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Setting: Batch learning from logged bandit feedback Problem Fix Experiments
Can we re-use the logs of interactive systems to reliably train them ofiline? Unbounded variance. = = Threshold the propensities [4]. Supervised — Bandit |3] Multi-Label classification with § = Hamming loss on four datasets.
Non-uniform variance. = | = Use empirical variance regularizers (2].
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Multi-armed bandit - Wikipedia, the free encyclopedia
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In probability theory, the multi-armed bandit problem (sometimes called the K- or N — sl —
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Norm-POEM signiﬁcantly outperforms the usual estimator (POEM) on all datasets.
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T
Use (x;,y;, 0;)I"; to find a good policy h(y | x). sl 5
Challenge: Logs are biased and incomplete. 06 |
Self-Normalized estimator gj 04l |
Approach: Importance sampling 09
Idea: Use importance sampling diagnostics to detect overfitting [1]. 0 in
[nject randomization in the system, y; ~ ho(y | ;). Log the propensities p; = ho(y; | x;) [5]. Scene Yeast . LYRL Seene Yeast . LYRL
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Old policy, h n =l Di . . . A . L
’ ) Norm-POEM indeed avoids overfitting S(h) and is equivariant.
Employ S(h) as a multiplicative control variate to get the self-normalized estimator |6).
Hamming loss = Norm-IPS | Norm-POEM .
Logged actions Sceﬂe 1 072 1 045 Tlme(S) SCene YeaSt TMC LYRL
/ \ / \ Vonst 3.905 3.876 POEM (1—bfgs) (8.69  98.60  716.51  617.30
Py — | 2 0h(y; | ;) n h(y; | x;) - L0 o Norm-POEM (Lbfgs) = 7.28 | 10.15  227.8% 142,50
( ) T Z / Z ’ CRF (scikit-learn) 494 343 | 89.24 @ T72.34
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Ren(h) is biased but asymptotically consistent. Norm-POEM still benefits from variance regularization and is quick to optimize.
New policy, h typlcaﬂy has 1OWGT variance than R(h) Open questigns

Is equilvariant.

Good actions - What property (apart from equivariance) of an estimator ensures good optimization?

Norm-POEM: Normalized Policy Optimizer for Exponential Models

. Can we make a more informed bias-variance trade-off when constructing these estimators?
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ol | 2 Wiy | ;). Exponential Models assume: ho(y | ) o< exp (w - oz, y)). - How can we reliably optimize these objectives at scale’
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