
Article

The International Journal of High
Performance Computing Applications
2015, Vol. 29(4) 403–421
� The Author(s) 2014
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/1094342014532297
hpc.sagepub.com

Silent error detection in numerical
time-stepping schemes

Austin R Benson1,2, Sven Schmit1 and Robert Schreiber2

Abstract
Errors due to hardware or low-level software problems, if detected, can be fixed by various schemes, such as recompu-
tation from a checkpoint. Silent errors are errors in application state that have escaped low-level error detection. At
extreme scale, where machines can perform astronomically many operations per second, silent errors threaten the
validity of computed results.

We propose a new paradigm for detecting silent errors at the application level. Our central idea is to frequently com-
pare computed values to those provided by a cheap checking computation, and to build error detectors based on the
difference between the two output sequences. Numerical analysis provides us with usable checking computations for
the solution of initial-value problems in ODEs and PDEs, arguably the most common problems in computational science.
Here, we provide, optimize, and test methods based on Runge–Kutta and linear multistep methods for ODEs, and on
implicit and explicit finite difference schemes for PDEs. We take the heat equation and Navier–Stokes equations as
examples. In tests with artificially injected errors, this approach effectively detects almost all meaningful errors, without
significant slowdown.

Keywords
Silent errors, resilience, Runge-Kutta, linear multi-step methods, heat equation, initial-value problems

1. Silent errors and checking schemes

1.1 Silent errors are worrisome

Computational scientists are concerned about silent
errors in exascale computing. Silent errors are pertur-
bations to application state that may lead to a failure
such as a bad final solution (Snir et al., 2013). These
errors may arise from a bit flip, a firmware bug, data
races, and other causes. Several authors (Cappello et
al., 2009; Dongarra et al., 2011; Snir et al., 2013) have
discussed the sources and the frequency of silent errors.

Why the current concern? An exaflop machine will
be able to do on the order of 1023 operations per day,
and will have on the order of 1017 bytes of memory
(Dongarra et al., 2011). And in order to achieve very
aggressive energy efficiency and performance targets,
machine architects are pushing envelopes: with near-
threshold-voltage logic, with new memory and storage
technologies, and with photonic communication.
Consumer quality hardware may already suffer errors
at the personal-computer scale once per year
(Nightingale et al., 2011), and cost precludes really sig-
nificant hardening of the hardware in supercomputers.
Thus, the scale of systems makes such errors quite
likely. Indeed, some high performance systems today

already suffer from silent errors at a troublesome rate
(Shi et al., 2009).

Furthermore, the practice of checkpoint/restart is
not well suited for exascale applications in general, and
in particular to silent errors. Disk-based checkpointing
is prohibitively expensive with expected error rates in
exascale applications. While in-memory checkpointing
is an option (Zheng et al., 2012), the difficulty in detect-
ing silent errors is more worrisome. Without knowing
an error has occurred, we do not know that a restart is
necessary. This makes the checkpoint/restart paradigm
a weaker strategy for guarding against silent errors.

1.2 Algorithmic responses to silent errors

The numerical algorithms community has already
looked at error vulnerability. It is well known that

1Institute for Computational and Mathematical Engineering, Stanford

University, CA, USA
2HP Labs, Palo Alto, CA, USA

Corresponding author:

Austin R Benson, Institute for Computational and Mathematical

Engineering, Huang Building, 475 Via Ortega, Suite 060 (Bottom level),

Stanford University, Stanford, CA 94305-4042, USA.

Email: arbenson@stanford.edu

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342014532297&domain=pdf&date_stamp=2014-04-25

many errors do not cause failures. Other errors lead to
an obvious application failure. Silent errors are more
worrisome, because they can cause unsuspected erro-
neous outputs. Our goal is to make these errors non-
silent.

It has been argued that with extra care, convergent
iterations are inherently self-correcting; for example, a
resilient version of GMRES is proposed in Hoemmen
and Heroux (2011). Other empirical studies have
shown, however, that iterative methods are sometimes
vulnerable to errors (Bronevetsky and de Supinski,
2008; Casas et al., 2012). And in a study of a minimiza-
tion approach to Hartree–Fock ground state calcula-
tion, Van Dam et al. found that ‘it is insufficient to rely
on the algorithmic properties of the Hartree–Fock
method to correct all the possible bit-flips and resulting
data corruption’ (Van Dam et al., 2013). Sufficiently
big errors can be fatal to these algorithms.

Minimization and equation-solving (in which the
data defining the function or equation are assumed to
be incorruptible) is an easy case, since the residual of
the current approximate solution almost surely does
not lie. But in many cases in computational science, a
time-dependent initial-value problem is solved. In these
cases, any perturbation to the computed solution puts
that solution onto a permanently erroneous track. We
therefore take the view that error detection is a funda-
mental issue, and that errors, detected as soon as they
occur, can then be handled by an appropriate correc-
tion scheme.

Certain common kernels have been fortified with
error detectors. For example, checksum methods have
been used for matrix multiplication (Huang and
Abraham, 1984), high performance LU factorization
(Du et al., 2012), and checking the integrity of data
replicated on multiple compute nodes (Van Dam et al.,
2013). This latter paper also monitored a number of
theoretical invariants of the algorithm. Orthogonality
of a matrix can be checked by multiplying by its trans-
pose, for example. Conservation laws can be moni-
tored, where available, as a check for error. These
monitoring approaches were found to be useful, but
fallible; they are not a comprehensive safety net.

1.3 Our approach

In this paper, we propose a very general, low-cost error
detection approach that applies to iterative computa-
tions in general, and to the solution of initial-value
problems for ODEs and PDEs in particular. Our cen-
tral idea is to compare the solution given by a primary,
or base, time-stepping scheme to the solution given by
an auxiliary checking scheme, and to do this every time
step. The two schemes use the same input data, all of it
computed by the base scheme: thus the auxiliary solu-
tion is used only locally, at each time step, to check for

errors. This approach has compelling advantages over
a straightforward duplication of the computation: it is
cheaper, and it can detect problems that duplication
cannot.

Error is a constant in scientific computing. Even
with no bugs or failures, we have modeling error, trun-
cation error, and roundoff error. To deal with trunca-
tion error, schemes of the kind we are proposing have
long been employed for automatic step-size control in
ODE solvers (Fehlberg, 1969). Similar a posteriori
error estimators are used for mesh adaptation in PDE
solvers (Berger and Oliger, 1984). The idea is to make a
numerical method introspective, aware of, and watch-
ful for errors. Our contribution is to extend these pow-
erful schemes so that they can be used to detect errors
due to a misbehaving computing system as well.

Suitable checking schemes are available in the most
common setting: the solution of initial-value problems
in ODEs and PDEs. A full description of the general
approach, including the key question of how we trigger
notification of an error, is given in the next section. We
describe specific checking schemes for Runge–Kutta
and linear multistep methods (LMMs) in Section 3.1
and for finite difference methods for the heat equation
in Section 3.2. We discuss the error detector, and an
approach to controlling and optimizing it, in Section 4.

In tests with artificially injected errors, we measure
the impact of errors by how much they impact the solu-
tion. We quantify this idea in Section 5.1, and we then
show through numerical experiments that our detection
scheme effectively catches errors that have a significant
impact on the solution.

2. Outline of general method

Suppose there are two iterative methods to solve a
problem, a base method, B, and an auxiliary checking
method, A. One would use B in a computing environ-
ment with no errors. Desirable properties of B are
therefore accuracy and stability. A suitable auxiliary A
solves the same problem: its output can be compared
to that of B, and it can be used at each iteration, using
the same input data as B. The key idea is that the norm
of the difference between the results provided by A and
B is an estimator of the magnitude of the difference at
the current step between B and an error-free solution.
This suggests that A should have accuracy comparable
to (or even better than) B. For efficiency, we want A to
be fast when used as a check on B, possibly by reusing
some of the computations, communications, and input
data of B. Since we do not use A in a closed-loop set-
ting (i.e. A does not use its own results as input at each
step), stability is not an issue for A. This gives us useful
freedom in choosing auxiliary schemes.

The two schemes produce sequences of values fAig
and fBig in the same normed vector space. For any

404 The International Journal of High Performance Computing Applications 29(4)

norm or seminorm of the difference, we have a scalar
sequence, Di = k Ai � Bi k. We may choose to use
more than one such metric, so in general, Di may be a
vector.

Our methods employ, at each step n, a window into
the sequence (Dn�d, . . . ,Dn), as data for an error detec-
tion function E(Dn�d , . . . ,Dn) that decides whether or
not to raise the flag for an error. The error detector
typically employs one or more measures of size, or,
more powerfully, measures of anomaly, to the value Dn

in the context of its recent values Dn�d , . . . ,Dn�1. In
general, then, a method includes base and checking
computation schemes, a vector of difference measures,
and an error detection criterion.

2.1 Choosing an auxiliary scheme

Let us first consider the simplest case, and show why it
does not help us; this motivates the search for better
auxiliary schemes.

Consider A to be the same as B, that is, A just
repeats the computation. The error detector simply
flags an error whenever B and A differ, or differ by
more than a small multiple of machine precision. Here
A is not fast (it costs the same as B). Moreover, it will
not catch certain errors: if the input data for the step
are corrupted (after successful previous steps write
these data to memory), the two computations produce
identical, incorrect results. The same is true if a compu-
tation unit fails in a repeatable manner (a stuck-at
fault, for example), or a communicated value corrupted
by the network is used by both schemes.

A better checking scheme is one that reuses some of
the computation and communication of the base
scheme (for efficiency), but is different in a way that
makes the two schemes disagree unless there are no
errors anywhere in the algorithm.

Two examples, covered in detail below, are
embedded Runge–Kutta schemes, in which A reuses
evaluations of the derivative function that are needed
for B, and paired LMMs, in which saved and new val-
ues of the solution and its time derivative are combined
in two different ways to estimate the solution at the
next time step. Notably, for stiff ODEs and second-
order parabolic PDEs, stability mandates the use of
implicit base schemes, with their attendant algebraic
system to solve at each time step, but explicit schemes
prove to be effective, inexpensive auxiliaries.

2.2 The detector

The norm of the difference, Di = k Ai � Bi k, is an
obvious candidate for error-checking. What compli-
cates this is that the size of Di can vary over orders of
magnitude in the error-free case as the solution changes.
Thus, a hard threshold is ineffective for error detection.
Our view is that a sudden change in the sequence fDig

better indicates that an error is present. We examine
this empirically in Section 5.

At the core of the detector there will be comparisons
of some scalar indicator quantities to some thresholds.
How should these thresholds be chosen? We take the
following view. With any sort of error detector, we can
have false positives and false negatives, and there is an
intrinsic tradeoff between their rates: a low threshold
boosts the rate of false positives but misses few true
errors; a high threshold reduces the false-positive rate
(FPR) at the expense of more missed errors. In our set-
ting, a more pressing issue is that the indicator quantities
can vary by orders of magnitude for different applica-
tions. To make matters worse, even within a single
instance, these indicator quantities can vary by equal
amounts. Therefore, we have to ensure that the detector
is very flexible in finding standard levels for the indica-
tors and even able to do so locally. More detail is given
in Section 4.

2.3 What to do if an error is flagged

What do we expect an application to do if an error is
detected? This is not the topic of our work, but we feel
it is important to give an idea of a general scheme.

Before implementing any error recovery scheme for
an iterative method, there are two important questions
to ask when a flag is raised to indicate an error:

1. On what iteration could the error have occurred?
2. What data or computations were affected by the

fault?

We then intend to redo the failed steps (Question 1) by
redoing all potentially failed computations (Question 2).

How far back must we go? In our numerical experi-
ments, we see that in quite a few cases the time step
after the one in which the fault occurred causes the
error flag to be raised. For example, a small error in a
derivative evaluation in an LMM may produce a large
error in a few time steps, since the derivative evaluation
gets re-used for several iterations. Thus, we first have
to establish which iterations may be erroneous and
which ones we still trust. This depends very much on
the application, as the following example illustrates.

Suppose the base and checking schemes use the solu-
tions at the previous two time steps to compute the
solution at the next. Further suppose that this pair of
schemes sometimes flags an error one iteration after
the faulty step. Consider now that our procedure flags
iteration 5, signalling there might be an error. We can-
not trust the solution at step 4, but we can trust step 3

because, were it faulty, we would have seen a flag at
iteration 3 or 4. Hence, we go back and restart the
computation of iteration 4, using the stored data from
iterations 2 and 3.

Benson et al. 405

We hope and expect that silent errors will be rare.
Even with a small FPR, there will be more false posi-
tives than true positives. It is important to not get stuck
and redo (correct) computations over and over again
when they are incorrectly flagged. In order to avoid this
we propose a taxonomy of possibilities:

1. The error may have been caused by a transient
fault. On retry, if the fault does not recur, we will
likely succeed, with no error flag.

2. The error may have been caused by a permanent
fault that causes erratic, irreproducible, and ran-
dom errors. This may be the case if a single proces-
sor core is faulty and produces different results
when executing the same code.

3. If data in memory have been corrupted, silently,
we may discover this with our scheme. If we redo
the failed steps starting from the same corrupted
in-memory data, we expect an identical outcome,
with the error flag raised on the retry.

4. If some hardware or software component has failed
in a ‘hard’ way, meaning it consistently produces
incorrect results, we expect an identical outcome
again (cf. point 2 above, where the fault is perma-
nent, but the outcome is not identical), with the
error flag raised on the retry.

5. The error may be expected if, for example, the
algorithm sacrifices correctness in rare scenarios
for speed (Rinard, 2013). If the algorithm fails ran-
domly, but rarely (as is the case in Rinard, 2013),
re-computation will likely provide the correct
answer. If the failure is deterministic, then a differ-
ent algorithm will be needed.

6. There may be no error at all; it may be that the prob-
lem’s local difficulty causes the error flag to trigger,
with the current value of the time step, in the error-
free case. Again, we expect an identical result on retry.

As stated above, the first response to a flagged error
is to go back to an iteration that was computed with no
error flags, or possibly one iteration further back, and
redo the subsequent iterations, including the error
checks. We also want to check to see whether this recom-
putation produces the same result as it did initially.

If retry succeeds with no error flag, we likely have
discovered that an error of type 1 or 5 occurred. We
can report it, and continue.

If retry fails, but with a significantly different result to
that of the first try, it is likely that a component of the
platform has become unreliable; we need to change it.
This is an error of type 2. Note that case 4 is different: the
fault is permanent but the output is consistently incorrect.

If retry fails with the same computed result as ini-
tially, there is ambiguity: the cause may be any of 3, 4,
5, or 6 above. Absent a way to tell, there is a problem.

Our approach is compatible with systems that pro-
tect memory contents from loss and corruption. All

machines have a basic error detection and correction
system for memory. These can be augmented with addi-
tional protection and redundancy, as in the Global
View Resilience Project (Fujita et al., 2013). In the case
of a reproducible flagged error, such a scheme can be
invoked to test the memory contents and see if they
have been corrupted, to rule our an error of type 3, or
correct it if one has occurred.

If such a test detects no corruption of the input data
to the failed step, then how can we distinguish between
errors of type 4 and 6? Here we could go back to the ori-
gins of this approach, and redo the computation with a
smaller step; perhaps half the current step. If the error is
of type 6, this approach will, after a few reductions, fix
the problem. But if the problem remains after repeated
step-size reductions, we would suspect an error of type 4.

3. Applications

3.1 ODE solvers

Consider a first-order ODE initial-value problem:

d

dt
u(t)= f (t, u(t)), u(0)= u0 ð1Þ

Suppose that we are using the explicit midpoint
Runge–Kutta scheme as a base scheme B to compute
uBn+ 1 ’ u(tn+ 1) in equation (1):

kB1 = f (tn, uBn) ð2aÞ

uBn+ 1 = uBn + hf tn +
1

2
h, uBn +

1

2
hkB1

� �
ð2bÞ

The local truncation error (LTE) of this scheme is
O h3ð Þ. We note that f (tn, u

B
n) is the central computation

in Euler’s method, which has LTE O h2ð Þ, and we use
this to construct an auxiliary scheme A,

uAn+ 1 = uBn + hkB1

An example difference computation is
Dn+ 1 = k uBn+ 1 � uAn+ 1k‘. By re-using uBN and kB1 , A
provides a cheap approximation to the solution. The
midpoint and Euler schemes are an embedded Runge–
Kutta pair (Dormand and Prince, 1980); these form the
basis of adaptive step-size methods. In general, we can
use any embedded Runge–Kutta pair in the A=B for-
mulation. A common, accurate scheme is the RKF45
scheme due to Fehlberg (Fehlberg, 1969).

Figure 1 illustrates how errors lead to jumps in the
difference between A and B using this particular scheme
for the Van der Pol equation:

u00(t)� b(1� u(t)2)u0(t)+ u(t)= 0 ð3Þ

whose rapid changes in derivatives make this a challen-
ging case.

406 The International Journal of High Performance Computing Applications 29(4)

In Section 5, we show in more detail that errors in
the evaluation of equation (2a) or equation (2b) can be
effectively detected by Runge–Kutta-based A=B
schemes. Moveover, we also show that errors in the
evaluation of f can be detected just as effectively, even
if this wrong computation is used by both methods.
Note that in Runge–Kutta methods, the last solution is
the initial condition for advancing to the next time step.
This memoryless property makes it difficult to detect
changes in uBn . We discuss this matter and provide
experiments in Section 5.2.

LMMs are also amenable to our framework. An
Adams–Bashforth LMM (AB-LMM) of order p � 1

computes uBn+ 1 ’ u(tn+ 1) by

uBn+ 1 = uBn +
Xn

i= n�p+ 1

hap, if (ti, uBi)

such that the LTE is O hp+ 1ð Þ. Suppose that B is a pth-
order AB-LMM, p � 2. One choice of A is the AB-
LMM of order p� 1, which reuses the same data, stores
no additional data, and performs no additional evalua-
tion of f . An alternative A is an LMM of order p that
interpolates at (possibly multiple) uBk for k\n. However,
additional memory is needed to store solutions at prior
time steps. In order to compare AB-LMM to Runge–
Kutta methods, we will consider the (p� 1, p) AB-
LMM pairs in our experiments in Section 5.

Implicit numerical schemes are preferred for stiff
ODEs. For example, an Adams–Moulton LMM (AM-
LMM) of order p defines un+ 1 implicitly, as the solu-
tion to the system of equations

uBn+ 1 = uBn +
Xn+ 1

i= n�p+ 2

hbp, if (ti, uBi)

Its LTE is O hp+ 1ð Þ. Suppose that the base scheme B is
an AM-LMM. The computationally expensive part of
the method is solving the (possibly nonlinear) equation
for un+ 1. A lower-order AM-LMM will require a dif-
ferent solve and is a less attractive choice for A (it will
not be fast compared to B). Instead, we can use an AB-
LMM for A,

uAn+ 1 = uBn +
Xn

i= n�p+ 1

hap, if (ti, uBi)

AB-LMM is an explicit method, but the starting
value, uBn , and the prior function evaluations,
ff (ti, uBi)gn�p+ 1� i� n, have been computed by the
implicit AM-LMM. Thus, use of an AB-LMM as A
does not suffer from the instability of explicit methods
used on stiff ODEs. Note that we can employ any
implicit LMM as a base scheme, including, for exam-
ple, the backward differentiation formulas.

Finally, an explicit/implicit pair of LMMs is some-
times used in a predictor–corrector fashion. Here, the
implicit LMM’s equations are solved by a truncated
fixed-point iteration in which the explicit scheme gener-
ates a first iterate. In this instance, the auxiliary scheme
(the predictor) is already a part of the solution mechan-
ism for the base scheme (the corrector), so it comes at
no extra cost.

3.2 PDE solvers

Due to the large variety of PDE solvers, we do not have
a one-size-fits-all solution. For time-dependent PDEs, a
method of lines discretization in space results in a system
of ODEs, and the ODE methods described above can
be employed. Here instead we consider finite difference
schemes for PDEs.

To make this idea concrete, we will describe an A=B
formulation for the heat equation. A more detailed
example (the incompressible Navier–Stokes equations)
is provided in Section 5.6.

For a model problem, consider the nonhomogeneous
heat equation

ut = kuxx + q(x, t), k.0

u(x, 0)= v(x)
ð4Þ

with homogeneous Dirichlet boundary conditions.
Suppose that B and A are the backward and forward
Euler schemes. Both methods have LTEs of O (Dx)2

� �
in space and O Dtð Þ in time. At each time step, B solves
a linear system, while A computes a matrix–vector
product. Thus, we expect A to be faster. Moreover, in
the distributed memory setting, A requires no commu-
nication other than what is done in scheme B, if B uses
an iterative solver.

0 50 100 150
10−10

10−8

10−6

10−4

10−2

Iteration (i)

D
i

RK4/5 differences

Figure 1. Difference between RK5 (B) and RK4 (A) over time
for the Van der Pol equation with b= 2 and initial conditions
u(0)= 1 and u0(0)= 0. An artificial error is injected at the 80th
iteration, which results in the spike in D80. The red circles
indicate iterations that are predicted to be erroneous by our
detection scheme; see Section 4.

Benson et al. 407

An alternative B is the Crank–Nicolson scheme,
which is implicit and has LTEs of O (Dx)2

� �
in space

and O (Dt)2
� �

in time. Forward Euler is a candidate for
A, but we desire an explicit method with the same
LTEs as Crank–Nicolson. The Richardson scheme
(also known as the leapfrog scheme) is such a method,
and it uses a centered difference in time and space.
While the Richardson scheme reuses the computations
from Crank–Nicolson, the centered difference in time
requires the solution at the two previous time steps. We
refer to Strikwerda (2007, Section 6.3) for a discussion
of all of these methods.

Figure 2 plots the solution to the heat equation and
the sequence of differences fDi = k Ai � Bik‘g for a
particular problem instance. An error occurs in the
120th iteration and is exhibited by a spike in the
sequence of differences. In Section 5.3, we thoroughly
examine how effective the Richardson/Crank–Nicolson
(R/CN) and forward/backward Euler (FE/BE) A=B
formulations are in detecting errors.

3.3 Extrapolation

For some base schemes B, the choice of a related auxili-
ary A may not be obvious. But extrapolation is always
available, in the form of an LMM in which all the b

terms are zero. The order-one version is simply

Ai = 2Bi�1 � Bi�2

Although useless as basic solvers, extrapolation meth-
ods are suitable for error detection. They are very
cheap, and can have acceptable error characteristics,
even though more custom-tailored auxiliary schemes, if
available, will probably be more effective. In cases

where no such custom-tailored auxiliary schemes are
readily available, or they are too complicated to imple-
ment or too expensive to compute, we can employ
extrapolation to extend our approach to many more
settings.

We investigate the usefulness of extrapolation as part
of the A=B scheme used for the Navier–Stokes equa-
tions in Section 5.6.

4. Error detection

In this section we outline a practical implementation of
the error detection function, E. Thereafter, we briefly
discuss the performance penalty incurred by employing
our error detection scheme. Throughout this section,
we consider a scalar error metric D, for example the
sup-norm of the difference between A and B. The main
challenge for the detection and focus of this section is
that the scale of the variations in D is unknown, and
can be time-varying, and hence it is important that E

can handle errors independent of scale, and adapt to
the local structure. Furthermore, we also need our
detection scheme to be easy to compute, as this has to
be done every iteration.

To find iterations with errors, we use two indicator
variables derived from the sequence of differences
Dnþ1:

Jnþ1 =
Dn+ 1 � Dn

Dn

ð5Þ

V nþ1 =
Var(Dn�p+ 1, . . . ,Dn+ 1)

Var(Dn�p, . . . ,Dn)
ð6Þ

Jnþ1 and Vnþ1 measures the jump in the sequence and
Vn measures a change in variance. By using relative

Crank−Nicolson solution

iΔ
t

x
0 0.2 0.4 0.6 0.8 1

0

0.5

1

1.5

2
0 50 100 150 200

10−7

10−6

10−5

10−4

10−3

10−2

D
i

i

Richardson/Crank−Nicolson
forward/backward Euler

Figure 2. Solution and difference sequence for equation (4) with k= 1=100, q(x, t)= 0:1 sin (2pt)+ cos (2px)ð Þ, v(x)= x(x � 1),
Dx= 1=160, and Dt= 1=100. The difference function is Di = k Ai � Bik‘. A fault is injected at the 120th time step by multiplying
the 40th component of the right-hand side of the linear solves used by Crank–Nicolson and backward Euler by 0:995. The solution
appears normal, but the difference sequence indicates an anomaly at the 120th time step.

408 The International Journal of High Performance Computing Applications 29(4)

changes, we are less prone to changes in magnitude. A
large value for either indicator signals that an error has
occurred. The integer p adjusts the window size; in our
experiments, p= 10.

We flag an error only when both indicators exceed
their current thresholds. We show in Section 5.4 that
the two-indicator strategy improves the sensitivity to
actual errors for a fixed FPR.

We use a closed-loop mechanism to tune the thresh-
olds. We increase a threshold by a factor G.1 every
time the indicator is above its threshold and decrease a
threshold by a factor g\1 every time the indicator is
below its threshold. If both indicators are above their
respective thresholds, we flag an error and rely on an
error handler as discussed in Section 2.3. The overall
idea is in Algorithm 1.

The closed-loop tuning procedure forces thresholds
to be only slightly above typical values, and adapt
quickly to changes. In practice, this reduces the prob-
ability of false negatives, without causing many false
positives. Because the thresholds are decreased every
time they are not violated, they do get violated at some
point, in which case we increase the threshold again.
But as long as this does not happen to both at the same
time, we do not trigger an error. Hence, we get this
adaptivity almost for free.

For our experiments in Section 5, we use G= 1:4,
g = 0:95, and p= 10. However, the detector’s perfor-
mance is not sensitive to these choices. We choose g to
be close to one so as to reduce the FPR. While on the
one hand it is desirable that the performance of the
detector does not depend on the choices for G and g,
this also means that we cannot easily decide on the
proper tradeoff between sensitivity and specificity. This
should not be too much of a concern, as we show that
our algorithm is rather accurate in detecting errors,
and that with a very small FPR.

4.1 Performance

There is some performance overhead when employing
Algorithm 1. Although it is important to understand
and quantify the effect on computation time, the over-
head depends heavily on the application. Below, we give
a general characterization of the overhead and discuss
the performance for the applications in Section 5.

There are three factors that play a role in the per-
formance. First, we need to compute the auxiliary solu-
tion at each time step. In the methods described in
Section 3, the cost of this extra computation is small.
For example, in the heat equation, backward Euler
solves a linear system while forward Euler only com-
putes a matrix–vector product. Second, at each time
step, we need to compute the difference Dn and the
indicators Jn and Vn. These are negligible compared to
the cost of the base method. Third, every time an error

is flagged, we have to redo one (or more, depending on
the algorithm) iteration. This is the dominant factor in
the performance overhead. Suppose we have to redo k

iterations for every flagged error. Then, the extra com-
putational cost is approximated by k times the FPR
(true positives do not count as a performance penalty).
In the applications in Section 5, k is two or three, and
the FPR is below 10%. Thus, in the worst case in our
experiments, there is around a 30% overhead. In some
cases, the FPR is less than 0.1% (see Section 5.3), in
which case the performance overhead is negligible.

4.2 Discussion

Our method relies on two assumptions:

1. Methods B and A produce approximately the
same result in the error-free case; that is, they are
accurate.

2. Changes in the solution are not excessively rapid,
so the behavior of the difference sequence is pre-
dictable in the error-free case.

Algorithm 1 Pseudocode for the error detection
algorithm. We use adaptive error thresholding to keep
the FPR and false-negative rate low.

procedure RESILIENT ALGORITHM

Initialize thresholds tJ and tV .
Initialize increase parameter G.1.
Initialize decrease parameter g\1.
while n\N do

Bn+ 1 = BaseMethod()
An+ 1 = AuxiliaryMethod()
Dn+ 1 = k Bn+ 1 � An+ 1 k
// Compute indicators
Jn =(Dn+ 1 � Dn)=Dn

Vn =(Var(Dn�p+ 1, . . . Dn+ 1))=
(Var(Dn�p, . . . ,Dn))
// Check for errors
if Jn.tJ and Vn.tV then

FlagError()
Move backward: n= n� x

else

UPDATETHRESHOLD(Jn, tJ)
UPDATETHRESHOLD(Vn, tV)
Move forward: n= n+ 1

end if

end while

end procedure

procedure UPDATETHRESHOLD(t,t)
if t.t then

t =Gt

else

t = gt

end if

end procedure

Benson et al. 409

When either of these assumptions is violated, we
expect problems. For example, a discontinuity in the
derivative f in equation (1) may cause consecutive
iterations to vary wildly, and an error will often be pre-
dicted. And indeed we may have detected an error: not
one caused by an unstable platform, but rather one due
to underresolution. It is thus inherent to our approach
that when the solution changes rapidly, we may see
false positives.

We note that sometimes an error is flagged one step
after the iteration the error occurred. In some methods,
this occurs due to error propagation. In other cases,
the reason is more subtle, and we explore delayed error
detection for the heat equation in Section 5.5. In
our experiments, we did not see cases where the error
gets flagged later than one iteration after it has
occurred. Usually, the difference between A and B
methods diminishes rapidly following the error (see
Figures 1 and 2).

Many more sophisticated statistical tools are avail-
able in time series analysis for outlier and peak detection
(Hamilton, 1994; Lin et al., 2003). However, algorithms
for peak detection are not a focus of this paper, and the
simple and fast approach outlined above performs well
for several practical examples in Section 5.

5. Numerical experiments

In this section, we evaluate the performance of several
A=B formulations on a variety of problems. We begin
by outlining how we inject artificial faults into compu-
tations. Next, we elaborate on the particular problem
instances and how the detector performs. All experi-
ments used Matlab R2013a. The data and code for our
experiments are available online at http://stanford.edu/
;arbenson/silent.html.

5.1 Fault injection and LTE-normalized error

In our experiments, we inject faults by corrupting
important computations or data, such as the result of a
function evaluation. We do not corrupt internal data
structures or program logic. The reason for this choice
is that low-level errors in the program will likely either
not be silent or will have a similar effect to corrupting
computations or data. They will also be harder to con-
trol. Our main interest lies in demonstrating that our
approach works whenever an error is significant, no
matter how it came about. Therefore, we study a more
artificial setting that allows for more fine-grained con-
trol of the magnitude of the difference between the two
methods. Evaluating our method on a bit flip that
causes a change of the order 250 is not very useful, as it
should always be detected, and similarly an error on
the order of 2�50 is also not interesting, as it does not
impact the solution.

The three ways we inject faults are as follows:

1. Corrupt an evaluation of f , the derivative function
in equation (1), or an evaluation of q, the source
term in equation (4).

2. Corrupt the right-hand side when solving a system
of linear equations before the solver is used.

3. Corrupt a previous solution from the solver (most
of our solvers use the solution from the previous
time step).

By ‘corrupt’, we mean multiply a single component
of a vector or matrix by some amount. In our experi-
ments, we conduct many trials and multiply by a nor-
mally distributed random variable with mean 1 and
problem-dependent variance, s2.

Suppose that a fault is injected at iteration n� 1. In
order to measure the impact of a fault on the computed
solution relative to the ordinary truncation errors of the
numerical method, we use the value

Ln =
k Bn � B̂n k
k B̂n �Ân k

where B̂n and Ân are the outputs of B and A when no
fault is injected. The numerator measures the magni-
tude of the impact of the fault on the base solution, and
the denominator is an estimate of the LTE. We call Ln

the LTE-normalized error.
The advantage of using a normalized quantity is that

we can more easily compare performance for different
time step sizes, or between different applications. Also,
by measuring the LTE-normalized error, the type of error
introduced in the experiments becomes less important.
Instead, we are able to see how detection varies with the
error’s impact on the solution. A small LTE-normalized
error means that the error has relatively little influence
on the solution while a large LTE-normalized error
means that the error has a large influence on the solution.
In the subsequent sections, we show that our detector
effectively catches large LTE-normalized errors but has
difficulty catching small LTE-normalized errors. In prac-
tice, this is a desirable property: errors that have a stron-
ger impact on the solution are more easily detected.
Furthermore, it seems unreasonable to demand that
errors of the order of LTE are detected.

5.2 Van der Pol equation

Our first set of experiments uses the Van der Pol equa-
tion (equation (3)). We will vary the damping para-
meter b in our experiments but fix the initial conditions
and time interval:

u(0)= 1, u0(0)= 0, t 2 ½0, T �= ½0, 14�

The Van der Pol equation has rapid changes in deriva-
tives, which makes it a difficult test problem for our

410 The International Journal of High Performance Computing Applications 29(4)

xhttp://stanford.edu/;arbenson/silent.html

error detection scheme. Increasing b stiffens the prob-
lem and induces more rapid changes in derivatives.

We test four A=B schemes: Runge–Kutta 4/5
(RK45), Runge–Kutta 2/3 (RK23), Adams–Bashforth
4/5 (AB45), and Adams–Bashforth 2/3 (AB23). In the
first set of experiments, we corrupt one component of
the derivative evaluations at some time step
(s2 = 1 3 10�1). Runge–Kutta uses four (RK23) or six
(RK45) derivative evaluations per step, and the error
corrupts one of these evaluations. Adams–Bashforth
uses one derivative evaluation per step, so the time step
determines the corrupted function evaluation. The
erroneous time step, corrupted derivative component,
and erroneous evaluation in Runge–Kutta are chosen
uniformly at random. We use 2000 trials, where a trial
consists of an ODE solve at times 0, h, 2h, . . . , T . One
error is introduced per trial. Finally, we use two values
of the damping parameter, b 2 f2, 3g. For b= 2, the
step sizes are 1=10 and 1=20 for the Runge–Kutta and
Adams–Bashforth methods, respectively. For b= 3,
the step sizes are 1=15 and 1=35.

Figure 3 shows the true-positive rate (TPR) as a
function of the LTE-normalized error. The TPR is the
proportion of artificially injected errors detected by the
detection scheme. We use a kernel regression with a
Gaussian kernel to fit the TPR to the LTE-normalized
error. Each plot shows the detection rate for both (1)
detection at the time step of the fault and (2) detection
at the time step of the fault or the step after. In all cases,
we see the trend that large LTE-normalized errors are
easily detected while small LTE-normalized errors are
more difficult to catch. Contrary to RK45 and RK23,
AB45 and AB23 detect many errors the step after the
error occurs. This is not entirely surprising. Runge–
Kutta methods use the erroneous derivative evaluation
once to advance a time step, while Adams–Bashforth
methods reuse the erroneous computation at the time
step of the fault and in following steps. Thus, there is
more opportunity for the B and A schemes to disagree
in Adams–Bashforth methods. Finally we note that, in
general, the higher-order schemes (RK45 and AB45)
exhibit slightly better performance than the lower-order
schemes (RK23 and AB23).

In the second set of experiments, we corrupt previ-
ous time step data stored in memory. Error-correcting
codes in memory hardware provides a low-level check

for faults that corrupt data in memory, and applica-
tions can supplement these with other, perhaps stron-
ger, protections, at some cost; but it is interesting to
find whether our approach can detect changes in stored
data independently.

For Runge–Kutta, the relevant stored data is the
solution computed at the last time step. For an LMM,
the stored state is a set of several solutions and deriva-
tives at previous time steps.

Figure 4 shows the error detection effectiveness of
Runge–Kutta and LMM-based schemes. We see that
the Runge–Kutta A=B schemes have difficulty detect-
ing the errors. At each step of any Runge–Kutta, the
previous solution is the initial condition for advancing
to the next time step. Thus, the difference computation
Dn = k uBn � uAn k does not necessarily seem out of the
ordinary; Dn is the correct difference for the wrong
problem. The change in initial conditions can cause Dn

to be significantly larger than Dn�1, so the detection
rates are still modest. With a multistep method, on the
other hand, the previous solution and derivative eva-
luations need to be correct for Dn to be the correct dif-
ference. Thus, AB45 and AB23 detect these errors
effectively; the TPR is quite high when the error is the
result of corrupting stored solution or derivative data.

These results illustrate an advantage of LMMs com-
pared to one-step methods. It could be argued that a
checksum could be used to detect changes to data
stored in memory, and that these could be used in con-
junction with one-step A=B schemes for error detec-
tion: one can perform a check on the memory content
at each step, before accepting the solution at the next
step. But these schemes cannot detect data corruption
due to a bug that stores an incorrect value. Thus, it is
important to be able to detect memory data corruption
at the application program, and multistep schemes
appear to do this effectively.

5.3 Heat equation

We consider the heat equation (equation (4)) with
homogeneous Dirichlet boundary conditions, for
x 2 ½0, 1�, t 2 ½0, T �. The A=B formulations are the
R/CN and FE/BE schemes described in Section 3.2.
Table 1 describes the three configurations of the heat

Table 1. Three configurations of the heat equation.

Configuration q(x, t) v(x) k T Dx Dt

1 xe�t=2 4x(x � 1)(x � 2)
1

100
2

1

100

1

60
,

1

100
,

1

140

2
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�4(t�t2)
p

2�2t
6 x � 1

2

�� ��� 3
1

1000
1

1

200

1

100
,

1

200
,

1

400

3 0:1 sin (2pt)+ cos (2px)ð Þ x(x � 1)
1

100
2

1

160

1

100
,

1

160
,

1

200

Benson et al. 411

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

AB23 on Van der Pol wi th h = 1/20, b = 2

FPR = 0.037

Detected at step of fault
Detected at step or step after fault

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

AB23 on Van der Pol wi th h = 1/35, b = 3

FPR = 0.018

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

AB45 on Van der Pol wi th h = 1/20, b = 2

FPR = 0.052

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

AB45 on Van der Pol wi th h = 1/35, b = 3

FPR = 0.025

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R K23 on Van der Pol wi t h h = 1/10, b = 2

FPR = 0.066

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R K23 on Van der Pol wi t h h = 1/15, b = 3

FPR = 0.032

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R K45 on Van der Pol wi t h h = 1/10, b = 2

FPR = 0.098

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R K45 on Van der Pol wi t h h = 1/15, b = 3

FPR = 0.052

Figure 3. Detector performance with RK45, RK23, AB45, and AB23 A=B schemes on the Van der Pol equation. We corrupt a
single derivative evaluation at the current time step by multiplying one component of the evaluation by a normal random variable
with mean 1 and variance 1310�1. The same sequence of corruption amounts (values of the random variable) was used for each
plot. Kernel regression with a Gaussian kernel was used to compute the curves.

412 The International Journal of High Performance Computing Applications 29(4)

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

AB23 on Van der Pol wi th h = 1/20, b = 2

FPR = 0.037

Detected at step of fault
Detected at step or step after fault

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

AB23 on Van der Pol wi th h = 1/35, b = 3

FPR = 0.018

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

AB45 on Van der Pol wi th h = 1/20, b = 2

FPR = 0.052

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

AB45 on Van der Pol wi th h = 1/35, b = 3

FPR = 0.025

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R K23 on Van der Pol wi t h h = 1/10, b = 2

FPR = 0.066

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R K23 on Van der Pol wi t h h = 1/15, b = 3

FPR = 0.032

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R K45 on Van der Pol wi t h h = 1/10, b = 2

FPR = 0.098

100 101 102 103
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R K45 on Van der Pol wi t h h = 1/15, b = 3

FPR = 0.052

Figure 4. Detector performance with RK45, RK23, AB45, and AB23 A=B schemes on the Van der Pol equation. We corrupt the
solution from the last time step (or a previous derivative evaluation in AB23 and AB34) by multiplying one component of the vector
by a normal random variable with mean 1 and variance 1310�1. The corrupted data is stored in memory in the program. The same
sequence of corruption amounts (values of the random variable) were used for each plot. Kernel regression with a Gaussian kernel
was used to compute the curves.

Benson et al. 413

equation used in our experiments. For each configura-
tion, we perform experiments with different time steps.

We consider a trial to be one call to the heat equa-
tion solver, which finds a numerical solution at spatial
points 0,Dx, 2Dx, . . . , 1 and temporal points
0,Dt, 2Dt, . . . , T . We inject one fault per trial at a uni-
formly random step. For Configuration 1, we corrupt a
single component of the function evaluation of q

(s2 = 1 3 10�3 for R/CN and s2 = 1 3 10�1 for FE/
BE). For Configuration 2, we corrupt a single compo-
nent on the right-hand side of the implicit schemes’

linear systems (s2 = 1 3 10�6 for R/CN and
s2 = 5 3 10�5 for FE/BE). For Configuration 3, we
corrupt a single component of the previous solution
vector (s2 = 1 3 10�6 for R/CN and s2 = 1 3 10�4 for
FE/BE). The variances were chosen in order to gener-
ate errors with LTE-normalized error near one. If the
variances were much larger, nearly all errors would be
detected and we would not see the relationship between
TPR and LTE-normalized error. The variances used
were smaller for R/CN than for FE/BE because the
same type of corruption is more easily detected by

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/100, Δt = 1/60

FPR = 0.000

Detected at step of fault
Detected at step or step after fault

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R/CN, Δx = 1/100, Δt = 1/60

FPR = 0.000

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/100, Δt = 1/100

FPR = 0.000

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R/CN, Δx = 1/100, Δt = 1/100

FPR = 0.000

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/100, Δt = 1/140

FPR = 0.000

0.5 1 1.5 2 2.5 3 3.5 4
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R/CN, Δx = 1/100, Δt = 1/140

FPR = 0.000

Figure 5. Detection results for heat equation under Configuration 1 with dt= 1=60, 1=100, and 1=140. Faults are injected by
multiplying the source term q by a normally distributed random variable with mean 1 and variance 1310�3 (R/CN) or 1310�1

(FE/BE).

414 The International Journal of High Performance Computing Applications 29(4)

R/CN. This agrees with the case for the ODE solvers in
Section 5.2, where higher-order A=B schemes had bet-
ter detection rates.

Figures 5, 6, and 7 plot TPR as a function of the
LTE-normalized error. The results illustrate several
important features of the detection scheme. First, errors
with a large impact on the solution (large LTE-normal-
ized error) are much more easily detected than errors
with a small impact (small LTE-normalized error).
Second, checking for an error one step after the fault
occurs can significantly improve detection (see

especially Figure 5). In Section 5.5, we explore why this
is true. Third, the FPR is small. In many cases, no false
positives are produced. The largest FPR was only
1.2%. Fourth, we can detect several types of errors.
Finally, decreasing the time step either improves detec-
tion rates or keeps the detection rates the same.

We note that the adaptive thresholding, described in
Section 4, does not allow for a tradeoff of better TPR
at the cost of a larger FPR or vice versa. In a sense,
adaptive thresholding approximately finds the sweet
spot where any anomaly that can be detected is

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/200, Δt = 1/100

FPR = 0.000

Detected at step of fault
Detected at step or step after fault

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R/CN, Δx = 1/200, Δt = 1/100

FPR = 0.012

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/200, Δt = 1/200

FPR = 0.000

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R/CN, Δx = 1/200, Δt = 1/200

FPR = 0.012

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/200, Δt = 1/400

FPR = 0.006

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R/CN, Δx = 1/200, Δt = 1/400

FPR = 0.012

Figure 6. Detection results for heat equation under Configuration 2 with dt= 1=100, 1=200, and 1=400. Faults are injected by
multiplying a single random component of the right-hand side of each linear equation solve by a normally distributed random variable
with mean 1 and variance 1310�6 (R/CN) or 5310�5 (FE/BE).

Benson et al. 415

detected. However, there are some anomalies that are
so well ‘disguised’ that they are indistinguishable from
normal iterations, and only by allowing an extreme
increase in FPR are we able to detect these.

5.4 Detection indicators for the heat equation

In equations (5) and (6), we defined the indicators Jn

and Vn used by the detector’s two-indicator strategy. Jn

measured the jump in the differences in the sequence,
and Vn measured the change in variance of the

differences. We call these the relative jump and the var-
iance change.

We now empirically explore the advantages of the
two-indicator strategy over a single detection indicator.
Figure 8 shows the detection results for FE/BE when
using only the relative jump and only the variance
change under Configuration 2 of the heat equation
with Dt = 1=200. We used the same injected faults as in
Section 5.3. In other words, Figure 8 shows the perfor-
mance of the individual detectors when compared to
the two-indicator strategy in Figure 6.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/160, Δt = 1/100

FPR = 0.001

Detected at step of fault
Detected at step or step after fault

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R/CN, Δx = 1/160, Δt = 1/100

FPR = 0.008

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/160, Δt = 1/160

FPR = 0.010

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

R/CN, Δx = 1/160, Δt = 1/160

FPR = 0.008

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/160, Δt = 1/200

FPR = 0.006

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/160, Δt = 1/200

FPR = 0.008

Figure 7. Detection results for heat equation under Configuration 3 with dt= 1=100, 1=160, and 1=200. Faults are injected by
multiplying a single component of the solution at the previous time step by a normally distributed random variable with mean 1 and
variance 1310�6 (R/CN) or 1310�4 (FE/BE).

416 The International Journal of High Performance Computing Applications 29(4)

When the two-indicator strategy was used
(Figure 6), no false positives were produced. The FPR
increases to 14% when using only the relative jump
and to 2% when using only the variance change. The
TPR is only mildly increased when using only the rela-
tive jump and is mostly unchanged when using only the
variance change. This suggests that the FPR can be
dramatically reduced by employing the two-indicator
strategy.

5.5 Tardy error detection with the heat equation

In some configurations of the heat equation, it is common
to detect the error one time step after the fault occurs (see,

for example, Figure 5). The left plot of Figure 9 shows Di

for the FE/BE A=B formulation near the point of the
injected fault for one of the simulations in which tardy
error detection occurs. The right plot of Figure 9 shows
the component-wise difference of the solution vectors near
the time step of the fault (recall that Di is the infinity-
norm difference). We see no jump in Di at the step of the
fault and a large spike the step after the fault. Some of the
components of the difference between backward and for-
ward Euler are naturally larger than others, and the fault
occurs at a spatial location where the differences tend to
be small.

Why does the jump occur the step after the fault. In
this case, we are corrupting the source term q in

112 114 116 118 120 122 124
3

3.5

4

4.5

5

5.5

6
x 10−5

Time s t ep (i)

D
i

Tardy er r or det ect i on on heat equat i on

FE/BE difference
Step of fault

0 20 40 60 80 100
0

1

2

3

4

5

6
x 10−5

j (vector component)

|B
E

(j
)

-
F

E
(j

)
|

Component-wise absolute difference FE/BE

Step before fault
Step of fault
Step after fault

Figure 9. The left plot shows the infinity-norm difference between forward and backward Euler schemes under Configuration 1 of
the heat equation with Dt= 1=100. At the step of the fault, there is a small jump in the difference, while at the step after the fault,
there is a large spike. The right plot shows the component-wise absolute difference of forward and backward Euler solutions at the
time steps before, during which, and after the fault occurs. The fault corrupts the source term in the 36th component, and a clear
spike is seen at that location.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/200, Δt = 1/200 (jump only)

FPR = 0.017

Detected at step of fault (jump only)
Detected at step or step after fault (jump only)
Detected at step of fault (jump and var)
Detected at step or step after fault (jump and var)

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

LTE−normalized error

Tr
ue

−p
os

iti
ve

 ra
te

FE/BE, Δx = 1/200, Δt = 1/200 (var only)

FPR = 0.139

Detected at step of fault (var only)
Detected at step or step after fault (var only)
Detected at step of fault (jump and var)
Detected at step or step after fault (jump and var)

Figure 8. Detection results for FE/BE on the heat equation under Configuration 2 with Dt= 1=200. The left and right plots
compare using only the relative jump or only the variance change, respectively, to using both relative jump and variance change. The
listed FPR is for using only the relative jump (left) or only the variance (right). When using both indicators, there are no false
positives. Faults were injected by multiplying a single component of the solution at the previous time step by a normally distributed
random variable with mean 1 and variance 5310�5. Identical faults were injected for each type of detector.

Benson et al. 417

equation (4). At the fault, only backward Euler uses
the corrupted evaluation of q (forward Euler uses the
value of q from the previous time step). The implicit
nature of the backward Euler scheme forces the new
solution to ‘agree’ with the corrupted source term, and
the result is a small change in the difference of the solu-
tion vector. At the step after the fault, forward Euler
uses the corrupted source term. Since forward Euler is
explicit, the corrupted value is ‘accepted’ and taken for
a full time step. This causes the large spike in the
sequence of Di to occur at the step after the fault.

The right plot of Figure 9 illustrates the advantages
and disadvantages of using the infinity-norm. On the
one hand, the errors tend to be localized spatially, and
local spikes are easier to detect with the infinity-norm.
However, when the solution vector difference has dif-
ferent scales, it is more difficult to detect faults that
occur in spatial locations where the solution vector dif-
ference is smaller. In general, we found that the infinity-
norm worked better than the 1-norm and 2-norm. We
note that our general framework does restrict Di to con-
sidering only a single norm. However, for simplicity, we
chose a single norm for our experiments. These results
show that examining Di locally in space and in time can
be beneficial, and this is an area of future work.

5.6 Incompressible Navier–Stokes equations

The incompressible Navier–Stokes equations in two
dimensions with no external forces are

ut =�(u2)x � (uv)y +
1

Re
r � ru� px

vt =�(v2)y � (uv)x +
1

Re
r � rv� py

Here, u and v are the velocity components, Re is the
Reynolds number, and p is the pressure.

In our experiments, B is based on a simple projection
method in Strang (2007, Section 6.7) and open-source
Matlab code (Seibold, 2008). The boundary is a square,
and the boundary conditions are those of a driven cav-
ity flow.

Let Un
B, V n

B, and Pn
B be the numerical solutions at the

nth time step and let Dt be the time step. The overall
structure of the update to UB in an iteration of B is as
follows:

1. Explicit (forward-Euler-like) handling of nonlinear
terms:

U�B � U n
B

Dt
=�((Un

B)
2)x � (U n

BV n
B)y

where the subscripts denote centered difference.

2. Implicit solve for viscous term:

U ��B � U�B
Dt

=
1

Re
r � rU ��B ð7Þ

3. Solve for the pressure correction:

r � rPn+ 1
B =

1

Dt
U ��B
� �

x
+ V ��B
� �

y

� 	
ð8Þ

4. Update the solution:

Un+ 1
B =U ��B � Dt(Pn+ 1

B)x ð9Þ

The update to VB follows analogous steps.
For our experiments, we use extrapolation for the

auxiliary scheme,

U n+ 1
A = 2U n

B � Un�1
B , V n+ 1

A = 2V n
B � V n�1

B

along with the difference computation

Dn = max (max
i, j
j(U n
B)ij � (U n

A)ijj, max
i, j
j(V n
B)ij � (V n

A)ijj)

There is no requirement for the A=B scheme to encom-
pass the entire numerical method. We could implement
specialized A=B schemes for each of the three steps in
addition to or in place of the extrapolation scheme. An
advantage of compartmentalized A=B schemes is that
we can detect an error early in the iteration and avoid
doing extra computation. However, extrapolation is
simple and demonstrates that detecting silent errors in
a nonlinear PDE system need not involve a lot of extra
work.

Our experiments use the above projection method
on the spatial domain ½0, 1�3 ½0, 1� for t 2 ½0, 2�. The
discretizations are Dx=Dy= 1=40 and Dt= 1=100.
We performed two simulations with different Reynolds
numbers and different types of data corruption. In the
first simulation, Re= 2000, and we corrupted the previ-
ous solution, Un

B (s
2 = 5 3 10�1). In the second simula-

tion, Re= 20, and we corrupted the right-hand side of
the linear system in equation (8) (s2 = 2). Each simula-
tion consisted of 2000 trials. In each trial, the corrup-
tion occurred at a single time step, chosen uniformly at
random. The entry in Un

B and the entry on the right-
hand side of equation (8) were chosen uniformly at
random.

The TPR as a function of the LTE-normalized error
is in Figure 10. The results are similar to the behavior
of the detector for the Van der Pol equation and the
heat equation. Errors with a large LTE-normalized
error are easily detected, and the FPR is small.

6. Discussion

We proposed a general method for detecting silent
errors in time-stepping schemes. The central idea is to
use a cheap checking method to compare against the
primary numerical algorithm. In Section 2, we describe
the general approach, which is applicable to iterative
computations, and the ideas in Sections 3 and 5 can be

418 The International Journal of High Performance Computing Applications 29(4)

extended to algorithms not discussed in this paper. For
example, extrapolation (Section 3.3) is a simple check-
ing scheme that is available for nearly all iterative algo-
rithms. Although the scope of this paper is limited to
iterative computations, a checking scheme is applicable
for nearly all numerical algorithms. Finding efficient
checking schemes for a broader class of numerical algo-
rithms is an area of future work.

By comparing the results of a base time-stepping
scheme and an auxiliary scheme, we are able to detect
almost all significant errors. The auxiliary scheme is
readily available for standard ODE solvers such as
Runge–Kutta and LMMs, as well as for PDE solvers
for the heat equation and the Navier–Stokes equations.
In several simulations, our detection scheme success-
fully flags nearly all LTE-normalized errors above five,
while maintaining an overall FPR of less than 10%
(and in many cases, 0%). An important property of
our detection scheme is that it is most successful detect-
ing errors that have the largest impact on the solution.
We measure the impact by the LTE-normalized error.

Our method requires additional implementation by
the application developer. For example, when using the
FE/BE A=B method, we cannot simply call a forward
Euler solver. The forward Euler method needs to use
the base method’s solution from the previous time step.
Furthermore, the developer needs to select the appro-
priate checking scheme. However, the computational
kernels remain the same, so the developer does not
need to re-write entire applications from scratch. With
mature, modular software packages such as Trilinos
(Heroux et al., 2005) and PETSc (Balay et al., 2013),
we hope that implementation will not be a major
obstacle.

One area of future work is a more formal analysis of
the errors in the difference schemes and the sequence
Di. We would like to say that a fault must have occurred
if some Di was above a computed threshold. Typical

error bounds are too loose with constants to be practi-
cal, so careful analysis is needed.

Further characterizations of silent errors is another
area of future work. First, it would be useful to detect
what caused the fault. We can use data checksums to
determine whether a previous solution was corrupted,
but determining if a function evaluation caused an error
is more difficult.

Second, we would like to know where the fault
occurred. For example, when perturbing an entry in
the source term of the heat equation (the function q),
the heat is dissipated locally near the spatial point of
perturbation. The solution vector is then perturbed
near (in space) to where the source term was perturbed.
We saw this phenomenon in Figure 9, and it led to
tardy error detection, which we discussed in Section
5.5. Thus, it is possible to detect where (physically) the
fault occurred. This is important for two reasons. First,
we can improve the performance of our error detector
if we look for errors in space and time. Second, in par-
allel solvers, it is common for different spatial locations
to be assigned to different processors. By detecting the
point in space where the fault occurred, we have an
idea of which processor experienced a silent error. In
other physical simulations where perturbations cause
local changes, we can apply the same idea.

The spatial location of the error is also potentially
important in improving the sensitivity of the detector.
As shown in Figure 9, it is possible that detectors that
are local in both space and time may be a profitable
extension of the approach taken here.

Funding

We thank the US Department of Energy, which supported
this work (award number DE - SC0005026). Austin R Benson
is also supported by an Office of Technology Licensing
Stanford Graduate Fellowship. Sven Schmit is also supported
by the Prins Bernhard Cultuurfonds.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

LTE-normal ized error

T
ru

e-
p
os

it
iv

e
ra

te

I ncompressible Navier-Stokes equations, Re = 20

FPR = 0.000

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

LTE-normal ized error

T
ru

e-
p
os

it
iv

e
ra

te

I ncompressible Navier-Stokes equations, Re = 2000

FPR = 0.000

Detected at step of fault
Detected at step or step after fault

Figure 10. Detector performance on incompressible Navier–Stokes equations with Re= 2000 (left) and Re= 20 (right). In the left
plot, errors are introduced by multiplying a previous entry of the numerical solution of one velocity component (U) by a normal
random variable with mean 1 and variance 5310�1. In the right plot, errors are introduced by multiplying an entry on the right-hand
side of the linear system in equation (8) by a normal random variable with mean 1 and variance 2.

Benson et al. 419

References

Balay S, Brown J, Buschelman K, et al. (2013) PETSc users

manual, revision 3.4. Available at: http://www.mcs.anl.

gov/petsc/petsc-current/docs/manual.pdf (accessed 24

March 2014).
Berger MJ and Oliger J (1984) Adaptive mesh refinement for

hyperbolic partial differential equations. Journal of Com-

putational Physics 53(3): 484–512.
Bronevetsky G and de Supinski B (2008) Soft error vulner-

ability of iterative linear algebra methods. In: Proceedings

of the 22nd annual international conference on supercomput-

ing, New York, NY, pp. 155–164.
Cappello F, Geist A, Gropp B, et al. (2009) Toward exascale

resilience. International Journal of High Performance Com-

puting Applications 23(4): 374–388.
Casas M, de Supinski BR, Bronevetsky G, et al. (2012) Fault

resilience of the algebraic multi-grid solver. In: Proceedings

of the 26th ACM international conference on supercomput-

ing, New York, NY, pp. 91–100.
Dongarra J, Beckman P, Moore T, et al. (2011) The interna-

tional exascale software project roadmap. International

Journal of High Performance Computing Applications

25(1): 3–60.
Dormand JR and Prince PJ (1980) A family of embedded

Runge-Kutta formulae. Journal of Computational and

Applied Mathematics 6(1): 19–26.
Du P, Luszczek P and Dongarra J (2012) High performance

dense linear system solver with resilience to multiple soft

errors. In: International conference on computational sci-

ence, ICCS 2012, Omaha, NE.
Fehlberg E (1969) Low-order classical Runge-Kutta formulas

with stepsize control and their application to some heat

transfer problems. Technical report R-315, National Aero-

nautics and Space Administration. Available at: http://

ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690021375

.pdf
Fujita H, Schreiber R and Chien AA (2013) It’s time for new

programming models for unreliable hardware (extended

abstract). In: Provocative ideas session, ASPLOS.
Hamilton JD (1994) Time Series Analysis, vol. 2. Cambridge:

Cambridge University Press.
Heroux MA, Bartlett RA, Howle VE, et al. (2005) An over-

view of the Trilinos Project. ACM Transactions on Mathe-

matical Software (TOMS) 31(3): 397–423.
Hoemmen M and Heroux MA (2011) Fault-tolerant iterative

methods via selective reliability. Technical report

SAND2011-3915 C, Sandia National Laboratories.
Huang KH and Abraham JA (1984) Algorithm-based fault

tolerance for matrix operations. IEEE Transactions on

Computers 100(6): 518–528.
Lin J, Keogh E, Lonardi S, et al. (2003) A symbolic represen-

tation of time series, with implications for streaming algo-

rithms. In: Proceedings of the 8th ACM SIGMOD

workshop on research issues in data mining and knowledge

discovery, pp. 2–11.
Nightingale EB, Douceur JR and Orgovan V (2011) Cycles,

cells and platters: An empirical analysis of hardware fail-

ures on a million consumer PCs. In: Proceedings of the

sixth conference on computer systems, New York, NY, pp.

343–356.

Rinard M (2013) Parallel synchronization-free approximate

data structure construction. In: Proceedings of the 5th

USENIX workshop on hot topics in parallelism. Available

at: https://www.usenix.org/conference/hotpar13/parallel-

synchronization-free-approximate-data-structure-construc

tion (accessed 1 August 2013).
Seibold B (2008) A compact and fast Matlab code solving the

incompressible Navier-Stokes equations on rectangular

domains. Available at: http://math.mit.edu/cse/codes/

mit18086_navierstokes.pdf. (accessed 15 January 2014)
Shi G, Enos J, Showerman M, et al. (2009) On testing GPU

memory for hard and soft errors. In: Proceedings of the

symposium on application accelerators in high-performance

computing.
Snir M, Wisniewski RW, Abraham JA, et al. (2013) Addres-

sing failures in exascale computing. International Journal

of High Performance Computing Applications. Epub ahead

of Print 21 March 2014. DOI: 10.1177/1094342014522573.
Strang G (2007) Computational Science and Engineering. Well-

esley, MA: Wellesley-Cambridge Press.
Strikwerda J (2007) Finite Difference Schemes and Partial Dif-

ferential Equations. Philadelphia, PA: SIAM.
Van Dam HJJ, Vishnu A and de Jong WA (2013) A case for

soft error detection and correction in computational chem-

istry. Journal of Chemical Theory and Computation 9(9):

3995–4005.
Zheng G, Ni X and Kalé LV (2012) A scalable double in-

memory checkpoint and restart scheme towards exascale.

In: 2012 IEEE/IFIP 42nd international conference on

dependable systems and networks workshops (DSN-W),

pp. 1–6.

Author biographies

Austin R Benson is a graduate student at Stanford’s
Institute for Computational and Mathematical
Engineering and an Office of Technology Licensing
Stanford Graduate Fellow. His research includes paral-
lel algorithms for scientific computing and algorithms
for structured matrices. In the summer and fall of
2013, he was a research intern at HP Labs, working
with Robert Schreiber. Previously, Benson obtained a
BS in Computer Sciences and Engineering and a BA in
Applied Mathematics from the University of
California, Berkeley.

Sven Schmit is a graduate student at the Institute for
Computational and Mathematical Engineering at
Stanford University. His research interests span topics
in statistics, computer science, and applied mathe-
matics. In the summer of 2013, he interned at HP Labs,
working under supervision of Robert Schreiber. Schmit
holds a BSc in Econometrics and Operations Research
from the University of Groningen, and a MASt in
Mathematics from the University of Cambridge.

Robert Schreiber is a Distinguished Technologist at
Hewlett Packard Laboratories. Schreiber’s research

420 The International Journal of High Performance Computing Applications 29(4)

http://www.mcs.anl.gov/petsc/petsc-current/docs/manual.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19690021375.pdf
https://www.usenix.org/conference/hotpar13/parallelsynchronization-free-approximate-data-structure-construction
http://math.mit.edu/cse/codes/mit18086_navierstokes.pdf

spans sequential and parallel algorithms for matrix
computation, compiler optimization for parallel lan-
guages, and high performance computer design. With
Cleve Moler and John Gilbert, he developed the sparse
matrix extension of Matlab. He created the NAS CG
parallel benchmark. He was a designer of the High
Performance Fortran language. At HP, Schreiber led

the development of PICO, a system for the synthesis of
custom hardware accelerators. His recent work con-
cerns architectural uses of CMOS nanophotonic com-
munication and nonvolatile memory architecture. He is
an ACM Fellow, a SIAM Fellow, and was awarded, in
2012, the Career Prize from the SIAM Activity Group
in Supercomputing.

Benson et al. 421

