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1 Proof of Corollary 4.

1.1 Expected number of triangles

Let u,v and w be three random nodes of the graph. We define E, , ., to be the event that there is a

triangle between u, v, w and, similarly, let Effz,w be the event that there is a triangle between w, v, w in H;,
i=1,...,k. Then, by Theorem 2,

P(Euuw) = [[P(ED, 4) = P(EL W)". (1)

i=1

Now, we compute the probability of a triangle happening between three random nodes according to Wh:

P(Eq(ji)),w) = HD((“@ ’U)v (u7 w)7 (’U, ’LU) € E)

= Z P((u,v), (u,w), (v,w) € E|c} =i, = j,cf =t) P(c} =1i,¢] =4,¢ =1)
ij,teC

= > P((u,0), (w,w), (v,w) € Elef =i,¢} = j,¢f =) P(c} = i)P(c] = j)P(c} = 1)
ijteC

= Y P((u,v) € Elc} =i,¢} = j)P((u,w) € E|c} =i,cf’ =t)P((v,w) € Elc} = j, ¢} =1t) Liljl,
ijteC

= Z DijDitPjt Liljly =: s3.
ijteC

By (1), we conclude that

P(Buow) = 55- (2)
We can now compute the expected number of triangles Cs:
_ _ (" _ (T
Bl = 3 1(55) = () P(Bun) = ()54 ®
SCV
|S[=3



1.2 Expected number of t-cliques

We can generalize the proof for the expected number of triangles to the expected number of t-cliques.
Consider ¢ random nodes S = {u1,...,u;} and let Eg be the event that they form a t-clique. Furthermore,

let Eg) be the event that they form a t¢-clique in H;, ¢ = 1,...,k. Then by Theorem 2,

k
P(Es) = [[P(EY) = P(ES)*.

i=1
Also, it follows that

P(Eél)) _ Z H Pisiy | Linliy -+ liy == 51

i1,0,80€C | Grg€lt]

J#q
Finally, let Cy be the expected number of t—cliques in G. We conclude that
n
sl = (7) o 0

1.3 Expected number of wedges

Let u,v,w be three distinct nodes of G. We define A to be the event that there is a wedge centered at u
in G, that is, A = {(u,v), (u,w) € E(G)}. Similarly, as in previous sections, we define A®) to be the event

restricted to H;. By Theorem 2,
k

P(A) = [[P(AD) = P(AW)*,

Now, by considering only Hi,

P(AM) = P((u,0), (u,w) € B) = > P((u,0), (u,w) € Elef =i, ¢} = j, e’ = )P(c} =i, ¢} = j,c} =1)

i.jtec

= Z P((u,v) € Elct =1,¢] = §)P((u,w) € Elc} =1,cf =1t) Ll
i,4,t€C

= Z Dijpit Liljly = w.
i,5,t€C

It follows that the expected number of wedges Sy in G is given by

E[S5] = n<” ) 1)&. (5)



1.4 Variance of the number of edges

Let X;; be the indicator random variable of the event (v;,v;) € E for ¢ # j. We also define X =
the total number of edges. We compute the second moment of X as follows:

i<j Xijs

EX? =E Y X | [ DX
i<j i<j
=E ZX% +E Z Xij X | +E Z Xij Xk
i<y 0,5k, <],k itk j# i<, k<2

= E[X] + 2E[Sy] + > E [Xi;] E [Xg.]
i#k,jF£2,1<),k<z

— E[X] + 2E[Ss] + (Z) (" ) 2>P (vi,0;) € E)?

= E[X] + 2E[Sy] + (;L) (” ) 2> 52k,

Hence, we see that

() =) (e G )

1.5 d-stars and degree distribution

A d—star centered at node u is a graph containing d + 1 vertices whose edges go from u to each of the other
d vertices in the graph. For example, a wedge is a 2-star. We start by noting the following key and simple
fact: the number of vertices with degree d in a graph G equals the number of copies of d—stars in G that
are not part of any (d + 1)—star in G. Let us define X, to be the random variable that counts the number
of d—stars in G, for any d € [n — 1].

Let d’ > d and suppose that vertex u has degree d’. Then, u will contribute with (Ug) stars to Xg .

We define V; to be the random variable that counts the number of nodes with degree > d. Similarly, we
denote by Ey4 the number of nodes with degree d. We see that

Eq=Vqg—Vyq,

which directly implies
E[E4] = E[V4] — E[Vaq1].

Our goal is to write V; as a function of Xy and X441. We see that F,,_; = X,,—1 and

FEg=X4— i <;)Ez

i=d+1



Taking expectations, we conclude that

n

E[Ed =E[Xd - ) <;>E[Ei].

i=d+1
We can compute the expected number of d—stars in G. Let uy,...,ug11 be d+1 distinct nodes, and let S be
the event that there is a d—star centered at u; in G. In other words, S = {(u1,us), (u1,u3), ..., (u1,uq+1) €

E}. Let S® be the event restricted to H;. By Theorem 2,

k
P(S) = [[P(S™) = P(S™)*.

i=1
Now, let us compute P(SM):

P(S1) = P((u1,u2), (u1,us), ..., (u1,u4s1) € E)

= ) P((ur,ua), (ur,ua), ., (ur, tar) € Eley? = i;V5) P} = i;V5)

i1,..0,8d4+1€C

d+1

= > P((u1,us) € Blef* =iy, ¢f* = ig) - P((u1, ugp1) € Bley* =in, et =iapr) [ 1,

’il,“.,id_*_lec

d+1 d+1

> [pai | 110
j=1

i1,...,0q4+1€C \J=2

We can now compute the expected number of d—stars in G:

E[X,] = n(” § 1)@(5) - n<” . 1>}P’(Sl)k

n—1 d+1 d+1
:n( d ) Z Hpm'j Hlia'

i1,.50d41E€C \ J=2 j=1

j=1



2 Recovered measures for real-world networks

In this section, we provide the recovered measures found by the method of moments algorithm for the real
data sets.

2.1 Gnutella
For m =2, k is 16, and

p_ (09424 02241\ (0.5869
~\0.2241 0.7232)° "7 \04311)"

For m =3, kis 11, and

0.9562 0.0873 0.2602 0.4249
P =10.0873 0.6078 0.1486 |, ¢= | 0.1869
0.2602 0.1486 0.7090 0.3882

2.2 Citation

For m =2, k is 16, and

p_ 1.0000 0.0567 ‘= 0.2219
~\0.0567 0.9202 )’ ~\0.7781 )"

For m = 3, k is 10, and

0.9999 0.7387 0.9930 0.0487
P=10.7387 0.7072 0.0062 |, £¢=0.3794
0.9930 0.0062 0.9003 0.5719

2.3 Facebook

For m =2, k is 12, and

p_ 1.0000 0.0653 0 — 0.1969
~\0.0653 0.9679 )’ ~\0.8031 /"

For m =3, kis 8, and

1.0 0 1.0 0.5933
P=1| 0 0.7204 1.0 , £=10.3373
1.0 1.0 0.9696 0.0694

2.4 Twitter

For m =2, kis 17, and

p_ 0.5312 0.1047 0 — 0.2194
~\0.1047 0.9358 )’ ~\0.7806 /)

For m =3, k is 11, and

0.5132 1.0000 0 0.3648
P = [ 1.0000 1.0000 1.0000 |, £= {0.0598
0 1.0000 0.9311 0.5754



