C| \le ck^*$, then any greedy matching M contains at least |C| / (2c) nodes in C.

The union of minimal vertex covers (UMVC) algorithm for planted vertex cover recovery.

- 1. Run greedy maximal matching several times with random initializations.
- 2. Prune maximal matchings to get minimal covers.
- 3. Take union of these minimal vertex covers as guess at the planted vertex cover.

Other fun theory. Entire Julia implementation: bit.ly/UMVC-julia

 $U = \text{union of } all \text{ minimal vertex covers of size } \leq k = |C|.$

- 1. High-degree nodes are in *U*. If the degree of node *v* is at least *k*, then *v* is in *U*.
- 2. Nodes connected to the fringe are in *U*. If node *v* connects to a fringe node *w*, then *v* is in *U*.
- 3. Nodes connected to deeply embedded core nodes are in *U*. If all of *v*'s neighbors are in the core and (*u*, *v*) is an edge, then *u* is in *U*.
- Stochastic block modeling makes U small.
 SBM block probabilities p (core-core), q (core-fringe), 0 (fringe-fringe) for p, q constants. Suppose ck core nodes for constant c. Then w.h.p. as function of k, |U| ≤ O(k log k).
- 5. Unions can't grow too fast.

 If M, N come from greedy max, matching, then $|M \cap N| \ge \frac{1}{4} |M|$.

Empirical evaluation.

- Evaluate recovery on datasets containing known measured core *C* in email and telecommunications data.
- · Edges all have timestamps (measure recovery over time).
- Compare against methods for "core-periphery" detection.

The algorithm is also pretty fast.

Dataset	UMVC	degree	betweenness	PC scores	BE scores	Belief Prop.
email-W3C	6.5 secs	$< 0.01 { m secs}$	2.8 mins	1.1 hours	0.1 secs	1.0 mins
email-Enron	8.4 secs	< 0.01 secs	2.5 mins	1.8 hours	0.1 secs	20.2 mins
email-Eu	1.2 mins	< 0.01 secs	11.8 hours	> 3 days	0.9 secs	15.0 mins
call-Reality	2.2 secs	< 0.01 secs	27.9 secs	6.1 mins	1.8 secs	4.3 secs
text-Reality	0.5 secs	< 0.01 secs	0.8 secs	11.4 secs	< 0.1 secs	6.8 secs

Acknowledgements. This research was supported by a Simons Investigator Award, NSF TRIPODS Award 1740822, and NSF Award DMS-1830274.