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a b s t r a c t

The unsupervised learning technique, locally linear embedding (LLE), is applied to the analysis of X-

ray diffraction data measured in-situ during the uniaxial plastic deformation of an additively manufac-

tured nickel-based superalloy. With the aid of a physics-based material model, we find that the lower-

dimensional coordinates determined using LLE appear to be physically significant and reflect the evolu-

tion of the defect densities that dictate strength and plastic flow behavior in the alloy. The implications of

the findings for future constitutive model development are discussed, with a focus on wider applicability

to microstructure evolution and phase transformation studies during in-situ materials processing.

© 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The study of plasticity in engineering alloys is primarily a study

of dislocation motion. Material scientists forensically observe the

configurations of dislocations before and after deformation, then

attempt to correlate these configurations to mechanical response,

while mechanicians attempt to model mechanical response during

plasticity with implicit representations of underlying dislocation

configurations (state variables). The challenge of this research is

distilling something as complex as the evolution of tangled disloca-

tion structures down to a system of differential equations that can

be used to predict mechanical response. In this paper, we demon-

strate that unsupervised learning techniques which reduce the di-

mensionality of data are capable of addressing this long-standing

challenge at the heart of modeling plasticity in engineering alloys.

Specifically, the reconfiguration of atoms and defects expressed in

diffraction data serve as ‘articulation points’ [1] to be found with

unsupervised learning. In addition, with these reduced dimension-

ality representations of microstructure, the modeling of plasticity

behavior can shift from the sole fitting of state variables using

mechanical response data to a more direct alignment of lower-

dimensional embeddings that characterize the microstructure with

solutions to differential equations for evolution.
∗ Corresponding author.

E-mail address: dcp99@cornell.edu (D.C. Pagan).
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The past twenty years have seen vast strides forward in de-

eloping diffraction-based characterization techniques, electron-,

-ray-, and neutron-based, that probe engineering alloys during

n-situ processing and thermo-mechanical loading at increasingly

hort time scales. However, the full utility of these experiments

s limited in that the analyses of the measured data extract only

fraction of the encoded information about the microstructure at

ny given time. As such, analysis tasks that appear to be relatively

traight-forward at first impression, such as objectively identifying

hen subtle microstructural evolution or phase transformation be-

ins to occur, can be difficult to perform. A researcher must know

n advance to consider a structural feature in the data analysis

odel, limiting avenues of discovery of unexpected physical pro-

esses. For the case of diffraction peak analysis, different peak fea-

ures can be used to extract various microstructural information:

he centroid position of a diffraction peak is related to the spa-

ial location, average elastic strain state, and average orientation

f the grain from which it was emitted [2,3], while the shape of

he diffraction peak is related to the size [4], morphology [5,6],

nd defect content (point, line, and planar defects) [7] of the grain.

hough these quantities currently cannot be isolated and extracted

rom a single diffraction peak measured from a grain, their pres-

nce is encoded into the data. So as the microstructural configu-

ation of grains within a specimen begin to evolve due to plastic

eformation and motion of defects, so do the diffraction peaks.

This problem of extracting targeted microstructural information

rom a diffraction image falls under a broad data-science challenge

https://doi.org/10.1016/j.actamat.2019.10.011
http://www.ScienceDirect.com
http://www.elsevier.com/locate/actamat
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nown as dimensionality reduction. The goal of the process is to

istill a high-dimensional measurement, like a diffraction image,

own to a few values that are more readily analyzed. Concurrent

ith advances in microstructural characterization techniques, an

rray of unsupervised learning techniques has been developed for

erforming this dimensionality reduction on data that do not lie

n linear planes in high-dimensional space (non-linear manifolds)

8]. These advances are of particular interest for performing dimen-

ionality reduction on microstructural data (both in real and re-

iprocal space), as the evolution of microstructure due to thermo-

echanical loading is also highly non-linear, so it is expected that

he data lie on non-linear manifolds. Applying these data-analysis

pproaches to microstructural data can provide the benefit of far

ewer a-priori assumptions that must be made regarding the data

rior to analysis in comparison to traditional physics-based inver-

ion methods, allowing for novel discoveries regarding material un-

erstanding to be more readily made.

Rather than analyze diffraction data with a physics-based X-ray

odel to try to extract structural information chosen a priori, we

ropose the use of the unsupervised learning technique, locally lin-

ar embedding (LLE), to condense X-ray data down to critical mi-

rostructural (dislocation configuration) evolution information. The

LE method finds a set of coordinates in a lower-dimensional space

hat maintains the local neighborhood character (similarity or dis-

imilarity) of nearby data observations [9]. While LLE will deter-

ine similarity in a tractable representation, physical understand-

ng still comes from discovering what underlying features or phys-

cal processes maintains the neighborhood character. We apply LLE

irectly to in-situ X-ray diffraction data to discover and monitor

nderlying dislocation motion in an additively manufactured (AM)

ickel-based superalloy, Inconel 625 (IN625). We find that in this

ase, the LLE analysis of time series X-ray diffraction data iden-

ifies, without intervention, both the onset of plastic deformation

yield) and transients associated with the mobility of dislocation

opulations that underlie the strength and plasticity behavior in

he alloy. We emphasize however that this is a single demonstra-

ion and the approach can be applied to numerous other studies of

eformation and materials processing.

The structure of the paper is as follows. The material tested will

e described in Section 2, while the experimental and data pro-

essing methods are given in Section 3. The material model used

nterpret the lower-dimensional representation of the microstruc-

ure is summarized in Section 4. The lower dimensional embed-

ings from the diffraction data are presented and compared to

tate evolution from the material model in Section 5. The results

re then further discussed in Section 6 with a focus on applicabil-

ty of this analysis to other loading conditions.

. Material

The additively manufactured Inconel 625 (AM IN625) specimen

as produced at the National Institute of Standards and Technol-

gy (NIST) using laser powder bed fusion in an EOS INT M290

ystem1 following the manufacturer’s nominal build recommen-

ations. The laser power and velocity were 285 W and 960 mm/s,

espectively, with 40 μm thick build layers. The hatch distance

etween scan tracks was 110 μm. The powder feedstock was sup-

lied by the manufacturer and the chemical composition is similar

o those reported in other works [10]. An AM block measuring

5.4 mm × 25.4 mm × 32 mm (width × length × height) was

eposited directly onto the build plate. The block and build plate

ere stress-relieved (SR) heat treated at 800 ◦C for 1 h to reduce
1 Mention of commercial products does not imply endorsement by the National

nstitute of Standards and Technology, nor does it imply that such products or ser-

ices are necessarily the best available for the purpose.

o

i

i

m

f

he formation of deleterious phases [10]. The block was then

emoved via wire electro-discharge machining (EDM) and post-

rocessed via hot isostatic pressing (HIP) at 1175 ◦C and 152 MPa

or 4 h in an argon atmosphere according to ASTM F3056 [11].

niaxial tension test specimens were machined from the HIP-ed

lock using wire EDM such that the build direction is parallel to

he tensile direction.

A 10 mm × 10 mm × 20 mm (width × length × height) sam-

le in the SR+HIP condition was cross-sectioned and polished for

lectron backscatter diffraction (EBSD) grain morphology and ori-

ntation characterization. A final vibratory polish was made with

.02 μm colloidal silica. EBSD measurements were performed with

JOEL JSM7100 field-emission scanning electron microscope (SEM)

ith Oxford EBSD detector1. A step size of 1.5 μm was used for

cans covering an area approximately 1 mm × 0.5 mm. EBSD anal-

sis was done in MTEX [12]. The measured orientation fields from

ifferent planes of the AM IN625 material are shown in Fig. 1a and

ig. 1b. Fig. 1a shows a plane perpendicular to the build direction

Z-Plane [13]) and Fig. 1b shows a plane with its normal direc-

ion perpendicular to the build and recoating directions (Y-Plane

13]). The orientation fields are colored by the direction of surface

ormal on the inverse pole figure maps with the grain boundaries

rawn in black. From the figure, we can see the heat treatment has

enerally removed microstructure anisotropy of both grain mor-

hology and preferred orientation between the build and trans-

erse directions. Grains were identified using a minimum mis-

rientation angle of 5◦ and minimum size greater than 9 pixels

equivalent circular area radius of 2.5 μm). The cross sections of

he microstructure are similar between the two planes indicat-

ng a fairly equiaxed microstructure with an average grain size of

2.6 μm ± 7.3 μm and 20.6 μm ± 6.9 μm for the Z and Y planes,

espectively. This grain size can be compared to wrought (rolled

hen annealed at 870 ◦C for 1 h in vacuum) IN625 plate with a

rain size of 5.1 μm ± 1.7 μm. The microstructure was also found

o contain a significant quantity of grain boundaries associated

ith twin related domains (�3 grain boundaries). The measured

ine fraction of �3 boundaries was 0.69 ± 0.03 for the Z-Plane

nd 0.68 ± 0.03 for Y-Plane, which can be compared to 0.55 ±
.3 in wrought plate.

. Methods

.1. Experiment

A time series, 38 loading points (observations), of evolving X-

ay diffraction peaks was measured in a transmission geometry as

he AM IN625 specimen was deformed in uniaxial tension to a

acroscopic strain (ε) of 0.03 (3%). A schematic of the experimen-

al geometry is given in Fig. 3. The IN625 specimen was loaded

long the AM build direction. The cross section of the specimen

as 1 mm × 1 mm and the full sample gauge length was 8 mm.

he specimen was deformed in uniaxial tension in the RAMS2 load

rame [14] at sector ID1-A3 of the Cornell High Energy Synchrotron

ource (CHESS). The specimen was deformed in displacement con-

rol at a rate of 10 nm/s along the y direction. The macroscopic

tress (σ ) and strain points (marked with red x’s) at which diffrac-

ion measurements were made are shown in Fig. 2a.

The full cross section of the AM IN625 specimen was illumi-

ated by a 61.332 keV (wavelength of 0.0202 nm) X-ray beam. The

-ray beam, which was 1 mm tall by 2 mm wide, illuminated a vol-

me at the center of the gauge section and traveled in the −z di-

ection. As the sample was deformed, the sample was also continu-

usly rotated (rocked) about the y direction to rotate more crystals

nto the diffraction condition. Diffraction peaks from a 10◦ rock-

ng motion were integrated onto single images for processing. The

easurement points of diffracted intensity as the sample was de-

ormed are marked in Fig. 2a. The diffraction data was collected on
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Fig. 1. (a) Crystal lattice orientation field perpendicular to the build direction in the AM IN625 (Z-Plane [13]). (b) Crystal lattice orientation field in the plane defined by the

build direction and recoating direction in the AM IN625 (Y-Plane [13]). Coloring corresponds to the orientation of the surface normal in the crystal coordinate system on the

inverse pole figure.

Fig. 2. (a) The macroscopic stress–strain response for the AM IN625 specimen tested in this work. (b) Material hardening rate (dσ /dε) after the IN625 had begun to yield.

Points at which diffraction measurements were made are indicated with red x’s. The material response from the fit material model is shown with solid lines.
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a Dexela 2923 area detector sitting 877 mm behind the specimen

every 470 s. The detector was translated horizontally 135 mm from

the direct X-ray beam to prevent collection of diffraction peaks

near the rotation axis that would provide misleading characteri-

zation of the microstructure evolution.

3.2. Data analysis

An example diffraction image measured prior to loading is

shown in Fig. 4a. As can be seen, the measured diffraction peaks lie
n tight rings (full rings are only partially captured in the exper-

mental geometry used), with each ring corresponding to families

f crystallographic lattice planes with varied spacing, leaving most

f the detector empty. Prior to LLE analysis, 75◦ arcs of diffraction

eaks from the first four rings / families of lattice planes ({111},

200}, {220}, and {311}) were extracted, remapped to a polar co-

rdinate system, and then concatenated into a single image for

ach load point. The arc length chosen nearly spans over the X-

ay detector as-positioned. This process and examples are shown

n Fig. 4b. Fig. 4b shows the first few and final sets of diffraction
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Fig. 3. Schematic of the experimental configuration for the in-situ X-ray measure-

ments made during the uniaxial loading of the AM IN625 specimen.

p

t

A

c

m

m

l

a

a

a

a

w

v

(

e

a

s

o

p

i

l

b

s

s

t

c

t

t

φ

T

c

w

F

d

eaks from the IN625 specimen. Clear evolution from sharp peaks

o a ‘smeared’ diffracted signal as strain is applied can be observed.

gain, this peak evolution is directly related to internal structure

hanges. Lastly before LLE analysis, the diffraction peaks from each
easurement are transformed into column vectors X of a data w

ig. 4. (a) An example raw diffraction image collected from the deforming AM IN625 d

iffraction rings are collected and remapped into a polar coordinate system. The diffractio
atrix. In total, the data matrix size is 38 observations by 7.5 mil-

ion features, as each pixel of the reduced peak data is treated as

n independent feature.

The data matrix is analyzed using the LLE algorithm [9,15] avail-

ble in Scikit-Learn [16]. First, scalar weights w that reconstruct

n observation X from its nearest neighbors are determined, with

neighbor being an observation that is close in distance. The

eights are found by minimizing the error e between an obser-

ation and its reconstruction from a chosen number of neighbors

weights of non-neighbors are set to 0)

=
∑

i

∣∣Xi − wi jXj

∣∣2
(1)

nd constraining the sum of the non-zero weights for each recon-

truction to be equal to 1. This linear combination of neighboring

bservations makes up the ‘locally linear’ portion of LLE. An exam-

le matrix of weights found from the 38 points using 5 neighbors

s shown in Fig. 5. In this special case, the diffraction peaks from a

oad step are reconstructed from weighed contributions of neigh-

ors that also happen to be adjacent points in time. This can be

een in Fig. 5 as the observations are ordered by time / applied

train and all weights are clustered around the diagonal of the ma-

rix. A cost function φ is then minimized to find sets of embedded

oordinates (or simply an embedding) Y that approximately main-

ains the same normalized distance between neighboring observa-

ions by fixing the previously determined weights

=
∑

i

∣∣Yi − wi jYj

∣∣2
. (2)

he embedded coordinates Y are solved for by reorganizing the

ost function into an eigenvalue problem, and the coordinates

hich best maintain the previously determined weights are those

ith the lowest eigenvalues.
uring uniaxial deformation. (b) Extracted diffraction peak data from the first four

n peaks evolve from the AM IN625 specimen with increasing macroscopic strain ε.
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Fig. 5. Weights w calculated using Eq. (1). Each row corresponds to the weights

used to reconstruct the embedding Y.

Table 1

Elasticity moduli [20] used to fit the material deforma-

tion model.

E (GPa) G (GPa)

182.0 71.2

w

l

T

σ

w

i

e

l

e

e

t

s

d

ρ

w

ρ

s

e

t

f

T

m

t

s

a

b

b

a

5

5

m

r

u

p

a

s

e

a

b

c

e

c

t

e

t

r

t

0

4. Defect evolution model

The lower-dimensional microstructure data extracted using LLE

will be interpreted through a well-established model developed by

Estrin and Kubin [17], complemented by an additive decomposi-

tion of elastic and plastic strain rates and a simple power law re-

lationship for rate dependence [18,19]. In the model, the plastic-

ity behavior is dictated by two state variables, a mobile dislocation

density ρm that influences the plastic strain rate at a fixed stress

and an obstacle density ρ f that controls the current yield strength

of the alloy. Each of these state variables evolves as a function of

plastic deformation. The growth of the mobile dislocation density

ρm is modeled as a release from pinned positions, while the re-

duction of density is modeled as a repinning of dislocations that

contribute to the obstacle density. Growth of the obstacle density

ρ f has a contribution from the mobile dislocation population and

defect multiplication with plastic deformation.

In the model, the total strain rate is additively decomposed into

elastic ε̇E and plastic ε̇P portions

ε̇ = ε̇E + ε̇P (3)

and the rate of change of stress σ̇ is linearly related to the elastic

strain rate

σ̇ = Eε̇E (4)

where E is Young’s modulus. The plastic strain rate is related to the

applied stress with a power law relationship

ε̇P = ρmbv0

(
σ

σY

) 1
m

(5)
Table 2

Plasticity parameters used to the fit the material deformation model.

M α b (nm) v0 (m/s) m C1

3 1/3 0.359 10−5 20 8
here b is the Burgers vector, v0 is the dislocation ensemble ve-

ocity, σ Y is the yield strength, and m is the strain rate sensitivity.

he yield strength in Eq. (5) is related to the obstacle density as

y = MαGb
√

ρ f (6)

here M is the Taylor factor, α is a proportionality constant, and G

s the elastic shear modulus.

Both the mobile dislocation density and the obstacle density

volve with time and plastic deformation. The form of the evo-

ution equations was proposed in [17] and in these evolution

quations, the mobile and obstacle densities are coupled and

volve together in time. In our current formulation, terms related

o dynamic recovery [19] are neglected as the sample was not

ufficiently deformed to characterize these terms. The mobile

ensity evolution in this formulation is given by

˙m =
(

C1

b2
(ρ f /ρm) − C2

b

√
ρ f

)
ε̇P (7)

hile the obstacle density is given by

˙ f =
(

C2

b

√
ρ f

)
ε̇P. (8)

For model evaluation, the specimen was deformed at a con-

tant macroscopic strain rate ε̇ of 2.25 × 10−6, comparable to the

xperimental loading rate. The coupled set of differential equa-

ions are numerically integrated. The elastic moduli [20] can be

ound in Table 1, while the plasticity parameters can be found in

able 2. The plasticity material parameters used for the material

odel were chosen to capture the hardening response (dσ /dε) of

he alloy after yield. Fig. 2b shows the measured hardening re-

ponse with red x’s (derivative calculation facilitated by total vari-

tion regularization [21,22]) and the fit hardening response with a

lack line. The fit stress-strain response is also shown in Fig. 2a. In

oth figures, we see the major features of both the hardening rate

nd stress-strain response are captured with the model.

. Results and analysis

.1. Identifying onset of dislocation motion

The first three sets of embedded coordinates describing the

easured diffraction peaks, as the number of neighbors used for

econstruction is increased, are shown in Figs. 6a–c. In these fig-

res, LLE has reduced the 7.5 million features of each diffraction

eak set down to three coordinates. The embedded coordinates

re plotted versus the applied macroscopic strain at measurement

ince this quantity is a natural ‘index’ for the data. We note that

ach embedded coordinate is unique up to a sign (i.e., the sign of

ll values of the first embedded coordinate, Y1, can be reversed),

ut in all figures, signs are chosen to facilitate interpretation and

omparison to modeling of the evolution of defect densities. For all

mbedded coordinates in Fig. 7, the coordinates change relatively

ontinuously with strain, as would be expected from microstruc-

ural evolution during uninterrupted loading.

The embedded coordinate that is most readily interpreted is

mbedded coordinate 1 (Fig. 7a). The coordinate initially is rela-

ively constant until a macroscopic strain of 0.003, then begins to

apidly evolve until a saturation value is reached near the end of

he test. Returning to Fig. 2, we find that the macroscopic strain of

.003 corresponds to the relatively abrupt elastic-plastic transition
C2 ρm0 (1/m2) ρ f0 (1/m2)

.0×10−5 0.155 2.02 × 1014 1.30 × 1015
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Fig. 6. Embedded coordinates plotted against macroscopic strain ε with increas-

ing numbers of neighbors included for reconstruction. The first (a), second (b), and

third (c) embedded coordinates are shown.

(

n

A

(

F

r

m

d

Fig. 7. (a) The evolution behavior of the model mobile dislocation density over-

laid the first embedded coordinate. (b) The second derivative of the normalized

model mobile dislocation density with respect to strain d2ρm/dt2 overlaid the sec-

ond embedded coordinate Y2. (c) The second derivative of the normalized model

obstacle density with respect to strain d2ρ f/dt2 overlaid the third embedded coor-

dinate Y3. Note that model quantities have been normalized by their initial densities

and the time spacing between measurements �t2. We highlight that the LLE anal-

ysis only used diffraction peak intensities, while the material model was fit only to

the macroscopic response. The LLE embedded coordinates were not trained to the

model.

o

t

i

n

yield point) of the AM IN625, indicating that embedded coordi-

ate 1 is tied to the activation of a plastic deformation mechanism.

s more neighbors are introduced, sharp behavioral transitions

like yield) begin to be ‘averaged out’ from the embeddings. In

ig. 7a, five is the largest number of neighbors used in observation

econstruction that still maintains the sharp behavior transition at

acroscopic strain of 0.003. As such, all other analyses of embed-

ed coordinates will use five neighbors and focus will be placed
n embedded coordinates after yield (ε > 0.003). It is important

o emphasize that in this analysis, the choice of neighbor count

s driven by a physical understanding of the deformation process,

ot a computational limit.
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As mentioned, simply determining when critical material evo-

lution events are occurring objectively can be difficult. Here, direct

unsupervised learning is locating a critical material evolution event

and pinpointing the elastic-plastic transition in the deforming sam-

ple. Historically, the identification of the onset of yield is per-

formed with a wide range of methods including manual identifi-

cation of the transition to non-linearity in the macroscopic stress–

strain response to semi-quantitative methods such as use of 0.2%

strain offsets. The identification of the beginning of fully developed

plasticity is even more challenging, with these methods typically

revolving around analysis of stress or plastic strain rate evolution,

both quantities being several steps removed from the underlying

microstructure evolution associated with plastic deformation. In

contrast, analysis of the first embedded coordinate of the diffrac-

tion peak time series is providing a straightforward solution to

these issues. In Fig. 7a, we see that the beginning of the first em-

bedded coordinate increase (or decrease depending on sign choice)

neatly coincides with the elastic-plastic transition at ε = 0.003 and

a corresponding yield stress of 358 MPa. Similarly, the first embed-

ded coordinate appears to saturate at ε = 0.026 (although with not

as clear of a distinction as the onset of yield), indicating the satu-

ration of dislocation mobility and onset of steady state plastic flow.

5.2. Correlating dislocation mobility to embedded coordinates

To begin linking the lower-dimensional embedded coordinates

and material state, the embedded coordinates after yielding are

compared to the state variable evolution from the material model,

as the state variables should link to articulation points of the mi-

crostructure and diffraction peak evolution. First, we find a strong

correlation between the mobile dislocation density ρm and the

first embedded coordinate (Y1). The two quantities are overlaid

in Fig. 7d. We also find significant similarities between the sec-

ond derivative with respect to time of both the mobile disloca-

tion and obstacle densities (d2ρm/dt2 and d2ρ f/dt2) and the second

and third embedded coordinates (Y2 and Y3). Fig. 7e and7f present

the state variable second derivatives overlaid the embedded coor-

dinates. The connection between the embedded coordinates and

second derivatives of state will be described shortly. The similar-

ities of inflection points between the state variable evolution and

embedded coordinates with applied strain are striking. Most im-

portantly, the similarities of relative distances in the embedded co-

ordinates and the dislocation evolution in the model indicate that

the lower-dimensional representation of the microstructure from

LLE is linked to the dislocation mobility and the evolving defect

densities in the alloy. The LLE analysis used only the diffraction peak

intensities while the material model was fit only to macroscopic me-

chanical response. The LLE embedded coordinates were not trained

to the model.

Drawing correspondence between the embedded coordinates

and a material model is achieved by identifying evolution of de-

fect populations as articulation points for observed diffraction peak

evolution. We find that in this AM IN625, both the embedding and

material model indicate that the primary driver of microstructure

evolution is release, followed by rapid decrease, of mobile disloca-

tion density at yield (Fig. 7d), of which roughly half are arrested

within applied strain of 0.02. This is in contrast to the growth of a

mobile dislocation density at yield in the model as originally pro-

posed [17]. There are several possibilities for the initial large source

of the mobile dislocation density in this material. First, the sig-

nificant presence of annealing twins (see Section 2) may provide

sources [23,24]. In addition, an initial release of dislocations from

pinning solute may also be at work. Strain-aging effects are often

observed in nickel superalloys [25], and aging effects have been

shown to be present in heat-treated AM IN625 samples [26]. The
rrest of mobile density due to dislocation solute interactions has

een explored with a model for dynamic strain aging [27].

In some respects, the connection of the LLE embedded coordi-

ates to state variables and their second derivatives is not com-

letely unexpected. LLE belongs to a broader class of algorithms

hat, in effect, apply Laplacian operators (locally or globally) to the

ata of interest [1]. As part of this process, specifically observation-

econstruction in the LLE algorithm, a second differencing opera-

ion is performed and the eigenvector decomposition finds ‘modes’

f these operators. The takeaway from this insight is that beyond

he state variables themselves, their second derivatives will also

ikely be correlated with embedded coordinates. This should be

sed as a guide for linking LLE embedded coordinates to physical

rocesses in other material systems and thermo-mechanical load-

ng conditions.

. Discussion

The application of various machine learning techniques to ma-

erials science has promised to revolutionize the field, but to date,

pplication to structural materials performance or processing has

een limited. We foresee the approach demonstrated being ap-

lied to many other data types and material evolution conditions

eyond X-ray diffraction data and uniaxial loading. Any time se-

ies of scattering data (electrons, neutrons, or X-rays) encoded

ith microstructural information will likely yield valuable insight,

nd the approach can also be applied to data gathered during

ther thermo-mechanical loading conditions and processing en-

ironments, specifically aiding Integrated Computational Materials

ngineering (ICME) efforts [28]. A natural application is the anal-

sis of diffraction data measured during the AM build process or

ther extreme heating and cooling scenarios, such as quenching,

o identify critical points of microstructural development and guide

odeling of kinetics in constitutive models. However, even apply-

ng this analysis to understanding more traditional heat treatments

or process modeling optimization could prove extremely valuable.

With the large number of non-linear dimensionality reduction

echniques available, it is worth discussing choice of technique. In

his work, the fact that the embedding aligned with our physical

nderstanding of the deformation process (the state variable

volution) suggests that important physical information can be

leaned from a lower-dimensional manifold and justifies the use

f dimensionality reduction generally. However, if we frame the

oal as attempting to best preserve a path through microstruc-

ural space with a lower-dimensional representation, LLE is the

ost appropriate choice. Two major choices were made in the

nalysis: (1) whether to perform a global analysis of the data (full

pectral analysis) or analyze the data in localized regions (local

pectral analysis) and (2) which metric to use to best maintain

ata neighborhood structure. For choice (1), local support was

eemed more appropriate as it was of most interest to analyze

ransients and as such, retention of the structure of the data from

easurement to measurement was prioritized. Indeed, the sparse

anded structure (Fig. 5) resulting from neighbors in a time series

s consistent with our physical understanding of microstructural

volution. If manifold structure was not a concern, methods such

s kernel principal component analysis [29] could be employed,

hile if locality was not key to the data structure, other manifold

imensionality techniques such as ISOMAP [30] would have been

ore appropriate. For choice (2), a preservation of the path-shape

angles) between measurements was chosen to be of most in-

erest in order to capture deformation mechanism changes like

he elastic-plastic transition. The immediate use of diffraction

mages provides for regular (and often close) sampling in time and

etailed coverage of the selected (reciprocal) space with extremely

ow noise. As such, the demands of constructing the tangent may
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Fig. 8. (a) Comparison of initial and final measured diffraction peaks from sample 1 (S1) and sample 2 (S2). (b) The first three embedded coordinates recovered using LLE

from the two samples plotted versus applied strain.
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e avoided (Hessian LLE [1] and Local Tangent Space Alignment

31]) while capturing details of transients through use of relatively

maller neighborhoods. We note that the related Laplacian Eigen-

ap [32] technique may provide a possible alternative for the

articular application considered herein if maintaining distance

etween measurements was deemed more critical. Looking beyond

he present work, incremental LLE could be used on-the-fly during

n in-situ X-ray experiment [33]. LLE provides a good match to the

xercise under consideration, while offering general demonstration

f insight garnered through lower-dimensional representations of

igh-dimensional measurements typical of X-ray science.

Beyond aiding the interpretation of observed mechanical re-

ponse, the correlations between the embedded coordinates and

he solutions to differential equations describing state variables

ρm and ρ f) suggest a new paradigm for the development of con-

titutive models as the embeddings appear to be directly quanti-

ying the evolution of material state. Rather than develop consti-

utive models to fit mechanical testing data such as macroscopic

tress-strain responses, constitutive models can be developed that

lign with the discovered embedded coordinate data. Particularly

or thermo-mechanical deformation model development, instead of

sing the embedding as a secondary validation of an established

odel (as in this work), evolution equations for microstructure

ould be developed that evolve in the same manner as the em-

eddings (i.e. having the same transient and saturation points). In

ddition, direct linking to state variables may not be necessary, for-

ard modeling [5,34] of scattering could produce synthetic data

hat are processed in the same manner as experimental data and

hen directly compared. A major advance with this approach is that

e will be building material models directly with microstructural

ata and the micromechanical response will now be a predicted

y-product. Also, aligning models to LLE-determined embedded co-

rdinates ensures comparison to microstructural descriptors that

re orthogonal by construction.

As a test of the robustness of this approach to microstructural

nalysis, a second sample (S2) was deformed, probed, and analyzed

n the same manner as the first (S1) to test if the same lower-

imensional representation would be recovered from different sets

f grains and diffraction peaks. Fig. 8a shows the initial and final

iffraction peaks from S1 and S2. In Fig. 8a, we can see distinct

ets diffraction peaks from the illuminated grain ensembles that

oth smear out with applied load, but most importantly, different

nsembles of grain orientations are being probed. Fig. 8b compares
he first three embedded coordinates recovered from the diffrac-
i

ion peak time series from the two samples. The embedded coor-

inates recovered are very similar even though the collections of

iffraction peak analyzed have significantly different structures. As

ould be expected from our interpretation of the embedded coor-

inates, the underlying behavior and rates of microstructure evolu-

ion between the two samples track well. The similarities between

he two samples reinforce that LLE is discovering the same under-

ying, articulating deformation mechanisms, as would be expected

rom the same material.

We stress that in this correlation process, the state variables in-

estigated are still posited by the researcher performing the anal-

sis, but significantly more confidence can be placed in model re-

ults when there is strong correlation between state variable evo-

ution and lower-dimensional representations of microstructure.

lthough guiding the development of physics-based material con-

titutive models with unsupervised learning data is a major alter-

tion of current model development paradigms, the potential to

ccelerate model development is clear. Importantly, beyond defor-

ation model development, the analysis method presented likely

as wide applicability to other material characterization modalities

nd in-situ monitoring of process conditions, including technologi-

ally relevant processes such as additive manufacturing itself.

. Conclusions

Locally linear embedding was used to reduced time series

iffraction data collected during uniaxial tension of additively

anufactured Inconel 625 down to a lower-dimensional represen-

ation of the microstructure (embedded coordinates). In this work

e demonstrated that the embedded coordinates:

• capture the sharp microstructural transitions that occur during

yield.

• appear to discover articulation points of the evolving state of

the materials by showing strong correlations with modeled

evolution of dislocation and defect populations in the material.

• are not directly tied to a single set of diffraction peaks from a

material, but rather the underlying material state evolution.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.



518 D.C. Pagan, T.Q. Phan and J.S. Weaver et al. / Acta Materialia 181 (2019) 510–518

[

[

[

[

[

[

[

Acknowledgments

This work is based upon research conducted at the Center for

High Energy X-ray Sciences (CHEXS) which is supported by the Na-

tional Science Foundation under award DMR-1829070. AJB received

support through the Office of Naval Research (Contract N00014-16-

1-3126). The authors would like to thank Magnus Ahlfors at Quin-

tus Technologies for performing the hot isostatic pressing treat-

ment. The authors would like to thank Professor Matthew Miller,

Dr. Kelly Nygren, Dr. Paul Shade, Dr. Nathan Barton, and Dr. Fan

Zhang for helpful suggestions.

Supplementary material

Supplementary material associated with this article can be

found, in the online version, at doi:10.1016/j.actamat.2019.10.011.

References

[1] D.L. Donoho, C. Grimes, Hessian eigenmaps: locally linear embedding tech-
niques for high-dimensional data, Proc. Natl. Acad. Sci. 100 (10) (2003) 5591–

5596, doi:10.1073/pnas.1031596100.

[2] L. Margulies, T. Lorentzen, H. Poulsen, T. Leffers, Strain tensor development in
a single grain in the bulk of a polycrystal under loading, Acta Mater. 50 (7)

(2002) 1771–1779.
[3] H. Poulsen, Three-Dimension X-Ray Diffraction Microscopy, 1st, Springer, 2004.

[4] P.P. Ewald, X-Ray diffraction by finite and imperfect crystal lattices, Proc. Phys.
Soc. 52 (1) (1940) 167–174, doi:10.1088/0959-5309/52/1/323.

[5] R.M. Suter, D. Hennessy, C. Xiao, U. Lienert, Forward modeling method for mi-

crostructure reconstruction using x-ray diffraction microscopy: single-crystal
verification, Rev. Sci. Instrum. 77 (12) (2006) 123905, doi:10.1063/1.2400017.

[6] S.F. Li, J. Lind, C.M. Hefferan, R. Pokharel, U. Lienert, A.D. Rollett, R.M. Suter,
Three-dimensional plastic response in polycrystalline copper via near-field

high-energy X-ray diffraction microscopy, J. Appl. Crystallogr. 45 (6) (2012)
1098–1108.

[7] M.A. Krivoglaz, X-ray and Neutron Diffraction in Nonideal Crystals, Springer

Science & Business Media, 2012.
[8] L. Van Der Maaten, E. Postma, J. Van den Herik, Dimensionality reduction: a

comparative review, J. Mach. Learn. Res. 10 (66–71) (2009) 13.
[9] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear em-

bedding, Science 290 (5500) (2000) 2323–2326.
[10] E.A. Lass, M.R. Stoudt, M.E. Williams, M.B. Katz, L.E. Levine, T.Q. Phan,

T.H. Gnaeupel-Herold, D.S. Ng, Formation of the ni3nb δ-phase in stress-

relieved inconel 625 produced via laser powder-bed fusion additive man-
ufacturing, Metall. Mater. Trans. A 48 (11) (2017) 5547–5558, doi:10.1007/

s11661-017-4304-6.
[11] , ASTM F3056-14e1, Standard Specification for Additive Manufacturing Nickel

Alloy (UNS N06625) with Powder Bed Fusion, Technical Report, ASTM Interna-
tional, West Conshohocken, PA, 2014.

[12] F. Bachmann, R. Hielscher, H. Schaeben, Texture analysis with mtex–free and

open source software toolbox, Solid State Phenom. 160 (2010) 63–68.
[13] ISO / ASTM52921 - 13, Standard Terminology for Additive Manufacturing-

Coordinate Systems and Test Methodologies, Technical Report, ASTM Interna-
tional, West Conshohocken, PA, 2013.
[14] P.A. Shade, B. Blank, J.C. Schuren, T.J. Turner, P. Kenesei, K. Goetze, R.M. Suter,
J.V. Bernier, S.F. Li, J. Lind, U. Lienert, J. Almer, A rotational and axial motion

system load frame insert for in situ high energy x-ray studies, Rev. Sci. In-
strum. 86 (9) (2015) 093902, doi:10.1063/1.4927855.

[15] L.K. Saul, S.T. Roweis, Think globally, fit locally: unsupervised learning of low
dimensional manifolds, J. Mach. Learn. Res. 4 (Jun) (2003) 119–155.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: machine

learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.
[17] Y. Estrin, L. Kubin, Local strain hardening and nonuniformity of plastic de-

formation, Acta Metall. 34 (12) (1986) 2455–2464, doi:10.1016/0001-6160(86)
90148-3.

[18] U. Kocks, Laws for work-hardening and low-temperature creep, J. Eng. Mater.
Technol. 98 (1) (1976) 76–85.

[19] H. Mecking, U. Kocks, Kinetics of flow and strain-hardening, Acta Metall. 29

(11) (1981) 1865–1875, doi:10.1016/0001-6160(81)90112-7.
[20] C.U. Brown, G. Jacob, M. Stoudt, S. Moylan, J. Slotwinski, A. Donmez, Inter-

laboratory study for nickel alloy 625 made by laser powder bed fusion to
quantify mechanical property variability, J. Mater. Eng. Perform. 25 (8) (2016)

3390–3397.
[21] P. Rodríguez, B. Wohlberg, Efficient minimization method for a generalized to-

tal variation functional, IEEE Trans. Imag. Proc. 18 (2) (2009) 322–332.

22] R. Chartrand, B. Wohlberg, Total-variation regularization with bound con-
straints, in: Proceedings of the IEEE International Conference on Acoustics,

Speech and Signal Processing, IEEE, 2010, pp. 766–769.
23] J. Flinn, D. Field, G. Korth, T. Lillo, J. Macheret, The flow stress behavior of

ofhc polycrystalline copper, Acta Mater. 49 (11) (2001) 2065–2074, doi:10.1016/
S1359-6454(01)00102-1.

[24] K.J.H. Al-Fadhalah, C.-M. Li, A. Beaudoin, D. Korzekwa, I. Robertson, Microplas-

tic processes developed in pure ag with mesoscale annealing twins, Acta
Mater. 56 (19) (2008) 5764–5774, doi:10.1016/j.actamat.2008.07.050.

25] P.S. Follansbee, Analysis of deformation in inconel 718 when the stress
anomaly and dynamic strain aging coexist, Metall. Mater. Trans. A 47 (9) (2016)

4455–4466.
26] A.M. Beese, Z. Wang, A.D. Stoica, D. Ma, Absence of dynamic strain aging in

an additively manufactured nickel-base superalloy, Nat. Commun. 9 (1) (2018)

2083.
[27] C. Fressengeas, A. Beaudoin, M. Lebyodkin, L. Kubin, Y. Estrin, Dynamic strain

aging: a coupled dislocation-solute dynamic model, Mater. Sci. Eng. A 400–401
(2005) 226–230 Dislocations 2004, doi:10.1016/j.msea.2005.02.073.

28] K. Chatterjee, J. Ko, J. Weiss, H. Philipp, J. Becker, P. Purohit, S. Gruner, A. Beau-
doin, Study of residual stresses in Ti-7Al using theory and experiments, J.

Mech. Phys. Solids 109 (2017) 95–116, doi:10.1016/j.jmps.2017.08.008.

29] B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel
eigenvalue problem, Neural Comput. 10 (5) (1998) 1299–1319.

[30] J.B. Tenenbaum, V. De Silva, J.C. Langford, A global geometric framework for
nonlinear dimensionality reduction, Science 290 (5500) (2000) 2319–2323.

[31] Z. Zhang, H. Zha, Principal manifolds and nonlinear dimensionality reduction
via tangent space alignment, SIAM J. Sci. Comput. 26 (1) (2004) 313–338.

32] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for embed-
ding and clustering, in: Advances in Neural Information Processing Systems,

2002, pp. 585–591.

[33] O. Kouropteva, O. Okun, M. Pietikäinen, Incremental locally linear embedding,
Pattern Recognit. 38 (10) (2005) 1764–1767, doi:10.1016/j.patcog.2005.04.006.

[34] D. Pagan, M. Miller, Connecting heterogeneous single slip to diffraction peak
evolution in high-energy monochromatic X-ray experiments, J. Appl. Crystal-

logr. 47 (3) (2014) 887–898.

https://doi.org/10.13039/100000006
https://doi.org/10.1016/j.actamat.2019.10.011
https://doi.org/10.1073/pnas.1031596100
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0002
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0002
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0002
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0002
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0002
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0003
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0003
https://doi.org/10.1088/0959-5309/52/1/323
https://doi.org/10.1063/1.2400017
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0006
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0006
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0006
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0006
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0006
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0006
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0006
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0006
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0007
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0007
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0008
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0008
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0008
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0008
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0009
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0009
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0009
https://doi.org/10.1007/s11661-017-4304-6
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0011
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0012
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0012
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0012
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0012
https://doi.org/10.1063/1.4927855
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0015
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0015
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0015
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0016
https://doi.org/10.1016/0001-6160(86)90148-3
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0018
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0018
https://doi.org/10.1016/0001-6160(81)90112-7
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0020
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0020
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0020
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0020
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0020
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0020
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0020
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0021
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0021
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0021
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0022
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0022
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0022
https://doi.org/10.1016/S1359-6454(01)00102-1
https://doi.org/10.1016/j.actamat.2008.07.050
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0025
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0025
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0026
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0026
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0026
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0026
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0026
https://doi.org/10.1016/j.msea.2005.02.073
https://doi.org/10.1016/j.jmps.2017.08.008
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0029
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0029
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0029
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0029
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0030
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0030
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0030
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0030
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0031
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0031
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0031
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0032
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0032
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0032
https://doi.org/10.1016/j.patcog.2005.04.006
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0034
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0034
http://refhub.elsevier.com/S1359-6454(19)30671-8/sbref0034

	Unsupervised learning of dislocation motion
	1 Introduction
	2 Material
	3 Methods
	3.1 Experiment
	3.2 Data analysis

	4 Defect evolution model
	5 Results and analysis
	5.1 Identifying onset of dislocation motion
	5.2 Correlating dislocation mobility to embedded coordinates

	6 Discussion
	7 Conclusions
	Declaration of Competing Interest
	Acknowledgments
	Supplementary material
	References


