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ABSTRACT
In the analysis of large-scale network data, a fundamental opera-

tion is the comparison of observed phenomena to the predictions

provided by null models: when we find an interesting structure

in a family of real networks, it is important to ask whether this

structure is also likely to arise in randomnetworkswith similar char-

acteristics to the real ones. A long-standing challenge in network

analysis has been the relative scarcity of reasonable null models

for networks; arguably the most common such model has been the

configuration model, which starts with a graph G and produces a

random graph with the same node degrees asG . This leads to a very
weak form of null model, since fixing the node degrees does not

preserve many of the crucial properties of the network, including

the structure of its subgraphs.

Guided by this challenge, we establish a new family of network

null models that operate on the k-core decomposition. For a graph

G , the k-core is its maximal subgraph of minimum degree k ; and the
core number of a node v inG is the largest k such that v belongs to

the k-core ofG . We provide the first efficient sampling algorithm to

solve the following basic combinatorial problem: given a graph G,
produce a random graph sampled nearly uniformly from among all

graphs with the same sequence of core numbers as G. This opens
the opportunity to compare observed networks G with random

graphs that exhibit the same core numbers, a comparison that

preserves aspects of the structure of G that are not captured by

more local measures like the degree sequence. We illustrate the

power of this core-based null model on some fundamental tasks in

network analysis, including the enumeration of networks motifs.
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1 INTRODUCTION
Random graphs have long played a central role in the area of net-

work analysis, and one of their crucial uses has been as null models:
a way of producing families of synthetic graphs that match observed

network data on specific basic properties. Armed with effective null

models, we can take an observed network phenomenon and ask

whether a random graph with similar characteristics would exhibit

the same phenomenon or not.

This comparison to random-graph baselines is an essential strat-

egy, but of course the challenge is to define what we mean by a

random graph “with similar characteristics.” In these types of anal-

yses, a widely-used null model — arguably the ubiquitous default

— is the configuration model: given an observed network G, it gen-
erates random graphs sampled uniformly at random from among

all graphs with the same degree sequence as G. The configuration
model has provided a powerful way of asserting that observed prop-

erties of real networks are not simply a consequence of the node

degrees, in that they would be unlikely in a random graph with the

same degree sequence [16, 35].

Despite the widespread use of the configuration model, it is well-

understood to be an extremely weak null model, particularly for

any question involving local rather than global structure. In partic-

ular, a random graph with a given degree sequence will typically

have very little non-trivial local structure in the neighborhood of

any given node v , and very little non-trivial community structure.

Thus, real networks will almost always look very different from the

predictions of a random draw from the configuration model on any

question involving structures like local motifs or dense communi-

ties; and these are some of the main questions for which people

seek out random graphs as baselines.

Given these limitations of the configuration model, researchers

have sought other null models in which we sample uniformly or

near-uniformly over different families of graphs defined by charac-

teristics of a given real network. Stanton and Pinar, for example,

show how to sample from graphs that match an observed network

G not just in its degree sequence but in the pairs of degrees (di ,dj )
arising from the edges (i, j) of G [44]. This increases the speci-

ficity of the null model, but it continues to lack non-trivial local

or community structure. An interesting recent step toward null

models designed to exhibit local structure was taken by Orsini et

al. [36], who generalized and put into practice the dK-series hierar-
chy of random graph models [27], where the lowest levels match

the degree sequence or degree correlations and higher-levels — the

2.1-series and 2.5-series — also match statistics on triangles such

as the average clustering coefficient or the sequence of clustering

coefficients. This approach comes with the obstacle, however, there

are not any practical algorithms for uniformly sampling from these
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subsequent levels that match more than just degrees and pairs of de-

grees; as a result, while they constitute valuable heuristics, they are

not designed to provide guarantees on near-uniform sampling from

the associated family of graphs. Similarly, there has been work on

graph generators that generate a graph with given k-core properties
[3, 22, 37]. However, these works have been unable to characterize

the distribution created, with Ozakaya et al. for example stating that

their work "...does not imply a uniform sampling of possible graphs.

Despite empirical evidence of near-uniform distributions over pos-

sible graphs, formally quantifying the bias of the distribution is an

open question."

Thus, a basic question has remained: given an observed graphG ,
can we construct a null model by sampling from a family of graphs

matching characteristics of G in such a way that the resulting ran-

dom samples come from a provably well-characterized distribution

and exhibit non-trivially rich local structure and community struc-

ture?

The present work: A null model based on the k-core. In
this paper, we provide a new approach to this question, by showing

how to approximately uniformly sample from graphs that match

G in its k-core properties. The resulting samples provide random-

graph baselines with richer graph-theoretic structure than the con-

figuration model, and we show that they can lead to potentially

different conclusions when employed as null models.

To formulate our approach, we begin with some basic definitions.

Given a graph G and a number k , the k-core of G is the (unique)

maximal subgraph of G in which every node has degree at least k ;
it can be found efficiently by iteratively deleting nodes of degree

strictly less than k in G. (For sufficiently large k , G will have no

subgraph of minimum degree k , and hence the k-core ofG for these

large k will be the empty graph.) Building on this definition, we

say that the core-value cv of a node v is the largest k such that v
belongs to the k-core of G.

A long line of work in network analysis has shown that suc-

cessive k-cores of G, for k = 0, 1, 2, ..., provides considerable in-

formation about the local structure of G, including the regions

where it exhibits denser connectivity [6, 13, 24, 28, 41]. This in-

formation is equivalently captured by the sequence of core-values

c1 ≥ c2 ≥ · · · ≥ cn of the n nodes of G.
Given this, we ask the following question: by analogy with the

configuration model, which samples uniformly from all graphs

matching the degree sequence of G, can we sample uniformly (or

near-uniformly) from all graphs matching the sequence of core

numbers of G? We could do this in theory by brute-force rejection

sampling, so our goal is to develop reasonable algorithms for gener-

ating such samples. This type of sampler would provide a genuinely

new type of null model, by producing random graphs that match an

observed G on richer forms of structure than the degree sequence.

Sampling a randomgraphwith a given core-value sequence.
We answer this question affirmatively, by providing a method for

near-uniform sampling from graphs with a given core-value se-

quence. We provide an overview of our strategy here, and give

details in the subsequent sections.

Our basic approach is to define a Markov chain whose state

space is the set of all graphs with the given core-value sequence,

and whose transitions are a set of graph transformations that pre-

serve the core-values. The crux of the method, and the heart of our

analysis, is the definition of a sufficiently rich set of local transfor-

mations such that sequences of these transformations, composed

together, are able to transform a starting graph G0 into any other

graph with the same core-value sequence. Applying random trans-

formation to an underlying graph thus produces a Markov chain

on the set of all graphs of a given core-value sequence. Our re-

sults establish that the Markov chain is strongly connected; and by

adding appropriate probabilities on the “identity transformation”

that leaves the graph unchanged, we can also ensure that the chain

is aperiodic and has a uniform stationary distribution. Thus, by

generating random trajectories in this Markov chain, we can sample

nearly-uniformly from the set of all graphs with a given core-value

sequence.

As part of the analysis of this sampling procedure, we solve a

problem of combinatorial interest in its own right. When we gen-

erate our Markov chain based on a given graph G, then G itself

provides a starting state for traversing the chain. But if we start

instead from a given core-value sequence c1 ≥ c2 ≥ · · · ≥ cn , then
we face the following fundamental question: is the state space asso-

ciated with (c1, c2, . . . , cn ) non-empty? That is, do there exist any

graphs with this core-value sequence? And if so, can we construct

one? For degree sequences in simple graphs without loops or paral-

lel edges, the corresponding realizability question — characterizing

whether there exists a simple graph with a given degree sequence

— is the subject of a famous theorem of Erdös and Gallai [8, 15] and

the constructive Havel–Hakimi algorithm [18, 19]. We provide a

corresponding constructive characterization for the realizability of

core-value sequences in simple graphs, and this gives us a start-

ing point in the Markov chain when provided with a core-value

sequence as input.

Through computational experiments, we demonstrate some of

the basic properties of the samples produced by this Markov chain,

including how they differ systematically from the output of the

configuration model. We then demonstrate our methods in the

context of amotif-counting application; the question here is whether
the frequencies of particular small subgraphs in a given graph G
are significantly higher, significantly lower, or indistinguishable

from the abundance of these subgraphs in a random-graph baseline.

We show that a comparison to random graphs matching the degree

sequence of G may potentially lead to different conclusions than

this same comparison to random graphs matching the core-value

sequence of G; this points to some of the value in having multiple

null models based on the different families of random graphs.

It is useful to note a few additional points about these results.

First, there is a large collection of additional families of random

graphs that have been studied extensively in network analysis,

including stochastic block models, preferential attachment graphs,

Kronecker graphs, andmany others. It would be interesting to relate

our family of random graphs with a given core-value sequence to

these. But there is also an important distinction to be drawn in how

these families are generally used in practice: they are typically used

as generative models specified by optimizing a constant number

of parameters and then generating graphs whose size n may be

arbitrarily large. In contrast, our approach is more closely aligned

with models — such as the configuration model and more recent
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approaches such as the dK-series — based on uniform or near-

uniform sampling from a family of graphs obtained by matching

a base graph G on a number of parameters (such as degrees or

core-values) that are linear in the number of nodes.

Finally, we also note the following important open question.

While we prove that random walks in our Markov chain will con-

verge to the uniform stationary distribution on graphs of a fixed

core-value sequence, it is an open question whether this chain can

be proven to be rapidly mixing. This question aligns in interesting

ways with the fact that despite recent progress, we still do not have

a full understanding of the mixing properties of Markov chains

on graphs with fixed degree sequences either [16]. The questions

in this area are quite challenging, though computational evidence

is consistent with the premise that these chains tend to mix well

in practice [30, 44]. As in those cases, our computational experi-

ments also suggest that random walks are sampling our state space

effectively in practice, indicating the utility of our Markov-chain

methods. Establishing provable bounds is thus a valuable and po-

tentially quite challenging further question, and recent techniques

in the theory of rapidly mixing Markov chains might be valuable

here.

1.1 Additional related work
There are a large number of random graph models that are used

for network analysis, and we refer to surveys by Sala et al. [39] and

Drobyshevskiy and Turdakov [14] for a more expansive discussion.

The models most relevant to our paper are those that are employed

as “null models,” where the goal is to sample uniformly from the

set of all graphs satisfying a certain property and then evaluate

how likely other properties are under the null. The configuration
model, which samples uniformly from the set of graphs with a

prescribed degree sequence, is broadly used [2, 4, 5, 16, 32, 33, 35].

There are several variants of the configuration model for dealing

with simple graphs, self-loops, and multi-edges; these details and a

host of applications are covered in depth in the survey by Fosdick

et al. [16]. Furthermore, there are a number of configuration-type

models for other relational data models such as hypergraphs [7] and

simplicial complexes [46]. The Chung–Lu model is similar to the

configuration model but samples from from graphs whose expected

degree sequence is the same as the one that is given [9–11].

The space of graphs with a fixed degree sequence is a special

case of the more general dK-graphs, which specifies degree cor-

relation statistics for subgraphs of size d [27] (the configuration

model corresponds to d = 1). Pinar and Stanton [44] developed a

uniform sampler for the d = 2 case, which generates graphs with

a prescribed joint degree distribution. Further generalizations of
the dK-graphs include those with prescribed degree correlations

and clustering statistics [12, 17, 36]. All of these techniques rely on

MCMC samplers, but those for the d ≥ 3 cases or these generalized

dK-graphs do not guarantee uniform samples. We also use MCMC

sampling, but we can guarantee that the stationary distribution is

uniform over the space of graphs with a specified k-core sequence.
There is also an approach that samples graphs close to a given

core-value sequence and degree sequence [20], but the samples

are non-uniform and only approximately preserve the core-value

sequence. In addition, there are methods based on sampling from

the space of graphs with a given onion decomposition (a refinement

of the k-core decomposition) and a prescribed degree sequence [21],

as well as possible degree correlations [1]. These approaches pre-

serve the core-value sequence using a switch chain similar to the

configuration model, but the samples come from a heavily restricted

subset of the graphs with that core-value sequence. They also do

not guarantee a non-zero sampling probability of each graph within

this restricted space or a uniform distribution over the graphs that

can be sampled.

A major application of null models is the determination of im-

portant small subgraph patterns, often called network motifs [23, 29,
31, 40, 43]. In these applications, small subgraphs are counted in the

real network and the null model, and those appearing much more

or less in the data compared to the null are deemed interesting for

study. We include a set of experiments that revisits network motifs

to see which are significant under our k-core null model.

2 GENERATING RANDOM GRAPHS WITH A
GIVEN CORE-VALUE SEQUENCE

For generating a random graph with a given core-value sequence

c = c1 ≥ c2 ≥ · · · ≥ cn , we will proceed as follows. First, we

define the state space Sc to be the set of all graphs with core-value

sequence equal to c. In this section, as in the rest of the paper, all

graphs are undirected and simple, with no self-loops or parallel

edges.

We will define a set of moves that apply to a graph G ∈ Sc; each
move transforms G into another graph G ′ ∈ Sc (where possibly
G ′ = G). The moves are defined such that if there is a move from

G to G ′
, there is also one from G ′

to G. This allows us to define an

undirected graph Hc on the state space Sc, in which G and G ′
are

connected by an edge (or potentially by several parallel edges) if

there is a move that transforms G into G ′
.

Let ∆ be the maximum number of legal moves out of any one

G ∈ Hc. We now define a random walk with self-loops as follows:

For a graph G with D ≤ ∆ legal moves out of it, the random walk

remains at G with probability 1 − D/(2∆), and with probability

D/2∆, it chooses one of the D legal moves out of G.
Our main technical result is to show that for any two graphs

G1,G2 ∈ Sc, it is possible to apply a sequence of moves that trans-

forms G1 into G2. This means that the undirected graph Hc we
have defined is connected, and so the random walk we have defined

converges from any starting point to a unique stationary distribu-

tion that (by the definition of the transition probabilities) is uniform

on Sc. We can therefore run the Markov chain from an arbitrary

starting point, and the graph we have after t steps will become

arbitrarily close to a uniform graph with core-value sequence c as
t → ∞.

For the starting point, we can either use a given input graph, or

we can start directly from a core-value sequence c and construct a

graph that realizes this sequence, if one exists. We show first how

to efficiently perform this latter operation, constructing a graph

from a core-value sequence.
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2.1 The realization problem for core-value
sequences

Given a sequence c = c1 ≥ c2 ≥ · · · ≥ cn , how can we efficiently

determine if there is a graph that has this as its core-value sequence,

and to construct such a graph if one exists? Erdos and Gallai solved

the analogous problem for degree sequences [8, 15], and here we

give an efficient algorithm for core-value sequences.

Since core-values are define by degrees of subgraphs, it is useful

to have some initial terminology for degree sequences as well. Recall

that a graph is called d-regular if all of its node degrees are equal
to d . We observe the following.

(2.1) If d is an even number, there exist d-regular graphs on every
number of nodes n ≥ d + 1. If d is an odd number, there exists a
d-regular graph on n ≥ d + 1 nodes if and only if n is even.

Proof. There are many natural constructions; here is one that

is easy to describe. We label the nodes 0, 1, . . . ,n − 1 and interpret

additionmodulon (thus imagining the nodes organized in clockwise

order). When d is even, connect each node i to the d/2 nodes on
either side of it in this order: i − d/2, i − (d/2) + 1, . . . i + (d/2).
When d is odd and n is even, connect each node i to the nodes

i − (d − 1)/2, i − ((d − 1)/2) + 1, . . . i + ((d − 1)/2) as well as the

“antipodal” node in the clockwise order, i + (n/2).
Finally, we note that in any graph, the sum of the degrees of all

nodes must be an even number (since every edge is counted twice),

and therefore when d is odd, any d-regular graph must have an

even number of nodes. □

It will be useful to be able to talk about “almost regular” graphs

when d is odd and n is odd, so we say that a graph G is d-uniform
if (i) d is even and G is d-regular; or (ii) d is odd, G has an even

number of nodes, and G is d-regular; or (iii) d is odd, G has an

odd number of nodes, and G consists of a single node of degree

d + 1 with all other nodes having degree d . By slightly extending

the construction from the proof of (2.1) to handle case (iii) in this

definition as well, we have

(2.2) For all d and all n ≥ d + 1, there exists a d-uniform graph on
n nodes.

We now consider the set of c-cores ofG , for c = 0, 1, 2, . . ., where

again the c-core Γc is the unique maximal subgraph of minimum

degree c . (In cases where it is clear from context, we will sometimes

use Γc to denote the set of nodes in the c-core, as well as the sub-
graph itself.) The following construction procedure for the c-cores
of G will be useful in the proofs as well.

• We first define Γ0 to be all of G.
• Having constructed Γc for a given c , we then repeatedly

delete any node of degree at most c from Γc , updating the

degrees as we go, until no more deletions are possible. (Note

that while all nodes in Γc have degree at least c at the start of
this deletion process, some degrees in Γc might drop below

c in the middle of the process.) Once the deletions from Γc
have stopped, all of the remaining nodes have degree at

least c + 1. Let H be this subgraph of G. H has minimum

degree c + 1; and since no node deleted so far can belong

to any subgraph of minimum degree c + 1, we see that H

is the unique maximal subgraph with this property. Thus

H = Γc+1.
• We proceed in this way until we encounter a c for which Γc
is empty; at that point, we define c∗ = c − 1, and declare Γc∗

to be the top core of G.
• We will refer to the order in which the nodes were deleted

fromG in this process as a core deletion order; note that there
is some amount of freedom in choosing the order in which

nodes are deleted, and all such orders constitute valid core

deletion orders.

We first consider the case in which all core-values in an n-node
graph G are the same number c . Note that in this case, we must

have n ≥ c + 1, since each node must have at least c neighbors.

Conversely, as long as n ≥ c + 1, we observe that a c-uniform graph

on n nodes has all core-values equal to c . Thus we have a first

realization result for core-values, for the case where all values are

the same.

(2.3) For a core-value sequence c = c1 ≥ · · · ≥ cn where all ci = c ,
there exists a graph with this core-value sequence c if and only if
n ≥ c + 1.

Now, we consider an arbitrary core-value sequence c = c1 ≥

· · · ≥ cn . As in (2.3), the highest c1 + 1 values must be the same in

order for node 1 to have a sufficient number of neighbors in the

top core Γc1 . Thus, suppose cc1+1 = c1.
Now, suppose |Γc1 | = n1, where n1 ≥ c1 + 1. Let H be an n1-

uniform graph on the nodes 1, 2, . . . ,n1. For each node j > n1, we
attach it to an arbitrary set of c j nodes in H , resulting in a graphG
on the nodes 1, 2, . . . ,n. We now claim

(2.4) The graph G has core-value sequence c = c1 ≥ · · · ≥ cn .

Proof. By construction, the n1 nodes i with 1 ≤ i ≤ n1 all have
ci = c1; they all belong to H and hence have core-value equal to

c1. For j > n1, note that it belongs to the subgraph induced on the

nodes {1, 2, . . . , j}; since the minimum degree in this subgraph is

c j , we have j ∈ Γc j . But since the degree of j is c j , we also have

j < Γc j+1, and hence the core-value of j is c j , as required. □

From (2.4) it follows thatG realizes the given core-value sequence

c. Since the only assumption on c was that cc1+1 = c1, we have the
following theorem about realization of core-value sequences.

(2.5) A sequence c = c1 ≥ · · · ≥ cn is the core-value sequence of a
simple graph if and only if cc1+1 = c1; and when this condition holds,
there is an efficient algorithm to construct a graph with core-value
sequence equal to c.

2.2 A Markov Chain on All Graphs with a
Given Core-Value Sequence

In the previous subsection, we showed how to construct a single

member of the state space Sc consisting of all graphs with core-

value sequence c = c1 ≥ · · · ≥ cn . We now define amove set on this

state space, providing ways of transforming a given graph in Sc
into other graphs in Sc. For each move that transforms a graphG to

G ′
, there will also be a move transforming G ′

to G; thus, the graph
Hc on Sc in which G and G ′

are adjacent when there is a move

transforming one directly into the other is an undirected graph.
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LetG be a graphwith core-value sequence c. We note that sorting

the nodes in the decreasing sequence of their indicesn,n−1, . . . , 2, 1
constitutes a core deletion order for G, and we will use this fact at

certain points in the analysis.

The first set of moves is

• Move 1. Add and Delete. For any nodes (i, j) not connected
by an edge in G, we can add the edge (i, j) provided that no
core-values are affected. Similarly, for an edge (i, j) of G, we
can delete (i, j) provided that no core-values are affected.

Given that we only add or delete edges when the core-values are

unaffected, the resulting graph G ′
is also in Sc by definition.

The remaining moves alter multiple edges at once, while pre-

serving all core-values. The second set of moves is

• Move 2. Move Endpoint. Let h, i, j be nodes of G such that
c j < min(ch , ci ), with (h, j) an edge ofG and (i, j) not an edge
of G. We delete (h, j) and insert (i, j).

We claim

(2.6) IfG ∈ Sc and we apply an instance ofMove Endpoint involv-
ing nodes h, i, j, then the resulting graph G ′ is also in Sc.

Proof. Consider the core deletion order n,n − 1, . . . , 2, 1 in G;
we consider nodes in this same order in G ′

and analyze their core-

values. Note that j > max(h, i) since c j < min(ch , ci ).
First, all nodes j ′ > j have the same edges into {1, 2, . . . , j ′ − 1}

in both G and G ′
, so all of them will get the same core-value and

can be deleted in the same order. Next, j has the same number of

edges into {1, 2, . . . , j−1} in bothG andG ′
, so it can still be deleted

when we encounter it in this order in G ′
, and it will get the same

core-value as as well. Finally, once j is deleted, the subgraphs of G
and G ′

induced on the set of nodes {1, 2, . . . , j − 1} are identical,

and so the ordering j − 1, j − 2, . . . , 2, 1 forms a core deletion order

in both.

From this, it follows that the sequence of core-values is the same

in G andG ′
, and hence the Move Endpoint operation preserves the

core-value sequence. □

The third set of moves is

• Move 3. Core Collapse and Core Expand. Let h, i, j be nodes of
G with ch > ci and ci = c j . If (h, i) and (h, j) are both edges of
G but (i, j) is not, the Core Collapse operation deletes (h, i) and
(h, j) and inserts (i, j), provided that no core values are affected.
Analogously, if (i, j) is an edge ofG but (h, i) and (h, j) are not,
the Core Expand operation deletes (i, j) and inserts (h, i) and
(h, j), again provided that no core values are affected.
We will also allow “half-move” versions of Core Collapse and
Core Expand, again only in the case where no core values are
affected: in the half-move version of Core Collapse, only one of
(h, i) or (h, j) is deleted; and in the half-move version of Core
Expand, only one of (h, i) or (h, j) is inserted.

This concludes the description of the moves. We now analyze

their global properties in the state space Sc.

2.3 Connectivity of the State Space
Recall that our strategy is to use the set of moves specified in the

previous subsection to define an undirected graph Hc on the state

space Sc of all graphs with core-value sequence c. We now show

thatHc is connected — that is, for any graphsG1,G2 ∈ Sc, there is
a sequence of moves that transforms G1 into G2. If we then define

a random walk onHc with each edge out of a given state chosen

uniformly, and self-loop probabilities at each state set as at the start

of the section, the resulting process is connected and aperiodic,

with a uniform stationary distribution that it converges to from

any starting point.

It therefore remains only to establish the connectivity of Hc. To
do this, we consider two arbitrary graphs G1 and G2 in Sc, and we

describe a path connecting G1 and G2 in Hc. In order to do this, it

is useful to recall a small amount of terminnology: the top core, as
before, consists of the nodes with the highest core-value c1. Suppose
that there are n1 such nodes; that is, cn1

= c1 and cn1+1 < c1. Let
V1 = {1, 2, . . . ,n1} be the set of nodes in the top core. Finally, for

simplicity of exposition, we will assume for most of this discussion

that c1 > 2. This condition applies to all the intended applications

of our methods, since graphs with c1 ≤ 2 are much simpler in

structure than the networks we work with in general. Moreover,

the assumption c1 > 2 can be removed with additional work; at the

end of the section we describe how to achieve analogous results for

the remaining cases of c1 = 2 and c1 = 1.

We construct the path fromG1 toG2 in a sequence of steps. Since

all of our moves have analogues that perform them in the “reverse”

direction, we can describe the construction of this path working

simultaneously from both its endpoints at G1 and G2.

Step 1: Linking all edges to the top core. We first apply a

sequence of moves to G1 designed to produce a graph G ′
1
that has

the same core-value sequence c, in which all edges have at least

one end in the set V1.
For a number c , we use Γc as before to denote the c-core. We

consider the nodes following the order of a core deletion sequence

n,n − 1, . . . , 2, 1. When we get to a node i , it has degree ci by

the definition of a core elimination sequence. If ci < c1, then we

consider each of i’s incident edges (i, j) in turn, and process this

edge according to the following set of cases.

• If c j = c1, then we do not need to do anything, since the

edge (i, j) already has one end in the top core V1.
• If c1 > c j > ci , then we apply Move Endpoint to delete (i, j)
and replace it with an edge (h, i) for any node h ∈ V1 that
is not currently a neighbor of i . Such a node h must exist

since |V1 | ≥ c1 + 1 while the degree of i is ci < c1. By (2.6),

all core-values are preserved by this operation.

• If c j = ci and the degree of node j is equal to c j , thenwe apply
the full version of the Core Expand operation, replacing the

edge (i, j) with two edges (h, i) and (h, j) to any node h ∈ V1
that is not a neighbor of either. (By applying a sequence of

Move Endpoint operations prior to this Core Expand oper-

ation, we can ensure that there is at least one node h ∈ V1
that is not a neighbor of either i or j.) We claim that i and j
still have core-values equal to ci after this operation: their
core-values are at least ci since the nodes in Γci still have
minimum degree ci ; and their core-values are at most ci
since their degrees are equal to ci . Since all other nodes have
the same core-values before and after this operation, the

core-value sequence of the graph has been preserved.
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• If c j = ci and the degree of node j is greater than c j , then we

apply the half-move version of the Core Expand operation,

replacing the edge (i, j) with the single edge (h, i) for any
node h ∈ V1 that is not a neighbor of i . In this case too

we claim that that i and j still have core-values equal to

ci after this operation. As before, their core-values are at

least ci since the nodes in Γci still have minimum degree ci .
The core-value of i is at most ci since its degree is ci . The
core-value of j is at most c j since we have removed an edge

incident to it, which cannot raise its core-value. Since all

other nodes have the same core-values before and after the

operation, the core-value sequence of the graph has been

preserved in this case as well.

We apply this process to each edge incident to node i in turn; and

we proceed node-by-node through the core deletion sequence in

this way.

At the end of this procedure, we have the desired graph G ′
1
: it

has the same core-value sequence c, and all its edges have at least

one end in the set V1. We apply the same process to G2 as well,

producing a graph G ′
2
that also has the property that every edge

has at least one end in V1.

Step 2: Converting the top core to a c1-uniformgraph. Start-
ing from G ′

1
, we next apply a sequence of moves so that the edges

with at least one end outside ofV1 remain the same, but the subgraph

induced on V1 becomes c1-uniform. Note that this will preserve

the core-value sequence, since all nodes in V1 in will still have

core-value equal to c1. It will also uniquely determine the degree

sequence of V1, since the degree sequence of a d-uniform graph

graph on n nodes is uniquely determined by d and n: it consists
entirely of the value d when at least one of d or n is even; and it

consists of a single instance of d + 1 and all other values equal to d
when both d and n are odd.

To make the subgraph on V1 c1-uniform, it suffices to apply a

sequence of moves resulting in the following property:

(∗) Either (i) all degrees in the subgraph induced on V1
are equal to c , or (ii) one node in the subgraph on V1
has degree c + 1, and all others have degree c .

An extension of our point in the previous paragraph is the following:

which of cases (i) or (ii) occurs is determined by c1 and n1: since
the sum of the degrees of all nodes in the subgraph on V1 must be

even, we will be in case (i) when at least one of c1 or n1 is even, and
otherwise we will be in case (ii).

To achieve property (∗) starting from G ′
1
, we first delete any

edge if it joins two nodes i and j inV1 that both have degree strictly

greater than c1. Since i and j still belong to a subgraph of minimum

degree c1, their core-values are still at least c1; and since the deletion
of the edge can’t have increased their core-values, they are still

at most c1 as well. After this, we may assume that there are no

edges joining any nodes inV1 where both ends have degree strictly

greater than c1.
Next, consider any node h in V1 of degree at least c1 + 2. By the

transformations in the previous paragraph, all of its neighbors have

degree equal to c1. Let S be this set of neighbors. Each node in S has

an edge to at most c1 − 1 other nodes in S , and so there is at least

one pair of nodes in S , say i and j, that are not joined by an edge.

We apply the following transformation: We first add the edge (i, j),
and then we delete the edges (h, i) and (h, j). After this sequence
of three Add and Delete moves, the degrees of i and j remain the

same, and the degree of h has been reduced by two. Since all three

nodes h, i, j — as well as all other nodes of V1 — still have degree

at least c1, all core-values in V1 remain c1. The final thing we must

verify is that in the middle of this sequence, after adding the edge

(i, j), we did not increase any core values strictly above c1, thereby
taking our constructed path out of the state space Sc. To show this,

suppose that after adding (i, j) (thereby increasing their degrees

to c1 + 1), we delete G −V1 and all nodes of degree at most c1 in
V1. By the guarantee from the previous paragraph that there were

no edges connecting two nodes of degree greater than V1 in G, the
resulting subgraph ofG consists of a set of isolated nodes, together

with a triangle on {h, i, j}. By our assumption that c1 > 2 (in fact, it

is sufficient here that c1 > 1), no node in this subgraph has degree

greater than c1, and hence the graph after the addition of the edge

(i, j) continues to have an empty (ci + 1)-core.
If we repeatedly apply the operation in the previous paragraph,

we arrive at a point where the subgraph on V1 only has nodes of

degrees c1 and c1 + 1, and there are no edges between any of the

nodes of degree c1 + 1. Finally, we perform a sequence of moves to

reduce the number of nodes of degree c1 + 1 to at most one. Thus,

suppose there are two nodes h and ℓ that each have degree c1 + 1.
There are two cases to consider:

(i) If there is a node i that is a neighbor of one of h, ℓ but not
the other — say that i is a neighbor of h but not ℓ — then

we add the edge (i, ℓ) followed by deleting the edge (h, i).
After doing this, h has degree c1 and ℓ has degree c1 + 2;

by applying the procedure in the previous paragraph, we

can then reduce the degree of ℓ to c1 while preserving all

other node degrees. In this way, we have strictly reduced the

number of nodes of degree c1 + 1.
(ii) Suppose that the neighbor sets of h and ℓ in V1 are the same.

Let T be this set of common neighbors of h and ℓ. We have

|T | = c1 + 1, each node inT has degree c1, and for each node,

two of its edges go to h and ℓ, so at most c1 − 2 edges go to

other nodes inT . Thus there is a pair of nodes inT , say i and j ,
that are not joined by an edge. We add the edge (i, j) and then
delete the edges (h, i) and (j, ℓ); as above, this preserves all
core-values after each move, and strictly reduces the number

of nodes of degree c1 + 1.

Since we can apply at least one of these two cases to strictly reduce

the number of nodes of degree c1 + 1 whenever the number of such

nodes is at least two, we can iteratively perform this reduction until

the number of nodes of degree c1 + 1 is at most one.

We have therefore arrived at the desired outcome: a graph G ′′
1

that agrees with G ′
1
on all edges not contained entirely in V1, and

with the property that the subgraph onV1 is c1-uniform.We perform

the same process on G ′
2
, arriving at a graph G ′′

2
whose subgraph

on V1 is also c1-uniform.

Step 3: Transforming one c1-uniform top core into another.
For a set of nodes S in a graph G, let G[S] denote the subgraph of

G induced on S . Since the subgraphs G ′′
1
[V1] and G

′′
2
[V1] are both

c1-uniform, their multisets of degrees are the same. If each contains

a node of degree c1 + 1, we choose an arbitrary bijection π from

372



Random Graphs with Prescribed K -Core Sequences:
A New Null Model for Network Analysis WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

{1, 2, . . . ,n1} to itself that maps the node of degree c1+1 inG
′′
1
[V1]

to the node of degree c1 + 1 in G ′′
2
[V1]. Henceforth we can take

this bijection as implicit, and assume for simplicity that the node

of degree c1 + 1 (if any) is the same in G ′′
1
[V1] and G

′′
2
[V1].

Since the degree sequences ofG ′′
1
[V1] andG

′′
2
[V1] are the same, it

is known via results on the switch chain [16] that we can transform

one of these subgraphs into the other by a sequence of moves of

the following form: find four nodes {h, i, j,k} for which (h, i) and
(j, ℓ) are edges but (h, j) and (i, ℓ) are not, and replace the edges

(h, i) and (j, ℓ) with (h, j) and (i, ℓ). In our move set we do not have

this operation available as a single move, but we can accomplish

it by first adding the edges (h, j) and (i, ℓ) and then deleting the

edges (h, i) and (j, ℓ). As before, we simply need to verify that in

the middle of this sequence of two Add operations and two Delete

operations, we do not cause any nodes to achieve a core-value

greater than c1. To establish this, suppose that after the two Add

operations, we delete all nodes outside V1 together with all nodes

in V1 of degree c1. The only nodes remaining are the four nodes

{h, i, j,k} together with the node m of degree c1 + 1 (if there is

one), and the edges (h, i), (j, ℓ), (h, j), and (i, ℓ), as well as any edges
between {h, i, j,k} and m. Since this 5-node subgraph is not the

complete graphK5 (since it lacks the edges (h, ℓ) and (i, j)), it has an
empty 4-core. By our assumption that c1 > 2, this means that there

is no subgraph of minimum degree c1 + 1 after deleting all nodes
of degree at most c1, and hence no node acquires a core-value of

greater than c1 via our sequence of moves.

By applying a sequence of these switch moves, implemented as

sequences of two Add moves and two Delete moves each, we can

thus produce a graphGo
1
that agrees with G ′′

1
on all edges with at

least one end outside V1, and such that the subgraphs Go
1
[V1] and

G ′′
2
[V1] are isomorphic.

Step 4: Concatenating the Subpaths. The graphsGo
1
andG ′′

2

are almost the same: their induced subgraphs onV1 are isomorphic,

and for each node j > n1, the node j has degree c j in both, with all

c j edges going to nodes in V1. The ends of these c j edges from j to
V1 might be different in Go

1
and G ′′

2
, but by applying a sequence of

Move Endpoint operations, we can shift the endpoints of j’s edges
to V1 so that they become the same in the two graphs. Applying

such operations to every j > n1, we can thus transformGo
1
toG ′′

2

by a sequence of Move Endpoint operations for the edges from each

node n1 + 1,n2 + 2, . . . ,n into V1.
Finally, we can concatenate all the subpaths in Hc that we have

defined using our set of moves. This concatenation provides the

path from G1 to G2 in Hc: it goes via the intermediate graphs

G1,G
′
1
,G ′′

1
,Go

1
,G ′′

2
,G ′

2
,G2

and the paths between each consecutive pair of graphs on this list

using the sequences of moves describes in this subsection.

Recall from the beginning of this section that if D(G) is the
number of moves out of a graph G ∈ Sc, and ∆ = maxG ∈Sc D(G),
we define a uniform random walk on the graph Hc in which the

self-loop probability atG is 1−D(G)/(2∆). We have thus established

that

(2.7) The graph Hc defined by our move set on the collection of all
graphs of core-value sequence c is connected. Moreover, the random
walk on Hc based on the self-loop probabilities we have defined has

the property that it converges to a uniform stationary distribution
from any starting point.

Handling the case c1 ≤ 2. As noted at the start of this sub-

section, the exposition has assumed that the highest core-value

c1 satisfies the assumption (mild in practice) that c1 > 2. We now

show how with additional work we can remove this assumption

and still achieve comparable results.

First, consider the case in which the highest core-value c1 sat-
isfies c1 = 2. The only place in the analysis where we use the

assumption that c1 > 2 is in Step 3 when we use two Add moves

followed by two Delete moves to simulate the single switch move
that replaces two edges (h, i) and (j, ℓ)with (h, j) and (i, ℓ); we need
to ensure that no node increases its core-value when we do this. To

handle the case c1 = 2, we can thus simply enhance the Markov

chain by including switch moves in the top core: when (i) the set of

four nodes {h, i, j,k} is a subset of the top core, (ii) (h, i) and (j, ℓ)
are edges and (iii) (h, j) and (i, ℓ) are not edges, then we allow a

single move that replaces the edges (h, i) and (j, ℓ) with (h, j) and
(i, ℓ). This preserves all core-values even when c1 ≤ 2. With this

extra set of moves including switch moves in the top core, we now

have a graph H ′
c with more edges than Hc, and the analysis above

shows that that H ′
c is connected when c1 = 2. A random walk

on H ′
c is thus sufficient to generate random graphs with a given

core-value sequence when the highest core-value is 2.

Finally, the case c1 = 1 has a particularly simple structure: the

core-value sequence, for some k , has k nodes with core-value 1 and

n−k nodes with core-value 0. AnyG with this core-value sequence

has n−k isolated nodes and k nodes that form a union of trees, each

of size at least 2. We can sample directly from this set of graphs,

without recourse to the Markov chain developed here, by adapting

an algorithm for generating uniform spanning trees [45]: we first

sample from the size distribution of components and then sample

spanning trees of complete graphs of the chosen sizes.

3 BASIC SET-UP FOR DOING THE
COMPUTATIONAL EXPERIMENTS

In the previous section, we established that the Markov chain de-

fined by the random walk onHc will converge to a uniform station-

ary distribution from any starting point. We now discuss some of

the computational considerations involved in running the Markov

chain so as to be able to sample from it.

The basic set up for computationally running this Markov chain

has two steps. A graph is input in the form of a SparseMatrix. The

core numbers are then calculated and an array of core values from

largest to smallest is created. The nodes are then renamed from 1

to n such that each node is distinct and the node name refers to the

index of their core-value in the core array. This results in nodes

named such that nodes with larger core-values have smaller names.

We then do a number of transition steps. Each transition step is

identical, except for the graph being processed. The transition step

takes in several values: the graph, the core array and an estimated

upper bound on the highest degree of any node in the Markov

chain. We then estimate an upper bound on how many possible

transitions there are from this graph to other graphs. We do this by

soliciting an upper bound on the number of possible transitions for

each type of move - note that no two moves will ever give the same
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exact resultant graph. This is done by proposing many moves, not

all of which are necessarily possible. We sum these upper bounds

to get an upper bound on the total number of transitions from this

graph. If that upper bound is larger than our estimated upper bound

on the largest degree in the Markov chain, then we double that

estimate and start over.

Next, we randomly select a number between 0 and the estimated

degree upper bound. If the number is larger than our possible

transition estimate, then we "self loop" and draw again. Otherwise,

we choose proportionally randomly among the moves, and then

select a random proposed move. If it is not a possible move we "self

loop" and draw again. Otherwise, we apply the move, then call the

transition function again. This rejection sampling method is used

because calculating all possible moves is both memory intensive

and time consuming.

4 USING THE CORE-VALUE MODEL FOR
NETWORK ANALYSIS

Having now established the basic method for generating random

graphs with a given core-value sequence, we provide a set of com-

putational experiments showing how it can serve as a null model

for network analysis tasks, parallel to the ways in which the config-

uration model that fixes node degrees is used. We will see that in

some cases, the conclusions from our core-value null model form

fundamental contrasts with the conclusions that would be reached

using the configuration model.
1

4.1 Subgraphs and Motifs
We begin with an application where it is natural to expect that

the contrast between the configuration model and the core-value

model might be apparent: in the frequency of small subgraphs.

When we are assessing the abundance of a particular subgraph in

real network data, we may want to compare it to the frequency of

this same subgraph in a randomized version of the network that

preserves some invariant. The configuration model, by fixing only

the node degrees, destroys most of the local structure, and hence

can make particular small subgraphs seem highly frequent in the

real network data as a result. Intuitively, our core-value model can

be viewed as preserving enough local structure to maintain the

core decomposition; will this give a different view of the abundance

of small subgraphs? We show here that it does in general.

We begin by considering perhaps the simplest family of small

subgraphs: triangles on three nodes. After this, we move on to an

analysis of small motifs more generally. In both cases, the core-

value model leads to different conclusions than the configuration

model in several important respects.

Triangle-based statistics

For our computational experiments here and in a number of the

subsequent analyses, we use four graph datasets: an autonomous

systems network [26], a protein structure network [29], a friendship

network of lawyers working at the same firm [25], and a power

grid [42]. For each dataset, we run our Markov-chain sampler for a

number of steps equal to 100 times the number of edges in the graph,

1
Code and data for all the results in this section may be obtained from the following

link: https://www.cs.cornell.edu/~kvank/selected_publications.html
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Figure 1: Distribution of the number of triangles from 50
random samples of graphs with a k-core sequence given by
a real-world graph dataset and 50 random samples of graphs
with a degree sequence given by a real-world graph dataset.
The k-core samples have more triangles, and often the num-
ber of triangles in the dataset is within the range those ob-
served in the random samples.
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Figure 2: Triangle degree sequences (given by the number of
triangles adjacent to a given node) from 50 random samples
of graphswith ak-core sequence given by a real-world graph
dataset and 50 random samples of graphs with a degree se-
quence given by a real-world graph dataset. The k-core sam-
ples tend to match the triangle sequence more closely.

with inputk-core sequence given by the dataset.We repeated this 50

times to get 50 random graphs with a prescribed k-core distribution.
We then compare the statistics of the resulting graph to the

output of the configuration model. For this, we use 50 samples from

a Markov-chain configuration model sampler for vertex-labeled
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simple graphs, using the double edge swap procedure described by

Fosdick et al. [16].
2

As noted earlier in this section, one weakness of the configura-

tion model is that it destroys local structure, and we observe this

even on the small datasets considered here. Specifically, the total

number of triangles in the configuration model samples is far below

the number of triangles in the corresponding datasets (Figure 1).

The random samples from the prescribed k-core sequence have
more triangles than those in the configurationmodel samples. More-

over, the distribution of the total number of triangles straddles the

number of triangles in the autonomous systems dataset. Thus, the

observed number of triangles in this datasets is unsurprising given
the k-core sequence. In other words, we would not reject the null

model of a random graph sampled uniformly at random from the

space of graphs with the given k-core sequence, just based on the

statistic of the number of triangles.

In addition to the total number of triangles, we also measure

the triangle degree sequence in these random samples and compare

them to the datasets (Figure 2). Here, the triangle degree of a node

is the number of triangles in which it participates. We see that the

triangle degree sequences given by the k-core sequence null model

more closely match those of the data.

Taken together, the results of this subsection provide evidence

that our k-core-based null model offers a substantially different

baseline than the configuration model. In particular, for the datasets

considered here, the core-based null model produces random sam-

ples with a larger number of triangles that capture some of the local

structure in the graph. We will see in the next subsection that this

same principle applies for motif analysis more generally.

Motif analysis

A longstanding application of null models for network analysis is

the identification of important or unusual small subgraph patterns

called network motifs [31]. The main idea is to count the number of

occurrences of several small subgraphs in a given dataset as well

as in several random samples from a null model. “Motifs” are then

subgraphs that appear significantly more or less often than in the

null. Historically, the employed null model is the configuration

model [16, 29, 31]. Here, we consider both the configuration model

and our k-core-based model as null models.

In Figure 3 we consider the results of counting six different

motifs consisting of six distinct (non-induced) subgraphs on four

nodes each, as well as a motif consisting of the triangle so that we

can view the results of the previous subsection in this context as

well. To decide whether the number of copies of a given subgraph

appears significantly more or less frequently than in a random

baseline, a canonical approach is to the use the subgraph ratio profile
(SRP), which essentially measures a normalized difference between

the frequencies of the subgraph in the real network and in the

random baseline. (We refer readers to Milo et al. [29] for the precise

definition.) As a result, a positive SRP for a given subgraph indicates

that the subgraph occurs more frequently in the real data than in a

random baseline, while a negative SRP indicates that it occurs less

2
Note that the Markov-chain approach is the standard strategy for generating fixed-

degree graphs because we are trying to produce simple graphs; more basic direct

approaches yield graphs with self-loops and parallel edges.
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Figure 3: Subgraph ratio profile (SRP) plots under the k-core
and configuration null models for four node subgraphs and
triangles. The x-axis in the SRP plots are indexed by the
seven subgraphs at the bottom.

frequently. Positive SRP values are thus taken as evidence that the

corresponding subgraph is a meaningfully abundant motif in the

network data.

Viewed in this context, we see that the SRP can be defined using

any random-graph model that fixes some aspect of the structure of

the real network. While the configuration model that fixes degrees

is the standard approach, we can also define SRP values using the

core-value model and ask whether we arrive at similar conclusions.

As we see in Figure 3, the SRP values based on the core-value model

are in fact quite different for two of our datasets, on autonomous

systems and the social network on lawyers.
3
In particular, we see

that many SRP values are on opposite sides of 0 across the two

models, showing that a number of conclusions can change when we

move a core-based null model. Moreover, these changes generally

go in the conjectured direction based on the preservation of local

structure: if we believe that the core-value model destroys less of

the local structure in a network relative to the configuration model,

then we would expect lower (and potentially negative) SRP values,

and this is what see for many of the subgraphs in Figure 3. The

results thus point to the crucial role in the choice of null model for

interpreting these subgraph frequency questions — a type of issue

that becomes feasible to ask given an efficient way to generate null

graphs with fixed core-value sequences.

4.2 Edge-based statistics
To understand how the core-value model behaves in these types of

applications, it is natural to explore some of its basic properties as

well. Perhaps the most fundamental set of properties concern basic

counts of edges and degrees.

When sampling based on a k-core description given by a dataset,

a major difference with the configuration model is that the number

of edges in the random sample can differ from those in the dataset.

For a simple example, consider a 4-cycle and the graph obtained by

adding one additional edge to the 4-cycle — all nodes in both graphs

have a core value equal to two, but they differ in the number of

edges. Here, we examine the distribution in the number of edges in

3
For power grids and protein networks, there isn’t enough meaningful four-node

structure to produce clear results using either baseline.

375



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Katherine Van Koevering, Austin R. Benson, and Jon Kleinberg

200 300 400 500
Number of edges

0.00

0.05

0.10

0.15

0.20

0.25

Fr
ac

tio
n

Autonomous Systems
k-core
data

200 300 400 500
Number of edges

0.0
0.2
0.4
0.6
0.8
1.0

Fr
ac

tio
n

Protein Interactions

200 300 400 500
Number of edges

0.00

0.05

0.10

0.15

Fr
ac

tio
n

Lawyer Friendships

200 300 400 500
Number of edges

0.00

0.05

0.10

0.15

Fr
ac

tio
n

Power Grid

Figure 4: Distribution of the number of edges from 50
MCMC samples of graphs with a k-core sequence given by a
real-world graph dataset. As expected, the number of edges
in the random samples is different than in the original data,
but the difference is not drastic.
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Figure 5: Degree sequences from 50 MCMC samples of
graphs with a k-core sequence given by a real-world graph
dataset. The degree sequences of the random samples are
similar (but not identical) to the degree sequences in the real-
world data.

random samples generated by our algorithm, where the core-value

sequence is generated by a real-world dataset.

We use the same datasets and sampling procedure that we em-

ployed in the previous subsections. Figure 4 shows the number of

edges in the resulting samples. We see that, for a given dataset,

all of the random samples have a number of edges that is greater

than or equal to the original data. Thus, the total number of edges

in these datasets over the space of graphs with the same k-core
sequence is concentrated above the observed number of edges. At

Table 1: Network assortativity r with respect to several at-
tributes in the Lawyers dataset. We list the z-score of the
assortativity statistic with respect to 50 samples from the
configuration and k-core-based model.

z-score

Attribute r configuration k-core

Status 0.55 21.29 3.92

Office Location 0.21 5.53 8.72.

Gender 0.12 2.50 0.31

Law School 0.05 1.80 0.79

Type of Practice 0.04 1.29 1.71

the same time, though, the number of edges in the random sample

is not drastically different.

We also compare the degree sequence of the random samples to

those in the original data (Figure 5). The degree sequences largely

resemble those in the original data, but are not exactly the same.

Often, the samples from our algorithm produce graphs with a larger

maximum degree than the empirical autonomous systems dataset.

We now complement the computational experiments on how

the set of edges varies over samples from the model with a basic

theoretical result: despite the fact that graphs with the same core-

value sequence can differ in their number of edges, they cannot

differ by too much — their number of edges must be within a factor

of two of each other. In particular, we prove the following.

(4.1) LetG be a graph with the core-value sequence c1 ≥ c2 ≥ · · · ≥

cn . Then G has at least 1

2

∑n
i=1 ci edges and at most

∑n
i=1 ci edges. It

follows that if G1 and G2 are two graphs with the same core-value
sequence, then G2 can have at most twice as many edges as G1.

Proof. First, let di be the degree of node i , and recall that since

the sum

∑n
i=1 di counts each edge ofG twice (via its contribution

to the degrees of its two endpoints), the number of edges of G can

be written as
1

2

∑n
i=1 di . Since the core-value of i cannot be larger

than the degree of i , we have ci ≤ di for all nodes i , and hence the

number of edges of G is at least
1

2

∑n
i=1 ci .

For the upper bound on the number of edges, consider removing

the nodes of G using a core deletion order: we maintain a counter

for the total number of edges, and when it comes time to delete

node i , we increment this counter by the number of edges that

are deleted together with i . By definition, when i is deleted we

increment the counter by at most ci , and so the final value of the

counter is at most

∑n
i=1 ci . Since all edges are deleted by the end of

this process, every edge is counted at some point, and hence the

number of edges of G is at most

∑n
i=1 ci . □

4.3 Attribute-based assortativity
As a final investigation, we consider whether or not attribute-based

assortativity is preserved under the configuration and core-value

null models. The lawyers dataset has several attributes on each node,

and we measure the network assortativity r [34] for status at the
firm (partner or associate), office location, gender, law school, and

type of practice (litigation or corporate). Assortativity is positive

for all of the attributes, i.e., there is a tendency for edges to appear

between two nodes sharing the same attribute (Table 1).
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As a baseline, we measure the assortativity levels under 50 sam-

ples of the configuration model and the core-value model and com-

pute the same z-score as for the motif analysis. The assortativity

scores are higher in the data than in both the null models (all of

the z-scores in Table 1 are positive). For example, office location

assortativity is overwhelmingly significant under either null. This is

unsurprising, as neither null model is designed to capture mesoscale

modular, community, or cluster structure within the network, and

several of the attributes are known to correspond to meaningful

cluster structure [38].

At the same time, evaluating significance based on z-scores for
some attributes could lead to different conclusions based on the

choice of null model and the desired significance level. For example,

the gender assortativity in the network is 0.12, which is about 2.5

standard deviations above the mean with respect to the configura-

tion model, but only 0.31 standard deviations above the mean with

respect to the core-value model. Thus, gender assortativity may

seem insignificant under the core-value null but significant under

the configuration model null.

5 CONCLUSION
The k-core decomposition is a fundamental graph-theoretic concept

that assigns each node v a core-value equal to the largest c such
that v belongs to a subgraph of G of minimum degree c . Draw-
ing on this concept, we have proposed a new family of random

graphs that can serve as a class of null models in network analysis,

obtained by randomly sampling from the set of all graphs with a

given core-value sequence. Our sampling method exploits the rich

combinatorial structure of the k-core decomposition; we construct

a novel Markov chain on the set of all graphs of a given core-value

sequence, show that the state space is connected with respect to

this transition, and establish that the chain can be used to generate

near-uniform samples from this set of graphs.

The approach opens up a number of intriguing further direc-

tions of potential theoretical and empirical interest. One question

noted earlier is to try establishing bounds on the mixing rate of

the Markov chain we have defined. Such questions are in general

quite challenging, since the mixing even of simpler chains remains

open; we note that many of these chains have proved valuable for

sampling even in the absence of provable guarantees. A second

question, related to our solution of the realizability question for

core-value sequences, is to study extremal questions over the set of

graphs realizing a given core-value sequence; for example, what is

the minimum or maximum number of edges that a graph with a

given core-value sequence can have? Finally, in a more empirical

direction and motivated by our findings on network motifs, it will

be interesting to characterize the kinds of network properties for

which the configuration model and our core-value model produce

systematically different results. Such comparisons can begin to pro-

vide insight into the broader consequences of our choice of null

models in network analysis.
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