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A method for classifying grain stress evolution behaviors using unsupervised
learning techniques is presented. The method is applied to analyze grain
stress histories measured in situ using high-energy x-ray diffraction micro-
scopy from the aluminum–lithium alloy Al-Li 2099 at the elastic–plastic
transition (yield). The unsupervised learning process automatically classified
the grain stress histories into four groups: major softening, no work-hardening
or -softening, moderate work-hardening, and major work-hardening. The
orientation and spatial dependence of these four groups are discussed. In
addition, the generality of the classification process to other samples is ex-
plored.

INTRODUCTION

The macroscopic constitutive response and failure
criteria of engineering alloys are dictated by the
behaviors of the individual grains that comprise the
material. To understand these behaviors, experi-
mental characterization techniques have advanced
to simultaneously measure the in situ microme-
chanical response of many individual grains, both
on the surface of samples in a scanning electron
microscope1–3 and in the bulk of samples using x-ray
techniques.4 A natural challenge that arises once
these data have been collected is how to efficiently
extract critical information about the constitutive
response. Previous research using these large
datasets has tended to the extremes: analyzing a
handful of grains in great detail5–9 or averaging
over the entire collection of grains probed.10–12

Driving these extremes are the limitations imposed
by manual analysis. Instead, we propose the use of
unsupervised learning techniques to distill the
ensemble behavior of all grains probed down to
fundamental descriptors. In this work, we demon-
strate the utility of this approach by analyzing the
tensile deformation behavior of �100 grains in the
aluminum–lithium alloy Al-Li 2099 through the
elastic–plastic transition (yield).

The application of machine learning to materials
science has been proposed as a path forward for
attaining new insights into engineering alloy behavior
and guiding the creation of new alloy systems.13 A
great deal of focus has been placed on building new
tools to link structure and properties in an automated
fashion in order to accelerate the materials design
process.14–18 However, as mentioned, other challenges
exist regarding the interpretation and analysis of the
large datasets that we can now gather using electron
microscopes, synchrotron x-ray and neutron facilities,
and large-scale numerical models. With these ‘big
data’, it can now be difficult to simply determine what
features are important in a dataset. Other researchers
have begun to attempt to address the challenge by
developing new methods to find critical deformation
behaviors in large datasets and to tie these to
microstructural features.19–21 Likewise, we present a
new method for classifying yield behavior from grain
stress histories in individual grains (which can
presently be both measured and modeled) using the
unsupervised learning techniques of principal compo-
nent analysis and clustering.

This paper will analyze grain stress data from the
Al-Li 2099 alloy, which has been previously studied
using more traditional methods, to unpack the
constituent grain stress behaviors.22 Al-Li alloys
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offer increased specific stiffness and strength, com-
pared to conventional aluminum alloys, making
them attractive for use in aerospace and spaceflight
applications. However, these alloys are also suscep-
tible to grain boundary cracking (known as delami-
nation fracture)23 that has been attributed to specific
grain pairings.24 The former study investigated these
mechanisms through the manual inspection of indi-
vidual grain stress responses measured in situ using
high-energy x-ray diffraction microscopy (HEDM)
during uniaxial tension. In the study, two clear grain
stress behaviors could be identified: a decrease in flow
stress at yield (softening) and continuous increases in
flow stress (work-hardening). As examples, Fig. 1
shows the evolution of the normal stress components
along the loading direction ryy with increasing
macroscopic strain e for representative grains of the
two behaviors. It was observed that the grains that
soften initially (display a yield point) were often
oriented primarily for crystallographic slip on a
single slip system, while hardening grains were
oriented for polyslip. However, challenges still
existed classifying the behavior of grains whose
behaviors were between the extremes, such as the
response also shown in Fig. 1. As will be shown,
unsupervised learning can aid classification of all
grains probed. With behaviors properly grouped,
unifying microstructural characteristics can be
determined for the development of constitutive rela-
tionships and state evolution equations.

The outline of the paper is as follows. The
‘‘Materials and Methods’’ section will briefly review
data collection and focus on processing of the grain
stress data. The ‘‘Results and Analysis’’ section will
present results regarding the classification of yield
behavior in Al-Li 2099 grains. The results will be
discussed and physically interpreted in the ‘‘Dis-
cussion’’ section, while a summary will be provided
in the ‘‘Summary’’ section.

MATERIALS AND METHODS

The data collection and stress calculations are
described in more detail in Ref. 22, but a short
summary follows. An Al-Li 2099 specimen was
deformed in uniaxial tension in displacement con-
trol at a rate of 10 nm/s to a final engineering strain
of 0.02. Prior to loading, the 3-dimensional grain
morphology was characterized using the box-beam
near-field HEDM technique.25,26 As the sample was
loaded, far-field HEDM scans were performed con-
tinuously from which elastic strain tensors27 of 110
grains were found at each scan. For analysis, only
grains with high confidence in the data were used
(completeness >0:9 and v2 <0:00527), leaving 76
grains. With scan lengths of approximately 5 min,
strain tensors from the grain set were measured at
21 points in the elastic regime and 27 points in the
plastic regime. The average stress in each grain was
then determined by evaluating the anisotropic form
of Hooke’s Law. Single-crystal moduli used were (in
GPa) C11 ¼ 110, C12 ¼ 58, and C44 ¼ 30. Lastly, to
facilitate analysis of crystallographic slip behavior,
the maximum resolved shear stress (mRSS, sM)
applied to the 12 [110]h111i FCC slip systems at
each measurement was calculated:

sM ¼ max ðr : ðs� nÞÞ: ð1Þ

In total, at the end of data collection and this
processing, the evolution of mRSS as a function of
macroscopic strain e for all grains probed was
attained.

To improve the efficacy of the unsupervised
behavior classification, the mRSS data sM were
denoised using total variation regularization.28,29

Denoised mRSS histories sM0 were found by mini-
mizing the function:

Z eF

eI

jdsM0 jdeþ k
2

Z eF

eI

ðsM0 � sMÞ2de ð2Þ

where eI and eF are initial and final strains. The
penalty term k provides a trade-off in the minimiza-
tion between regularization of the data (the first
term in Eq. 2) and data fidelity (the second term in
Eq. 2). A value of k ¼ 5 � 106 was selected for this
work. An example of raw data versus denoised data
is shown in Fig. 2, from which it can be seen that
the critical behaviors such as softening are still
captured, but the point-to-point variation has been
reduced. In addition, to focus on the grain behavior
at yield, eI and eF were chosen to be 0.002 and 0.008,
respectively, resulting in a time history of 16 values
for each grain. The inset of Fig. 2 shows an example
truncated mRSS history.

With the mRSS histories cleaned and extracted,
data from the high confidence grains were processed
using principal component analysis (PCA) in the
usual manner.30 A data matrix [X] was assembled
with each row consisting of a sM0 history

Fig. 1. Example histories of the stress evolution along the loading
direction (ryy ) from Al-Li 2099 measured using far-field HEDM during
in situ uniaxial tension. Shown are examples of softening, hardening,
and unclassified stress evolution behavior.
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creating a 76 � 16 matrix. The data matrix columns
were then normalized such that the mean of each

column was equal to 0 to create ½ ~X�. In this
organization of the mRSS data, each grain stress
history serves as an independent observation. Prin-
cipal component vectors fwjg were then calculated

as the eigenvectors of ½ ~X�T½ ~X�. The first three
principal component vectors were used to calculate
scores z for each grain history with a score defined
as:

zji ¼ fwjg � fsiM0 g: ð4Þ

For the dataset analyzed, 71.2%, 98.0%, and 99.8%
of the data variance are explained by use of one,
two, and three principal component vectors, respec-
tively, while inclusion of a fourth principal compo-
nent vector increases the explained data variance to
99.9%. Once scores for each grain stress history
were found, the grain behaviors were clustered
using the K-Means algorithm.30 The optimum num-
ber of clusters was determined by adding clusters
until diminishing returns were gained in the cost
function.

RESULTS AND ANALYSIS

The first three principal component vectors fwjg
are plotted versus macroscopic strain in Fig. 3, with
the principal vectors labeled A–C. We note that the
principal vectors are only unique to sign, and the
signs of each vector as plotted and used were chosen
to facilitate comparison to the mRSS histories. We

see in the figure that fwAg rises to saturation, fwBg
is relatively constant, and fwCg has a sharp oscil-
lation downwards with a return to the initial value.
The first three principal vectors appear to have
analogues to mRSS behaviors at the elastic–plastic
transition observed in the data, which will be
reflected in the scores found when projecting the
data against the principal vectors (noting the sign).
A positive score found when projecting a mRSS
history against fwAg indicates a smooth work-
hardening response, while a negative score indi-
cates a smooth softening response. A mRSS history
having a positive score when projected against fwCg
indicates a short softening transient, while a neg-
ative score indicates a work-hardening transient.
Lastly, since fwBg is relatively flat, large scores
when projected against fwBg indicate little evolu-
tion of the mRSS response once a grain has begun to
yield. As the principal vectors can be interpreted as
the vectors closest to the observation set,30 in this
case the mRSS histories, the resemblance to the
stress behaviors is not unexpected.

The scores for the grain mRSS histories were
calculated as described in the ‘‘Materials and Meth-
ods’’ section. Scatter plots of the data projected on to
the principal component vectors are shown in
Fig. 4a–c. There do not appear to be any trends in
the principal component B and C scores (zB versus
zC). The clearest trends appear in Fig. 4b (zA versus
zC) where the data are concentrated on a relatively
tight arc, which indicates that there appears to be a
correlation between how much of a smooth stress
evolution behavior (zA) and how much of a short
transient is necessary (zC) to capture an observed
mRSS response. Interestingly, both extreme ends of
the curve have positive values of zC, indicating a
softening transient existing in the data. We can also
see that these data appear to fall into four groups
separated along zA. K-Means clustering was used to

separate these four groups using the zA–zC

Fig. 2. An example of raw and denoised mRSS history (sM and sM 0 ).
Inset reduced subset of the mRSS data used in principal component
analysis.

Fig. 3. The first three principal component vectors fwjg plotted
versus macroscopic strain e.
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projection, and the groupings are shown in Fig. 4d.
While four groups appear to be present, analysis of
the K-Means objective found diminishing returns
with the inclusions of more than four clusters. In
the figure, blue corresponds to ‘Group 1’, red to
‘Group 2’, green to ‘Group 3’, and black to ‘Group 4’.
These colors will be used to identify these groups for
the rest of the paper. We note that the division of
behavior is primarily through the zA score (scores
separated along zA), however, the zA–zC projection
provides clearer groupings.

The mRSS histories of the four groups are plotted
in Fig. 5a–d. The average responses of each group of
histories are also shown with a dashed line in the
plots. As we see in the figure, the classification
process readily divided the grains into different
behavior sets. Group 1 histories correspond to
grains that show the most (major) softening, con-
sistent with the relatively large zC scores. Grains in
Group 2 show little work-hardening or -softening,
consistent with the zA and zC scores near 0. Group 3
grains show moderate amounts of work-hardening
which aligns well with the moderate and positive zA

scores and zC scores near 0. Lastly, Group 4 grains
show the most (major) work-hardening and have the
largest zA. These grains also have relatively large
positive zC scores, indicating that a short transient
softening was necessary to capture the behavior of
Group 4 grains.

DISCUSSION

The evolution of the maximum resolved shear
stress of grains in Al-Li 2099 was analyzed using
unsupervised learning techniques. The PCA classi-
fied the grains into four groups: (1) major softening,
(2) no work-hardening or -softening, (3) moderate
work-hardening, and (4) major work-hardening.
The unsupervised learning provided a more
nuanced view of the behavior classification than a
simple binary choice of hardening or softening,22

providing a new means with which to quantitatively
understand and classify constitutive response. As
we better classify grain responses, we can improve
our micromechanical models by ensuring that they
include the most critical features of the deformation
response. This is especially critical for modeling

Fig. 4. (a) Scatter plot of zA versus zB . (b) Scatter plot of zA versus zC . (c) Scatter plot of zB versus zC . (d) Scatter plot of zA versus zC colored
by groups found using K-Means clustering. Group 1 is blue, Group 2 is red, Group 3 is green, and Group 4 is black.
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complex processes such as strain localization,
believed to be intimately tied to the initiation of
fatigue and fracture, where multiple competing
hardening and softening behaviors may be occur-
ring simultaneously.

Orientation and Spatial Dependence of Grain
Behaviors

The orientation dependence of the mRSS response
of these grains has been previously studied.22

However, in light of the new behavior classifications
found using PCA, it is worth revisiting Fig. 6a–c in
more detail. Figure 6a shows the orientation of the
loading axis for all grains on an inverse pole
figure with each grain colored by the group label.
Figure 6b and c color the grain-loading axis orien-
tations by the principal vector A and C scores (zA

and zC), respectively. Generally, we see in Fig. 6b
that zA, correlated with long-transient hardening

behavior, has a strong orientation dependence.
Conversely, zC values in Fig. 6c, correlated with
short-transient softening, does not have a strong
orientation dependence.

The locations of both hardening grain groups
(Groups 3 and 4) are near the edges of the triangle.
Group 4 grains, which exhibited the most work-
hardening, are located near [111] and are the most
tightly co-located grains on the inverse pole fig-
ure (Fig. 6a). It has been well established that
grains loaded along [111] in FCC metals often
develop different microstructures in comparison to
other orientations.31–33 In a similar manner, the
classification process appears to indicate that the
hardening behavior is also markedly different than
other orientations. Since Group 4 grains also have
large zA scores, the largest zA scores are found near
[111] as expected. Group 3 grains that showed
moderate work-hardening are found near all three
high-symmetry directions: [100], [110], and [111].

Fig. 5. Denoised mRSS histories (sM 0 ) of grains in (a) Group 1, (b) Group 2, (c) Group 3, and (d) Group 4. The dashed line shows the average
response of each group.
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As these grains have a higher propensity for
polyslip, slip system interactions are likely the
cause of the observed work-hardening.

Both Group 1 and Group 2 grains are primarily
located near the center of the triangle in Fig. 6a. In
addition, there are grains in Groups 1 and 2 that
have the loading axis near the high-symmetry [110]
direction, but not near [111] or [100]. These two
groups appear to be interspersed, and there is not a
clear orientation dependence separating their
behaviors. The interspersion of Groups 1 and 2 on
the inverse pole figure indicate that another
microstructural feature other than orientation

may be dictating the difference in behavior; this is
also supported by Fig. 6c. Again, a large positive zC

score shows that a softening transient was in the
mRSS response, and that there is little orientation
dependence of these values. The spread of zC also
hints that softening may be more prevalent than
initial inspection would suggest. Grains in all
groups may show some amount of softening, but
the behavior is masked and dominated by the work-
hardening response (large zA). Therefore, the pro-
nounced softening in Group 1 is likely the result of a
microstructural feature not present in Group 2, in
addition to minimal work-hardening. Critically,
though, the present analysis appears to be able to
deconvolute these behaviors.

Other microstructural features to investigate are
the spatial position and size of grains in the sample.
Figure 7 shows two views of the grain morphology
measured using near-field HEDM colored by group
(voxel spacing of 5 lm). The rolling direction (RD),
transverse direction (TD), and normal direction
(ND) of the plate from which the sample was cut
are marked. Also, we note that faces normal to TD
and ND are free surfaces and the sample was loaded
along RD. By volume, Group 2 grains are most
prevalent. In addition, Group 2 grains are on
average about 10% larger than Group 1 grains
(Group 1 mean volume: 0.0126 mm3 and Group 2
mean volume: 0.0141 mm3). However, no clear
differences can be found between Groups 1 and 2.
As no obvious spatial differences between Group 1
and 2 appear, the difference between these grains
may exist at a lower length scale. More detailed
microscopy studies may be able to conclusively
determine the difference.

Grains in Groups 3 and 4 tend to be smaller than
those in Groups 1 and 2. The mean volume of Group
3 grains is 0:0083 mm3 and the mean volume of
Group 4 grains is 0:0120 mm3. The observation that
grains with behavior dominated by softening, and
planar slip, being larger in our analysis (in this
case, Groups 1 and 2) aligns with previous work.34

However, the ability to project measured stress
directly on to slip systems in situ and analyze the
data with unsupervised learning have demon-
strated that, in addition to grain size, grain orien-
tation and hardening behavior due to slip system
interactions are critical for interpreting grain defor-
mation behavior.

Applying Training to Other Samples

To explore the robustness of the classification
process, another set of mRSS histories from a
second sample (S2) that was loaded in the same
manner (uniaxial tension with a displacement rate
of 10 nm/s) as the primary sample (S1) was ana-
lyzed. The mRSS histories were scored using Eq. 4
and principal component vectors found from S1.
Used in this manner, S1 data were used as ‘training

Fig. 6. Orientation of the loading axis for the grains studies plotted
on inverse pole figures. (a) Loading axis orientations colored by
group. (b) Loading axis orientations colored by principal component
A score, zA. (c) Loading axis orientations colored by principal
component C score, zC .
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data’ for fitting the principal component projection
pre-processing step, which was then ‘tested’ on the
S2 data. The first three principal component vectors
found from S1 data explain 98.5% of the data
variance in S2. The zA and zC scores from S2 are
plotted in Fig. 8a and colored by group. We see that
the four groups of stress histories in roughly the
same location on the zA-zC projection were found in
S2. This finding shows that the four behaviors
identified were not specific to a single sample. To
emphasize this, Fig. 8b shows the average
responses �sM0 from the four grain behavior groups
in the two samples. In both samples, Group 1
corresponds to major softening, Group 2 to no work-
hardening or -softening, Group 3 to moderate work-

hardening, and Group 4 to major work-hardening.
The repeatability of the classification analysis helps
to provide confidence in the generality of the
conclusions in this work.

SUMMARY

A new unsupervised learning method for classi-
fying measured grain stress behaviors was pre-
sented. The method was applied to HEDM data
measured in situ from Al-Li 2099 deformed in
uniaxial tension. The automated process divided
the grain behaviors into four distinct groups. The
classification process indicated that grains with the
[111] direction aligned with the tensile axis hard-
ened in a distinctly different manner than all other

Fig. 7. Two views of the grain morphology in the sample studied colored by group.

Fig. 8. (a) Scatter plot of zA versus zC colored by groups found using K-Means clustering in Sample 2 (S2). (b) Comparison of average mRSS
histories �sM 0 from the 4 groups in the primary sample analyzed (S1, solid lines) and Sample 2 (S2, dash-dotted lines).
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grains. Also, grain stress softening behavior at yield
appears to be prevalent in more grains than initially
believed and correlated to a heterogeneous
microstructural feature other than orientation.
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