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1 Proof of Corollary 4.

1.1 Expected number of triangles

Let u, v and w be three random nodes of the graph. We define Eu,v,w to be the event that there is a

triangle between u, v, w and, similarly, let E
(i)
u,v,w be the event that there is a triangle between u, v, w in Hi,

i = 1, . . . , k. Then, by Theorem 2,

P(Eu,v,w) =

k∏
i=1

P(E(i)
u,v,w) = P(E(1)

u,v,w)k. (1)

Now, we compute the probability of a triangle happening between three random nodes according to W1:

P(E(1)
u,v,w) = P((u, v), (u,w), (v, w) ∈ E)

=
∑

i,j,t∈C
P((u, v), (u,w), (v, w) ∈ E|cu1 = i, cv1 = j, cw1 = t) P(cu1 = i, cv1 = j, cw1 = t)

=
∑

i,j,t∈C
P((u, v), (u,w), (v, w) ∈ E|cu1 = i, cv1 = j, cw1 = t) P(cu1 = i)P(cv1 = j)P(cw1 = t)

=
∑

i,j,t∈C
P((u, v) ∈ E|cu1 = i, cv1 = j)P((u,w) ∈ E|cu1 = i, cw1 = t)P((v, w) ∈ E|cv1 = j, cw1 = t) lilj lt

=
∑

i,j,t∈C
pijpitpjt lilj lt =: s3.

By (1), we conclude that
P(Eu,v,w) = sk3 . (2)

We can now compute the expected number of triangles C3:

E[C3] =
∑
S⊂V
|S|=3

1(ES) =

(
n

3

)
P(Eu,v,w) =

(
n

3

)
sk3 . (3)
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1.2 Expected number of t-cliques

We can generalize the proof for the expected number of triangles to the expected number of t-cliques.
Consider t random nodes S = {u1, . . . , ut} and let ES be the event that they form a t-clique. Furthermore,

let E
(i)
S be the event that they form a t-clique in Hi, i = 1, . . . , k. Then by Theorem 2,

P(ES) =

k∏
i=1

P(E
(i)
S ) = P(E

(1)
S )k.

Also, it follows that

P(E
(1)
S ) =

∑
i1,...,it∈C

 ∏
j,q∈[t]
j 6=q

pijiq

 li1 li2 · · · lit := st

Finally, let Ct be the expected number of t−cliques in G. We conclude that

E[Ct] =

(
n

t

)
skt . (4)

1.3 Expected number of wedges

Let u, v, w be three distinct nodes of G. We define A to be the event that there is a wedge centered at u
in G, that is, A = {(u, v), (u,w) ∈ E(G)}. Similarly, as in previous sections, we define A(i) to be the event
restricted to Hi. By Theorem 2,

P(A) =

k∏
i=1

P(A(i)) = P(A(1))k.

Now, by considering only H1,

P(A(1)) = P((u, v), (u,w) ∈ E) =
∑

i,j,t∈C
P((u, v), (u,w) ∈ E|cu1 = i, cv1 = j, cw1 = t)P(cu1 = i, cv1 = j, cw1 = t)

=
∑

i,j,t∈C
P((u, v) ∈ E|cu1 = i, cv1 = j)P((u,w) ∈ E|cu1 = i, cw1 = t) lilj lt

=
∑

i,j,t∈C
pijpit lilj lt =: ω.

It follows that the expected number of wedges S2 in G is given by

E[S2] = n

(
n− 1

2

)
ωk. (5)
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1.4 Variance of the number of edges

Let Xij be the indicator random variable of the event (vi, vj) ∈ E for i 6= j. We also define X =
∑

i<j Xij ,
the total number of edges. We compute the second moment of X as follows:

E[X2] = E

∑
i<j

Xij

∑
i<j

Xij


= E

∑
i<j

X2
ij

+ E

 ∑
i,j 6=k,i<j,k

XijXik

+ E

 ∑
i 6=k,j 6=z,i<j,k<z

XijXkz


= E[X] + 2E[S2] +

∑
i6=k,j 6=z,i<j,k<z

E [Xij ]E [Xkz]

= E[X] + 2E[S2] +

(
n

2

)(
n− 2

2

)
P ((vi, vj) ∈ E)

2

= E[X] + 2E[S2] +

(
n

2

)(
n− 2

2

)
s2k.

Hence, we see that

Var(X) = E[X2]− E[X]2

= E[X] + 2E[S2] +

(
n

2

)(
n− 2

2

)
s2k − E[X]2

= E[X](1− E[X]) + 2n

(
n− 1

2

)
ωk +

(
n

2

)(
n− 2

2

)
s2k

=

(
n

2

)
sk
(

1−
(
n

2

)
sk
)

+ 2n

(
n− 1

2

)
ωk +

(
n

2

)(
n− 2

2

)
s2k.

1.5 d-stars and degree distribution

A d−star centered at node u is a graph containing d+ 1 vertices whose edges go from u to each of the other
d vertices in the graph. For example, a wedge is a 2-star. We start by noting the following key and simple
fact: the number of vertices with degree d in a graph G equals the number of copies of d−stars in G that
are not part of any (d + 1)−star in G. Let us define Xd to be the random variable that counts the number
of d−stars in G, for any d ∈ [n− 1].

Let d′ > d and suppose that vertex u has degree d′. Then, u will contribute with
(
d′

d

)
stars to Xd.

We define Vd to be the random variable that counts the number of nodes with degree ≥ d. Similarly, we
denote by Ed the number of nodes with degree d. We see that

Ed = Vd − Vd+1,

which directly implies
E[Ed] = E[Vd]− E[Vd+1].

Our goal is to write Vd as a function of Xd and Xd+1. We see that En−1 = Xn−1 and

Ed = Xd −
n∑

i=d+1

(
i

d

)
Ei.
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Taking expectations, we conclude that

E[Ed] = E[Xd]−
n∑

i=d+1

(
i

d

)
E[Ei].

We can compute the expected number of d−stars in G. Let u1, . . . , ud+1 be d+1 distinct nodes, and let S be
the event that there is a d−star centered at u1 in G. In other words, S = {(u1, u2), (u1, u3), . . . , (u1, ud+1) ∈
E}. Let S(i) be the event restricted to Hi. By Theorem 2,

P(S) =

k∏
i=1

P(S(i)) = P(S(1))k.

Now, let us compute P(S(1)):

P(S1) = P((u1, u2), (u1, u3), . . . , (u1, ud+1) ∈ E)

=
∑

i1,...,id+1∈C
P((u1, u2), (u1, u3), . . . , (u1, ud+1) ∈ E|cuj

1 = ij∀j) P(c
uj

1 = ij∀j)

=
∑

i1,...,id+1∈C
P((u1, u2) ∈ E|cu1

1 = i1, c
u2
1 = i2) · · ·P((u1, ud+1) ∈ E|cu1

1 = i1, c
ud+1

1 = id+1)

d+1∏
j=1

lij

=
∑

i1,...,id+1∈C

d+1∏
j=2

pi1ij

 d+1∏
j=1

lij .

We can now compute the expected number of d−stars in G:

E[Xd] = n

(
n− 1

d

)
P(S) = n

(
n− 1

d

)
P(S1)k

= n

(
n− 1

d

)  ∑
i1,...,id+1∈C

d+1∏
j=2

pi1ij

 d+1∏
j=1

lij

k

.
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2 Recovered measures for real-world networks

In this section, we provide the recovered measures found by the method of moments algorithm for the real
data sets.

2.1 Gnutella

For m = 2, k is 16, and

P =

(
0.9424 0.2241
0.2241 0.7232

)
, ` =

(
0.5869
0.4311

)
.

For m = 3, k is 11, and

P =

0.9562 0.0873 0.2602
0.0873 0.6078 0.1486
0.2602 0.1486 0.7090

 , ` =

0.4249
0.1869
0.3882

 .

2.2 Citation

For m = 2, k is 16, and

P =

(
1.0000 0.0567
0.0567 0.9202

)
, ` =

(
0.2219
0.7781

)
.

For m = 3, k is 10, and

P =

0.9999 0.7387 0.9930
0.7387 0.7072 0.0062
0.9930 0.0062 0.9003

 , ` =

0.0487
0.3794
0.5719

 .

2.3 Facebook

For m = 2, k is 12, and

P =

(
1.0000 0.0653
0.0653 0.9679

)
, ` =

(
0.1969
0.8031

)
.

For m = 3, k is 8, and

P =

1.0 0 1.0
0 0.7204 1.0

1.0 1.0 0.9696

 , ` =

0.5933
0.3373
0.0694

 .

2.4 Twitter

For m = 2, k is 17, and

P =

(
0.5312 0.1047
0.1047 0.9358

)
, ` =

(
0.2194
0.7806

)
.

For m = 3, k is 11, and

P =

0.5132 1.0000 0
1.0000 1.0000 1.0000

0 1.0000 0.9311

 , ` =

0.3648
0.0598
0.5754

 .
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