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ABSTRACT
We present a graph-based semi-supervised learning (SSL) method

for learning edge flows defined on a graph. Specifically, given flow

measurements on a subset of edges, we want to predict the flows

on the remaining edges. To this end, we develop a computational

framework that imposes certain constraints on the overall flows,

such as (approximate) flow conservation. These constraints render

our approach different from classical graph-based SSL for vertex

labels, which posits that tightly connected nodes share similar labels

and leverages the graph structure accordingly to extrapolate from

a few vertex labels to the unlabeled vertices.

We derive bounds for our method’s reconstruction error and

demonstrate its strong performance on synthetic and real-world

flow networks from transportation, physical infrastructure, and

the Web. Furthermore, we provide two active learning algorithms

for selecting informative edges on which to measure flow, which

has applications for optimal sensor deployment. The first strategy

selects edges to minimize the reconstruction error bound and works

well on flows that are approximately divergence-free. The second

approach clusters the graph and selects bottleneck edges that cross

cluster-boundaries, which works well on flows with global trends.
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1 INTRODUCTION
Semi-supervised learning (SSL) has been widely studied for large-

scale data mining applications, where the labeled data are often

difficult, expensive, or time consuming to obtain [36, 40]. SSL uti-

lizes both labeled and unlabeled data to improve prediction accuracy

by enforcing a smoothness constraint with respect to the intrinsic

structure among all data samples. Graph-based SSL is an important

branch of semi-supervised learning. It encodes the structure of data
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Figure 1: Left: classical graph-based semi-supervised learn-
ing for vertex labels. Right: Our framework of graph-based
semi-supervised learning for edge flows.

points with a similarity graph, where each vertex is a data sample

and each edge is the similarity between a pair of vertices (Fig. 1, left).

Such similarity graphs can either be derived from actual relational

data or be constructed from data features using k-nearest-neighbors,

ϵ-neighborhoods or Gaussian Random Fields [21, 39]. Graph-based

SSL is especially suited for learning problems that are naturally

defined on the vertices of a graph, including social networks [2],

web networks [23], and co-purchasing networks [14].

However, in many complex networks, the behavior of interest

is a dynamical process on the edges [30], such as a flow of energy,

signal, or mass. For instance, in transportation networks, we typ-

ically monitor the traffic on roads (edges) that connect different

intersections (vertices). Other examples include energy flows in

power grids, water flows in water supply networks, and data pack-

ets flowing between autonomous systems. Similar to vertex-based

data, edge flow data needs to be collected through dedicated sen-

sors or special protocols and can be expensive to obtain. Although

graph-theoretical tools like the line-graph [15] have been proposed

to analyze graph-based data from an edge-perspective [1, 10], the

problem of semi-supervised learning for edge flows has so far re-

ceived little attention, despite the large space of applications

Here we consider the problem of semi-supervised learning for

edge flows for networks with fixed topology. Given a network with

a vertex setV and edge set E, the (net) edge flows can be considered

as real-valued alternating functions f : V ×V → R, such that:

f (i, j ) =



−f (j, i ), ∀ (i, j ) ∈ E

0, otherwise.
(1)

As illustrated in Fig. 1, this problem is related to—yet fundamen-

tally different from—SSL in the vertex-space. Specifically, a key

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

761

https://doi.org/10.1145/3292500.3330872
https://doi.org/10.1145/3292500.3330872


assumption underlying classical vertex-based SSL is that tightly-

knit vertices are likely to share similar labels. This is often referred

to as the smoothness or cluster assumption [6].

However, naively translating this notion of smoothness to learn

edge flows leads to sub-optimal algorithms. As we will show in the

following sections, applying classical vertex-based SSL to a line-

graph [15], which encodes the adjacency relationships between

edges, often produces worse results than simply ignoring the ob-

served edges. Intuitively, the reason is that smoothness is not the

right condition for flow data: unlike a vertex label, each edge flow

carries an orientation which is represented by the sign of its numer-

ical flow value. Enforcing smoothness on the line-graph requires

the flow values on adjacent edges to be numerically close, which

does not reflect any insight into the underlying physical system.

To account for the different nature of edge data, we assume

different kinds of SSL constraints for edge flows. Specifically, we

focus on flows that are almost conserved or divergence-free—the
total amount of flow that enters a vertex should approximately

equal the flow that leaves. Given an arbitrary network and a set of

labeled edge flows EL, the unlabeled edge flows on EU are inferred

by minimizing a cost function based on the edge Laplacian Le
that measures divergence at all vertices. We provide the perfect

recovery condition for strictly divergence-free flows, and derive an

upper bound for the reconstruction error when a small perturbation

is added. We further show that this minimization problem can

be converted into a linear least-squares problem and thus solved

efficiently. Our method substantially outperforms two competing

baselines (including the line-graph approach) as measured by the

Pearson correlation coefficient between the inferred edge flows and

the observed ground truth on a variety of real-world datasets.

We further consider active semi-supervised learning for edge

flows, where we aim to select a fraction of edges that is most infor-

mative for inferring the flows on the remaining edges. An important

application of this problem is optimal sensor placement, where we

want to deploy flow sensors on a limited number of edges such

that the reconstructed edge flows are as accurate as possible. We

propose two active learning strategies and demonstrate substantial

performance gains over random edge selection. Finally, we discuss

how our methods can be extended to other types of structured edge

flows by highlighting connections with algebraic topology. We sum-

marize our main contributions as follows: (1) a semi-supervised

learning method for edge flows; (2) two active learning algorithms

for choosing informative edges; and (3) analysis of real-world data

that demonstrate the superiority of our method to alternatives.

2 METHODOLOGY
Given an undirected network with vertex setV , edge set E, and

a labeled set of edge flows on EL ⊆ E, our goal is to predict the

unlabeled edge flows EU ≡ E\EL. Although our assumption about

the data in this problem is different from classical graph-based SSL

for vertex labels, the associated matrix computations in the two

problems have striking similarities. In fact, we show in Section 5

that the similarity is mediated by deep connections to algebraic

topology. In this section, we first review classical vertex-based SSL

and then show how it relates to our edge-based method. Table 1

summarizes notation used throughout the paper.

Background onGraph-based SSL for Vertex Labels. In the SSL
problem for vertex labels, we are given the labels of a subset of ver-

ticesVL
, and our goal is to find a label assignment of the unlabeled

verticesVU
such that the labels vary smoothly across neighboring

vertices. Formally, this notion of smoothness (or the deviation from

it, respectively) can be defined via a loss function of the form
1

∥B⊺y∥2 =
∑

(i, j )∈E (yi − yj )
2, (2)

where y is the vector containing vertex labels, and B ∈ Rn×m is the

incidence matrix of the network, defined as follows. Consider the

edge set E = {E1, . . . ,Er , . . . ,Em } and, without loss of generality,

choose a reference orientation for every edge such that it points

from the vertex with the smaller index to the vertex with the larger

index. Then the incidence matrix B is defined as

Bkr =




1, Er ≡ (i, j ), k = i, i < j

−1, Er ≡ (i, j ), k = j, i < j

0, otherwise.

(3)

The loss function in Eq. (2) is the the sum-of-squares label difference

between all connected vertices. The loss can be written compactly

as ∥B⊺y∥2 = y⊺Ly in terms of the graph Laplacian L = BB⊺
.

In vertex-based SSL, unknown vertex labels are inferred by min-

imizing the quadratic form y⊺Ly with respect to y while keeping

the labeled vertices fixed.
2
Using ŷi to denote an observed label on

vertex i , the optimization problem is:

y∗ = argmin

y
∥B⊺y∥2 s.t. yi = ŷi , ∀Vi ∈ V

L. (4)

For connected graphs with more edges than vertices (m > n), Eq. (4)
has a unique solution provided at least one vertex is labeled.

2.1 Graph-Based SSL for Edge Flows
We now consider the SSL problem for edge flows. The edge flows

over a network can be represented with a vector f , where fr > 0 if

the flow orientation on edge r aligns with its reference orientation

and fr < 0 otherwise. In this sense, we are only accounting for the

net flow along an edge. We denote the ground truth (measured) edge

flows in the network as
ˆf . To impose a flow conservation assumption

for edge flows, we consider the divergence at each vertex, which is

the sum of outgoing flows minus the sum of incoming flows at a

vertex. For arbitrary edge flows f , the divergence on a vertex i is

(Bf )i =
∑

Er ∈E : Er≡(i, j ),i<j

fr −
∑

Er ∈E : Er≡(j,i ), j<i

fr .

To create a loss function for edge flows that enforces a notion of

flow-conservation, we use the sum-of-squares vertex divergence:

∥Bf ∥2 = f⊺B⊺Bf = f⊺Le f . (5)

Here Le = B⊺B is the so-called edge Laplacian matrix. Inter-

estingly, the loss function for penalizing divergence contains the

transpose of the incidence matrix B, which appeared in the measure

of smoothness in the vertex-based problem [cf. Eq. (2)]. However,

unlike the case for smooth vertex labels, requiring f⊺Le f = 0 is

actually under-constrained, i.e., even when more than one edge

1
All norms for vectors and matrices in this paper are the 2-norm.

2
This is the formulation of Zhu, Ghahramani, and Lafferty [39]. There are other graph-

based SSL methods [36]; however, most of them employ a similar loss-function based

on variants of the graph Laplacian L.
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Table 1: Summary of notation used throughout the paper.

Symbol Description
n ∈ N |V | = number of vertices

m ∈ N |E | = number of edges

o ∈ N |T | = number of triangles

mL ∈ N |EL | = number of labeled edges

mU ∈ N |EU | = number of unlabeled edges

c ∈ N m − n + 1 = number of independent cycles

i, j,k ∈ N vertex index

r , s, t ∈ N edge index

u ∈ N triangle index

α , β ,γ ∈ N index for spectral coefficient

y, ŷ ∈ Rn vertex labels, ground truth vertex labels

f , ˆf ∈ Rm edge flows, ground truth edge flows

w ∈ Ro function defined on triangles

B ∈ Rn×m node-edge incidence matrix (see Eq. (3))

C ∈ Rm×o edge-triangle curl matrix (see Eq. (15))

L ∈ Rn×n Laplacian L = BB⊺

Le ∈ Rm×m edge Laplacian Le = B⊺B

is labeled, many different divergence-free edge-flow assignments

may exist that induce zero loss. We thus propose to regularize the

problem and solve the following constrained optimization problem:

f∗ = argmin

f
∥Bf ∥2 + λ2 · ∥f ∥2 s.t. fr = ˆ

fr , ∀Er ∈ E
L. (6)

The first term in the objective function is the loss, while the second

term is a regularizer that guarantees a unique optimal solution.

Computation. The equality constraints in Eq. (6) can be elimi-

nated by reducing the number of free variables. Let f0 be a trivial
feasible point for Eq. (6) where f

0

r =
ˆ
fr if r ∈ EL and f

0

r = 0 oth-

erwise. Moreover, denote the set of indices for unlabeled edges as

EU = {EU
1
, EU

2
, . . . ,EU

mU
}. We define the expansion operator Φ as

a linear map from Rm
U

to Rm given by Φr s = 1 if Er = E
U

s and 0

otherwise. Let fU ∈ Rm
U

be the edge flows on the unlabeled edges.

Any feasible point for Eq. (6) can be written as f0 + ΦfU, and the
original problem can be converted to a linear least-squares problem:

fU∗ = argmin

fU








[
BΦ
λ · I

]
fU −

[
−Bf0

0

]






2

. (7)

Typically, B is a large sparse matrix. Thus, the least-squares problem

in Eq. (7) can be solved with iterative methods such as LSQR [27]

or LSMR [11], which is guaranteed to converge inmU
iterations.

Those iterative solvers use sparse matrix-vector multiplication as

subroutine, with O (m) computational cost per iteration. By choos-

ing λ > 0, Eq. (7) can be made well-conditioned, and the iterative

methods will only take a small number of iterations to converge.

2.2 Spectral Graph Theory Interpretations
We first briefly review graph signal processing in the vertex-space

before introducing similar tools to deal with edge flows. The eigen-

vectors of the Laplacian matrix have been widely used in graph

signal processing for vertex labels, since the corresponding eigenval-

ues carry a notion of frequency that provides a sound mathematical

and intuitive basis for analyzing functions on vertices [26, 32]. The

spectral decomposition of the graph Laplacianmatrix is L = U Λ U⊺
.

Figure 2: Singular vectors for the incidence matrix B of an
example graph. Top: the left singular vectors forma basis for
vertex labels. Numerical values are encoded by color of the
vertices. Middle: singular values represent the “frequencies”
of left singular vectors or the divergences of right singular
vectors. Bottom: right singular vectors form a basis for edge
flows, where the arrow points to the flow direction and the
edge-width encodes the magnitude of the flow.

Because L = BB⊺
, the orthonormal basis U ∈ Rn×n for vertex la-

bels is formed by the left singular vectors of the incidence matrix:

B = U Σ V⊺
, where Σ ∈ Rn×m is the diagonal matrix of ordered

singular values withm − n columns of zero-padding on the right,

and the right singular vectors V ∈ Rm×m is an orthonormal basis

for edge flows. To simplify our discussion, we will say that the basis

vectors in the lastm − n columns of V also have singular value 0.

The divergence-minimizing objective in Eq. (6) can be rewritten

in terms of the right singular vectors of B, thus providing a for-

mal connection between the vertex-based and the edge-based SSL

problem. Let p = V⊺f ∈ Rm represent the spectral coefficients of f
expressed in terms of the basis V. Then, we can rewrite Eq. (6) as

f∗ = V · argmin

p
(Vp)⊺B⊺B (Vp) + λ2 · (Vp)⊺ (Vp)

= V · argmin

p
p⊺
(
Σ⊺Σ + λ2 · I

)
p

= V · argmin

p
λ2 ·
∑
α

σ 2

α + λ
2

λ2
p2α

s.t. (Vp)r = ˆ
fr , ∀Er ∈ E

L, (8)

which minimizes the weighted sum-of-square of the spectral coeffi-

cients under equality constraints for measured edge flows.

Signal smoothness, cut-space, and cycle space. The connec-

tion between the vertex and edge-based problem is in fact not just

a formal relationship, but can be given a clear (physical) interpre-

tation. By construction V is a complete orthonormal basis for the

space of edge flows (here identified with Rm ). This space can be

decomposed into two orthogonal subspaces (see also Fig. 2).

The first subspace is the cut-space R = im(B⊺) [15], spanned by

the singular vectors VR associated with nonzero singular values.

The space R is also called the space of gradient flows, since any

vector may be written as B⊺y, where y is a vector of vertex scalar

potentials that induce a gradient flow. The second subspace is the
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cycle-space C = ker(B) [15], spanned by the remaining right sin-

gular vectors VC associated with zero singular values. Note that

any vector f ∈ C corresponds to a circulation of flow, and will

induce zero cost in our loss function Eq. (5). In fact, for a connected

graph, the number of right singular vectors with zero singular val-

ues equals c =m−n+1, which is the number of independent cycles

in the graph. We denote the spectral coefficients for basis vectors

in these two spaces as pR ∈ Rm−c and pC ∈ Rc .
Let uα ,σα , vα denote a triple of a left singular vector, singular

value, and right singular vector. The singular values u⊺α L uα = σ 2

α
provide a notion of “unsmoothness” of basis vector uα represent-

ing vertex labels, while v⊺α Le vα = σ 2

α gives the sum-of-squares

divergence of basis vector vα representing edge flows. As an ex-

ample, Fig. 2 displays the left and right singular vectors of a small

graph. The two singular basis vectors v7 and v8 associated with

zero singular values correspond to cyclic edge flows in the network.

The remaining flows vi , i = 1, . . . , 6—corresponding to non-zero

singular values—all have a non-zero divergence. Note also how the

left singular vectors ui associated with non-zero singular values

give rise to the right singular vectors vi = 1/σi ·B⊺ui for i = 1, . . . 6.

As the singular vectors ui can be interpreted as potential on the

nodes, this highlights that the cut-space is indeed equivalent to the

space of gradient flows (note that u7 induces no gradient).

2.3 Exact and perturbed recovery
From the above discussion, we can derive an exact recovery condi-

tion for the edge flows in the divergence-free setting.

Lemma 2.1. Assume the ground truth flows are divergence-free.
Then as λ → 0, the solution of Eq. (8) can exactly recover the ground
truth from some labeled edge set EL with cardinality c =m − n + 1.

Proof. If the ground truth edge flows are divergence free (cyclic),

the spectral coefficients of the basis vectors with non-zero singular

values must be zero. Recall that pC ∈ Rc are the spectral coefficients

of a basis VC in the cycle-space, then the ground truth edge flows

can be written as
ˆf = VCpC (the singular vectors VC that form the

basis of the the cycle space are not unique as the singular values

are “degenerate”; any orthogonal transformation is also valid). On

the other hand, in the limit λ → 0, the spectral coefficients of basis

vectors with non-zero singular values have infinite weights and are

forced to zero [cf. Eq. (8)]. Therefore, by choosing the set of labeled

edges corresponding to c = m − n + 1 linearly independent rows

from VC , the ground truth
ˆf is the unique optimal solution. □

Furthermore, when a perturbation is added to divergence-free

edge flows f , the reconstruction error can be bounded as follows.

Theorem 2.2. Let VL

C
denote c linearly independent rows of the

VC that correspond to labeled edges. If the divergence-free edge flows
f are perturbed by δ , then as λ → 0, the reconstruction error of the
proposed algorithm is bounded by [σ−1

min
(VL

C
) + 1] · ∥δ ∥.

Proof. The ground truth edge flows can be written as,

ˆf = f + δ =
[
fL

fU

]
+

[
δL

δU

]
, (9)

where fL, fU are the divergence-free edge flows on labeled and

unlabeled edges, while δL, δU are the corresponding perturbations.

Figure 3: Synthetic traffic flow in Minnesota road network;
40% of the edges are labeled and their flow is plotted in black.
The remaining red edge flows are inferred with our algo-
rithm. Thewidth of each arrow is proportional to themagni-
tude of flow on the edge. The Pearson correlation coefficient
between the inferred flows f∗ and the ground truth ˆf is 0.956.

Further, the reconstructed edge flows from Eq. (8) are given by

VC (VL

C
)−1 (fL + δL). Therefore, we can bound the norm of the

reconstruction error as follows:

∥VC (VL

C
)−1 (fL + δL) − (f + δ )∥ = ∥VC (VL

C
)−1δL − δ ∥

≤ ∥VC (VL

C
)−1δL∥ + ∥δ ∥ = ∥ (VL

C
)−1δL∥ + ∥δ ∥

≤ ∥ (VL

C
)−1∥ · ∥δL∥ + ∥δ ∥ ≤ [∥ (VL

C
)−1∥ + 1] · ∥δ ∥. (10)

The first equality in Eq. (10) comes from Lemma 2.1, and the

second equality is due to the orthonormal columns of VC . Finally,
the norm of a matrix equals its largest singular value, and the

singular values of the matrix inverse are the reciprocals of the

singular values of the original matrix. Therefore, we can rewrite

Eq. (10) as follows

[∥ (VL

C
)−1∥ + 1] · ∥δ ∥ = [σmax ((VL

C
)−1) + 1] · ∥δ ∥

= [σ−1
min

(VL

C
) + 1] · ∥δ ∥. (11)

□

3 SEMI-SUPERVISED LEARNING RESULTS
Having discussed the theory and computations underpinning our

method, we now examine its application on a collection of networks

with synthetic and real-world edge flows. As our method is based on

a notion of divergence-free edge flows, naturally we find the most

accurate edge flow estimates when this assumption approximately

holds. For experiments in this section, the labeled sets of edges

are chosen uniformly at random. In Section 4, we provide active

learning algorithms for selecting where to measure.

3.1 Learning Synthetic Edge Flows
Flow Network Setup. In our first set of experiments, the net-

work topology comes from real data, but we use synthetic flows to

demonstrate our method. Later, we examine edge flows from real-

world measurements. We use the following four network topologies

in our synthetic flow examples: (1) The Minnesota road network

where edges are roads and vertices are intersections (n = 2642,m =
3303) [13]; (2) The US power grid network from KONECT, where

vertices are power stations or individual consumers and edges are
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Figure 4: Graph-based SSL for synthetic flows. The plots
show the correlation between the estimated flow vector f∗

and the synthetic ground truth edge flows ˆf as a function of
the ratio of labeled edges.

transmission lines (n = 4941,m = 6593) [22]; (3) The water irriga-

tion network of Balerma city in Spain where vertices are water sup-

plies or hydrants and edges are water pipes (n = 447,m = 454) [28];

and (4) An autonomous system network (n = 520,m = 1280) [24].

For each network, we first perform an SVD on its incidence

matrix to get the edge-space basis vectors V. The synthetic edge
flows are then created by specifying the spectral coefficients p,
i.e., the mixture of these basis vectors. Recall from Section 2.2 that

the singular values associated with the basis vectors measure the

magnitude of the divergence of each of these flow vectors. To obtain

a divergence-free flow, the spectral coefficients for all basis vectors

VR spanning the cut space (associated with a nonzero singular

value) should thus be set to zero. However, to mimic the fact that

most real-world edge flows are not perfectly divergence-free, we

do not set the spectral coefficients for the basis vectors in VR to

zero. Instead, we create synthetic flows with spectral coefficients

for each basis vector (indexed by α ) that are inversely proportional

to the associated singular values σα :

pα =
b

σα + ϵ
, (12)

where b is a parameter that controls the overall magnitude of the

edge flows and ϵ is a damping factor. We choose b = 0.02, ϵ = 0.1

in all examples shown in this paper.

PerformanceMeasurement and Baselines. Using the synthetic
edge flows as our ground truth

ˆf , we conduct numerical experiments

by selecting a fraction of edges uniformly at random as the labeled

edges EL, and using our method to infer the edge flow on the

unlabeled edges EU. To quantify the accuracy of the inferred edge

flows, we use the Pearson correlation coefficient ρ between the

ground truth edge flows
ˆf and the inferred edge flow f∗.3 The

regulation parameter λ in Eq. (6) is 0.1. To illustrate the results,

Fig. 3 shows inferred traffic flows on the Minnesota road network.

3
Consistent results are obtained with other accuracy metrics, e.g., the relative L2 error.
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Figure 5: Graph-based SSL for real-world traffic flows. We
plot the correlation between the estimated flow f∗ and the
ground truth ˆf measured in four transportation networks,
as a function of the ratio of labeled edges. Our FlowSSL out-
performs the baselines except in Chicago, which has a large
flow component in the cut space (Fig. 6).

We compare our algorithm against two baselines. First, the

ZeroFill baseline simply assigns 0 edge flows to all unlabeled edges.

Second, the LineGraph baseline uses a line-graph transformation

of the network and then applies standard vertex-based SSL on the

resulting graph. More specifically, the original network is trans-

formed into an undirected line-graph, where there is a vertex for

each edge in the original network; two vertices in the line-graph are

connected if the corresponding two edges in the original network

share a vertex. Flow values (including sign) on the edges in the

original network are the labels on the corresponding vertices in

the transformed line-graph. Unlabeled edge flows are then inferred

with a classical vertex-based SSL algorithm on the line-graph [39].

Results. We test the performance of our algorithm FlowSSL and the
two baseline methods for different ratios of labeled edges (Fig. 4).

The LineGraph approach performs no better than ZeroFill. This

should not be surprising, since the LineGraph approach does not

interpret the sign of an edge flow as an orientation but simply as part

of a numerical label. On the other hand, our algorithm out-performs

both baselines considerably. FlowSSL works especially well on the

Minnesota road network and the Balerma water supply network,

which have small average degree ⟨d⟩. The intuitive reason is that the
dimension of the cycle space ism−n+1 = n(⟨d⟩/2−1)+1; therefore,
low-degree graphs have fewer degrees of freedom associated with

a zero penalty in the objective Eq. (6).

3.2 Learning Real-World Traffic Flows
We now consider actual, measured flows rather than synthetically

generated flows. Accordingly, our assumption of approximately

divergence-free flows may or may not be valid. We consider trans-

portation networks and associated measured traffic flows from four

cities (Anaheim, Barcelona, Winnipeg, and Chicago) [35]. To test

our method, we repeat the same procedure we used for processing
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Figure 6: The normalized spectral coefficients of real-world
and synthetic edge flows (Eq. (12)). The spectral coefficients
are ordered by increasing singular values and plotted as a
function of the percentile ranking. The basis vectors in the
cycle-space VC (lower percentile) all have zero singular val-
ues. The real-world traffic flow’s spectral coefficients are
taken in absolute value and normalized so that the root-
mean-square of pC (the spectral coefficients in cycle-space)
equals 0.2. The different rates of decay in spectral coeffi-
cients leads to different performance of our method (Fig. 5).

synthetic flows in Section 3.1 with these real-world measured flows.

Figure 5 displays the results.

Our algorithm performs substantially better than the baselines

on three out of four transportation networks with real-world flows.

It performs worse than the baseline on the Chicago road network.

To understand this phenomenon, we compare the spectral coeffi-

cients of the real-world traffic flows in four cities with the “damped-

inverse” synthetic spectral coefficients from Eq. (12) (see Fig. 6). We

immediately see that the real-world spectral coefficients p̂α do not

significantly decay with increasing singular value in the Chicago

network, in contrast to the other networks. Formally, we measure

how much the real-world edge flows deviate from our divergence-

free assumption by computing the spectral ratio ∥pR ∥/∥pC ∥ be-
tween the norms of the spectral coefficients in the cut-space and the

cycle-space. The ratios in the first three cities are all below 1.0, indi-

cating divergence-free flow is the dominating component. However,

the spectral ratio of traffic flows in Chicago is approximately 1.7,

which explains why our method fails to give accurate predictions.

Moreover, in the Chicago network, the spectral coefficients p̂α with

the largest magnitude are actually concentrated in the cut-space

basis vectors (with smallest singular values). Later, we show how

to improve our results by strategically choosing edges on which to

measure flow, rather than selecting edges at random (Section 4.1).

3.3 Information Flow Networks
Thus far we have focused on networks embedded in space, where

the edges represent some media through which physical units flow

between the vertices. Now we demonstrate the applicability of our
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Figure 7: Graph-based SSL for real-world flows among songs
and artists in a music playlists. The plots show the correla-
tion between the estimated flow vector f∗ and the ground
truth ˆf on flow networks of songs and artists on a music
streaming service. Even though the flows are not physical,
FlowSSL method still outperforms the baselines.

method to information networks by considering the edge-based

SSL problem for predicting transitions among songs in a user’s

play sequence on Last.fm
4
. A user’s play sequence consists of a

chronologically ordered sequence of songs he/she listened to, and

a song may repeatedly show up. Taking the playlist of a user, we

represent each unique song as a vertex in graph, and we connect

two vertices if they are adjacent somewhere in the playlist. The

ground truth flows is constructed as follows: every time the user

plays song A followed by song B, add one unit of flow from A to B.
We similarly constructed a flow network that records the transition

among the artists of songs. The flow networks constructed here

are close to divergence-free, since every time a user transitions

to a song or artist, he/she typically transition out by listening to

other ones. We used the same set of experiments to evaluate flow

prediction for these networks (Fig. 7). Our method outperforms the

baselines, despite the flows are not from physical systems.

4 ACTIVE SEMI-SUPERVISED LEARNING
We now focus on the problem of selecting the set of labeled edges

that is most helpful in determining the overall edge flows in a net-

work. While selecting the most informative set of labeled vertices

has beenwell studied in the context of vertex-based semi-supervised

learning [12, 18], active learning in the edge-space remains largely

under-explored. Traffic flows are typically monitored by road de-

tectors, but installation and maintenance costs often prevent the

deployment of these detectors on the entire transportation network.

In this scenario, solving the active learning problem in the edge-

space enables us to choose an optimal set of roads to deploy sensors

under a limited budget.

4.1 Two active learning algorithms
We develop two active semi-supervised learning algorithms for se-

lecting edges to measure. These algorithms improve the robustness

of our method for learning edge flows.

Rank-revealing QR (RRQR). According to Theorem 2.2, the up-

per bound of the reconstruction error decreases as the smallest

singular value of VL

C
increases. Therefore, one strategy for select-

ing EL is to choosemL
rows fromV0 that maximize the smallest

singular value of the resulting submatrix. This problem is known

4
This dataset is from https://www.last.fm/.
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as optimal column subset selection (maximum submatrix volume)

and is NP-hard [7]. However, a good heuristic is the rank revealing

QR decomposition (RRQR) [5], which computes

V⊺
C
Π = Q

[
R1 R2

]
. (13)

Here, Π is a permutation matrix that keeps R1 well-conditioned.
Each column permutation in Π corresponds to an edge, and the re-

sulting edge set EL for active learning chooses the firstmL
columns

of Π. This approach is mathematically similar to graph clustering al-

gorithms that use RRQR to select representative vertices for cluster

centers [9]. The computational cost of RRQR is O (m3).

Recursive Bisection (RB). In many real-world flow networks,

there exist a global trend of flows across different cluster of vertices.

For example, traffic during morning rush hour flows from rural to

urban regions or electricity flows from industrial power plants to

residential households. The spectral projection of such global trends

is concentrated on singular vectors v ∈ VR with small singular

values corresponding to gradient flows (e.g., v6 in Fig. 2), as was

the case with the Chicago traffic flows (Fig. 6).

Building on this observation, our second active learning algo-

rithm uses a heuristic recursive bisection (RB) approach for select-

ing labeled edges.
5
The intuition behind this heuristic is that edge

flows on bottleneck-edges, which partition a network, are able to

capture global trends in the networks’ flow pattern. We start with

an empty labeled set EL, a target number of labeled edgesmL
, and

the whole graph as one single cluster. Next, we recursively partition

the largest cluster in the graph with spectral clustering and add

every edge that connects the two resulting clusters into EL, until

we reach the target number of labeled edges. Similar methods have

been shown to be effective in semi-supervised active learning for

vertex labels [18]; in these cases, the graph is first clustered, and

then one vertex is selected from each cluster. While any other graph

partitioning algorithm could be used and greedy recursive bisection

approaches can be sub-optimal [33], we find that this simple meth-

ods works well in practice on our datasets, and its iterative nature

is convenient for selecting a target number of edges. The computa-

tional cost of the recursive bisection algorithm is O (m logn).

4.2 Results
We repeat the experiments in Section 3 on traffic networks with

labeled edges EL selected by our RRQR and RB algorithms. For

comparison, the ZeroFill approach with randomly selected labeled

edges is included as a baseline. Our RRQR algorithm outperforms

both recursive bisection and random selection for networks with

synthetic edge flows, where the divergence-free condition on ver-

tices approximately holds (Fig. 8). However, for networks with

real-world edges flows, RRQR performs poorly, indicating that the

divergence-free condition is too strong an assumption (Fig. 9). In

this case, our RB method consistently outperforms the baselines,

especially for small numbers of labels.

To provide additional intuition for the RB algorithm, we plot

the selected labeled edges and the final clusters in the Winnipeg

and Chicago network when allowing 10% of edges to be labeled

(Fig. 10). The correlation coefficients resulting from random edge

5
We call this algorithm recursive bisection although it does not necessarily gives two

clusters with the same number of vertices.
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Figure 8: Graph-based semi-supervised active learning for
synthetic flows. The plots show the Pearson correlation co-
efficients between the estimated flow vector f∗ and the syn-
thetic ground truth edge flows ˆf as a function of the ratio of
labeled edges. Our rank-revealing QR (RRQR) active learn-
ing performs well on synthetic datasets.
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Figure 9: Graph-based semi-supervised active learning for
real-world traffic flows. The plots show the Pearson correla-
tion coefficients between the estimated flow vector f∗ and
the ground truth ˆf measured in four transportation net-
works, as a function of the ratio of labeled edges. With our
Recursive Bisection (RB) active learning method to select
edges, we now perform better than the baseline (ZeroFill)
on the Chicago traffic dataset (cf. Fig. 5).

selection and RB active learning are ρ
rand
= 0.371 and ρRB = 0.580

for the Winnipeg road network, respectively. For the Chicago road

network we obtain correlations of ρ
rand
= 0.151 and ρRB = 0.718.

Thus, the active learning strategy alleviates our prior issues with

learning on the Chicago road network by strategically choosing

where to measure edge flows.
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Figure 10: The clusters discovered by our recursive bisec-
tion algorithm in Winnipeg (left) and Chicago (right) road
networks, where the vertex coordinates are computed by
spectral-embedding. In eachnetwork, 10% of the edges are se-
lected as the labeled set EL and the ground truth edge flows
on those edges are plotted as black arrows.

5 EXTENSIONS TO CYCLIC-FREE FLOWS
Thus far, our working assumption has been that edge flows are ap-

proximately divergence-free. However, we might also be interested

in the opposite scenario, if we study a system inwhich circular flows

should not be present. Below we view our method through the lens

of basic combinatorial Hodge theory. This viewpoint illuminates

further how our previous method is a projection onto the space of

divergence-free edge flows. By projecting into the complementary

subspace, we can therefore learn flows that are (approximately)

cycle-free. We highlight the utility of this idea through a problem of

fair pricing of foreign currency exchange rates, where the cycle-free

condition eliminates arbitrage opportunities.

5.1 The Hodge decomposition
Let f be a vector of edge flows. The Hodge decomposition provides

an orthogonal decomposition of f [25, 29]:

f︸︷︷︸
edge flow

=

gradient flow︷︸︸︷
B⊺y ⊕

divergence-free flow︷                          ︸︸                          ︷
Cw︸︷︷︸

curl flow

⊕ h︸︷︷︸
harmonic flow

(14)

where the matrix C ∈ Rm×o (called the curl operator) maps edge

flows to curl around a triangle,

Cru =




1, Tu ≡ (i, j,k ), Er ≡ (i, j ), i < j < k

1, Tu ≡ (i, j,k ), Er ≡ (j,k ), i < j < k

−1, Tu ≡ (i, j,k ), Er ≡ (i,k ), i < j < k

0, otherwise

(15)

and (B⊺B + CC⊺)h = 0. Here, the gradient flow component is zero

if and only if f is a divergence-free flow. Thus far, we have focused
on controlling the gradient flow; specifically, the objective function

in Eq. (6) penalizes a solution f where ∥Bf ∥ is large.
We can alternatively look at other components of the flow given

by the Hodge decomposition. In Eq. (14), the “curl flow” captures all

flows that can be composed of flows around triangles in the graph.

This component is zero if the sum of edge flows given by f around
every triangle is 0. Combining Eqs. (1) and (15), the curl of a flow

on triangle Tu = (i, j,k ) with oriented edges (i, j ), (j,k ), and (i,k )
is [C⊺f]u = f (i, j ) + f (j,k ) − f (i,k ) = f (i, j ) + f (j,k ) + f (k, i ).

Figure 11: Exchange
rates and fair rates in
a currency exchange
market. Rates are
normalized so that
bid and ask are 0.5
and -0.5. We find
fair trading prices by
penalizing curl flow
in the exchange.

Finally, the vector h is called the harmonic flow and measures

flows that cannot be constructed from a linear combination of

gradient and curl flows. Projecting edge flows onto the space of

gradient flows is the HodgeRank method for ranking with pairwise

comparisons [20]. In the next section, we use ∥C⊺f ∥ as part of an
objective function to alternatively learn flows that have small curl.

5.2 An application to Arbitrage-Free Pricing
We demonstrate an application of edge-based learning with a dif-

ferent type of flow constraint. In this case study, edge flows are

currency exchange rates, where participants buy, sell, exchange,

and speculate on foreign currencies. Every pair of currencies has

two exchange rates: the bid is the rate at which the market is pre-

pared to buy a specific currency pair. The ask is the rate at which

the market is prepared to sell a specific currency pair. There is also

a third widely used exchange rate called the “middle rate,” which is

the average of the bid and ask, is often used as the price to facilitate

a trade between currencies. An important principle in an efficient

market is the no-arbitrage condition, which states that it is not

possible to obtain net gains by a sequence of currency conversions.

Although the middle rates are widely accepted as a “fair” rate, they

do not always form an arbitrage-free market. For example, in a

dataset of exchange rates between the 25 most traded currencies at

2018/10/05 17:00 UTC [8], the middle rates for CAD/EUR, EUR/JPY

and JPY/CAD were 0.671200, 130.852 and 0.0113876, respectively.

Therefore, a trader successively executing these three transactions

would yield 1.000146 CAD from a 1 CAD investment.

Here we show how to construct a “fair” set of exchange rates

that is arbitrage-free. We first encode the exchange rates as a

flow network. Each currency is a vertex, and for each pair of cur-

rencies A and B with exchange rate rA/B, we connect A and B

with log(rA/B) units of edge flow from A to B, which ensures that

f (A,B) = −f (B,A). The resulting exchange network is fully con-

nected. Under this setup, the arbitrage-free condition translates into

requiring the edge flows in the exchange network to be cycle-free.

We can constrain the edge flows on every triangle to sum to 0 by

the curl-free condition ∥C⊺f ∥ = 0. Moreover, in a fully connected

network, curl-free flows are cycle-free. Thus, we propose to set

fair rates by minimizing the curl over all triangles, subject to the

constraint that the fair price lies between the bid and ask prices:

f∗ = argmin

f
∥C⊺f ∥2 + λ2 · ∥f − fmid∥2 s.t. fbid ≤ f ≤ fask. (16)

The second term in the objective ensures that the minimization

problem is not under-determined. In our experiments, λ = 1.0 ·10−3

and we solve the convex quadratic program with linear constraints
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using the Gurobi solver. Unlike the middle rate, which is com-

puted only using the bid/ask rates of one particular currency pair,

the solution to the optimization problem above accounts for all
bid/ask rates in the market to determine the fair exchange rate.

Figure 11 shows the fair exchange rates, and the computed rates

for CAD/EUR, EUR/JPY and JPY/CAD are 0.671169, 130.845 and

0.0113871, respectively, removing the arbitrage opportunity.

6 RELATEDWORK
The Laplacian L appears in many graph-based SSL algorithms to

enforce smooth signals in the vertex space of the graph. Gaussian

Random Fields [39] and Laplacian Regulation [4] are two early

examples, and there are several extensions [34, 37]. However, these

all focus on learning vertex labels and, as we have seen, directly

applying ideas from vertex-based SSL to learn edge flows on the

line-graph does not performwell. In the context of signal processing

on graphs, there exist preliminary edge-space analysis [3, 31, 38],

but semi-supervised or active learning are not considered.

In terms of active learning, several graph-based active semi-

supervised algorithms have been designed for learning vertex la-

bels, based on error bound minimization [16], submodular optimiza-

tion [17], or variance minimization [19]. Graph sampling theory

under spectral assumptions has also been an effective strategy [12].

Similarly, in Section 2.2, we give exact recovery conditions and de-

rive error bounds for our method assuming the spectral coefficients

of the basis vectors representing potential flows are approximately

zero, which motivated our use of RRQR for selecting representative

edges. There are also clustering heuristics for picking vertices [18];

in contrast, we use clustering to choose informative edges.

7 DISCUSSION
We developed a graph-based semi-supervised learning method for

edge flows. Our method is based on imposing interpretable flow

constraints to reflect properties of the underlying systems. These

constraints may correspond to enforcing divergence-free flows in

the case of flow-conserving transportation systems, or non-cyclic

flows as in the case of efficient markets. Our method permits spec-

tral analysis for deriving exact recovery condition and bounding re-

construction error, provided that the edge flows are indeed (nearly)

divergence free. On a number of synthetic and real-world prob-

lems, our method substantially outperforms competing baselines.

Furthermore, we explored two active semi-supervised learning algo-

rithms for edge flows. The RRQR strategy works well for synthetic

flows, while a recursive partitioning approach works well on real-

world datasets. The latter result hints at additional structure in the

real-world data that we can exploit for better algorithms.
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A APPENDIX
Here we provide some implementation details of our method to

help readers reproduce and further understand the algorithms and

experiments in this paper. First, we present the solvers for learning

edge flows in divergence-free and curl-free networks. Then, we

further discuss the active learning algorithms used for selecting

informative edges. All of the algorithms used in this paper are

implemented in Julia 1.0.

A.1 Graph-Based SSL for Edge Flows
We created a Julia module NetworkOP for processing edge flows

in networks. It contains a FlowNetwork class which records the

vertices, edges and triangles of a graph as three ordered dictionar-

ies.
6
The NetworkOP also provides many convenience functions,

such as computing the incident matrix of a FlowNetwork object.

Such functions greatly simplify our implementations for learning

unlabeled edge flows. In this part, we assume the labeled edges are

given. In Appendix A.2 we show algorithms for selecting edges.

1 using SparseArrays , NetworkOP;

2 using LinearMaps , IterativeSolvers;

3

4 function ssl_df(A:: SparseMatrixCSC{Float64 ,Int64},

5 F:: SparseMatrixCSC{Float64 ,Int64},

6 IdU:: Vector{Int64}, lambda =1.0e-1)

7 # A: adjacent matrix of the graph

8 # F: anti -symmetric matrix for ground truth flows

9 # IdU: list of indices for unlabeled edges

10

11 # create a flow network object

12 FN = NetworkOP.FlowNetwork(A);

13 n = length(FN.VV); # n: number of vertices

14 m = length(FN.EE); # m: number of edges

15

16 # assemble edge flows to vector

17 fhat = NetworkOP.mat2vec(FN ,F);

18 # the trival solution for Eq.(6)

19 f0 = collect(fhat); f0[IdU] = zeros(length(IdU));

20 # the incidence matrix for network

21 B = NetworkOP.mat_div(FN);

22 # expansion operator \Psi and its transpose

23 expand = ff ->collect(sparsevec(IdU ,ff ,m));

24 select = ff ->ff[IdU];

25

26 # the operator in iterative least -squares problem

27 map = LinearMap{Float64 };

28 op = map(ff->vcat(B*expand(ff), lambda*ff),

29 pp ->select(B'*pp[1:n]) + lambda*pp[n+1: end],

30 n+length(IdU), length(IdU);

31 ismutating=false );

32 # infer edge flows on unlabeled edges with LSQR

33 fU = lsqr(op , vcat(-B*f0, zeros(length(IdU ))));

34 # fstar: the inferred edge flow vector

35 fstar = f0 + expand(fU);

36

37 return fstar;

38 end

Figure 12: Code snippet for inferring edge flows in a
divergence-free network by solving a least-squares problem.

6
Although we considered unweighted graphs in this work, we choose ordered dictio-

naries over lists for future exploration of weighted graphs.

1 using SparseArrays , NetworkOP;

2 using JuMP , Gurobi;

3

4 function ssl_cf(A:: SparseMatrixCSC{Float64 ,Int64},

5 bid:: Vector{Float64},

6 mid:: Vector{Float64},

7 ask:: Vector{Float64}, lambda =1.0e-3)

8 # A: adjacent matrix of the graph

9 # bid: flow vector f^{bid} representing bid rate

10 # mid: flow vector f^{mid} representing middle rate

11 # ask: flow vector f^{ask} representing ask rate

12

13 # create a flow network object

14 FN = NetworkOP.FlowNetwork(A);

15 n = length(FN.VV); # n: number of vertices

16 m = length(FN.EE); # m: number of edges

17 # map from edge to edge -index

18 e2id = Dict(e=>i for (i,e) in enumerate(keys(FN.EE)));

19

20 model = Model(solver=GurobiSolver(Presolve =0));

21 # variables are the fair exchange rates

22 @variable(model , bid[i] <= f[i=1:m] <= ask[i]);

23 # objective function in Eq .(20)

24 @objective(model , Min ,

25 sum((f[e2id[(i,j)]]+f[e2id[(j,k)]]-f[e2id[(i,k)]])^2

26 for i=1:n, j=i+1:n, k=j+1:n) +

27 sum((f[i]-mid[i])^2 for i=1:m))* lambda ^2;

28

29 status = solve(model);

30 # fair: flow vector f^{fair} representing fair rate

31 fair = getvalue(f);

32

33 return fair;

34 end

Figure 13: Code snippet for fair pricing in a arbitrage-free
foreign exchange network by solving a quadratic program
with linear constraints (QPLC).

Learning flows in divergence-free networks. Our algorithm
for solving Eq. (6) is presented in Fig. 12. This algorithm takes

three arguments as input: (1) A ∈ Rn×n is the adjacency matrix

of a graph; (2) F ∈ Rn×n is the matrix containing ground truth

edge flows, where Fi j = f (i, j ) = −Fji ; and (3) IdU ∈ Nm
U

is the

edge indices of unlabeled edges. The edge flow matrix F is trans-

formed into an edge flow vector
ˆf with the mat2vec function (line

17). Following the formulation in Eq. (7), we define the incidence

matrix B (line 21), the expansion operator Φ and its transpose (line

23,24), then we assemble them into a linear map (line 27-31) as

the main operator in the least-squares problem. Finally, we solve

the least-squares problem with an iterative LSQR solver from the

IterativeSolvers.jl package.

Learning flows in cycle-free networks. Our algorithm for com-

puting the fair rate in a foreign exchange market is given in Fig. 13.

It takes as input the (fully connected) adjacency matrix A as well as

the flow vectors bid,mid, ask ∈ Rm representing the correspond-

ing logarithmic exchange rates between currencies. Then we use

the JuMP.jl package to set up the optimization problem in Eq. (16).

The linear constraints and quadratic objective function are speci-

fied in line 22 and 24-27 respectively. Finally we solve the QPLC

problem with the Gurobi.jl package (line 29).
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1 using Clustering , NetworkOP;

2

3 function al_rb(A:: SparseMatrixCSC{Float64 ,Int64},

4 ndim::Int64 ,

5 ratio :: Float64)

6 # A: adjacency matrix of the graph

7 # ndim: number of vectors in spectral clustering

8 # ratio: ratio of labeled edges

9

10 # create a flow network object

11 FN = NetworkOP.FlowNetwork(A);

12 m = length(FN.EE); # m: number of edges

13

14 # compute the embedded vertex coordinates

15 X = spectral_embedding(FN , dims);

16

17 IdL = []; # the indices for labeled edges

18 clusters = [[1:m]]; # list with current clusters

19 # map from edge to edge index

20 e2id = Dict(e=>i for (i,e) in enumerate(keys(FN.EE)));

21

22 while (length(IdL) < ratio*m)

23 # find the cluster with maximum cardinality

24 max_id = argmax ([ length(cc) for cc in clusters ]);

25 cluster = clusters[max_id ];

26 Xc = X[:,cluster ];

27 km = kmeans(Xc ,2,init=:kmpp); # perform k-means

28 cid = assignments(km); # get cluster assignment

29 # split the cluster into two , update cluster list

30 clusters[max_id] = cluster[cid .== 1];

31 push!(clusters , cluster[cid .== 2]);

32 # add the edges connecting two clusters to IdL

33 for i in clusters[max_id]

34 for j in clusters[end]

35 e = i < j ? (i,j) : (j,i);

36 if (e in keys(e2id))

37 push!(IdL , e2id[e]);

38 end

39 end

40 end

41 end

42 end

Figure 15: Code snippet of the recursive bisection active
learning algorithm for selecting informative edges.

1 using LinearAlgebra , NetworkOP;

2

3 function al_rrqr(A:: SparseMatrixCSC{Float64 ,Int64},

4 ratio :: Float64)

5 # A: adjacency matrix of the graph

6 # ratio: ratio of labeled edges

7

8 # create a flow network object

9 FN = NetworkOP.FlowNetwork(A);

10 n = length(FN.VV); # n: number of vertices

11 m = length(FN.EE); # m: number of edges

12 # the incidence matrix for network

13 B = NetworkOP.mat_div(FN);

14

15 # basis for cyclic edge flows

16 VC = nullspace(B);

17

18 # permutation order from RRQR

19 od = qr(VC ',Val(true )).p;

20 # the indices for labeled edges

21 IdL = od[1: Int64(ceil(m*ratio ))];

22

23 return IdL;

24 end

Figure 14: Code snippet of the RRQR active learning algo-
rithm for selecting informative edges.

A.2 Active Learning Strategies
Now we look at the implementation of the two active learning

algorithms. Given the adjacency matrix A as input, those active

learning algorithms output the selected indices IdL ∈ Nm
L

of edges

to be labeled.

RRQR algorithm. We present our RRQR active learning algo-

rithm in Fig. 14. First, we compute an orthonormal basis VC for

the cycle-space C = ker(B) representing cyclic edge flows (line 16).

Then, we perform pivoted QR decomposition on the rows of VC
(line 19), and the edge indices for labeled edges are given by the

firstmL
permutations (line 21).

Recursive bisection algorithm. We present our recursive bisec-

tion active learning algorithm in Fig. 15. This algorithm first uses

a spectral embedding to compute the vertex coordinates (line 15).

Then it repeatedly chooses the largest cluster in the graph (line

24-26), uses the k-means (Lloyd’s) algorithm to divide the chosen

cluster into two (line 27-31), and adds the edges that connect the

two resulting clusters into the labeled edges indices (line 33-40).

Note that the k-mean algorithm sometimes fails due to bad initial

cluster centers or vertices with same embedded coordinates; how-

ever, we omit the code for dealing with those corner cases here due

to limited space.

The complete implementation of all of our algorithms can be

found at https://github.com/000Justin000/ssl_edge.git.
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