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Setting: Batch learning from logged bandit feedback

Can we re-use the logs of interactive systems to reliably train them offline?

Use 〈xi, yi, δi〉ni=1 to find a good policy h(y | x).
Challenge: Logs are biased and incomplete.

Approach: Importance sampling

Inject randomization in the system, yi ∼ h0(y | xi). Log the propensities pi = h0(yi | xi) [5].
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Risk of new policy h

= 1
n

n∑
i=1

δi︸︷︷︸
Feedback

1
h0(yi | xi)︸ ︷︷ ︸
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.

Minimize an upper bound on the empirical risk [2].

herm = argmin
h∈H

R̂(h)︸ ︷︷ ︸
Empirical risk

+λReg(h)︸ ︷︷ ︸
Regularizer

.

R̂(h) is unbiased but flawed.

Problem Fix

Unbounded variance. ⇒ ⇒ Threshold the propensities [4].
Non-uniform variance. ⇒ ⇒ Use empirical variance regularizers [2].
Propensity overfitting. ⇒ ⇒ Deal-breaker.

Propensity overfitting

Self-Normalized estimator

Idea: Use importance sampling diagnostics to detect overfitting [1].
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n
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i=1

h(yi | xi)
pi

. ∀h ∈ H, E
[
Ŝ(h)

]
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Employ Ŝ(h) as a multiplicative control variate to get the self-normalized estimator [6].
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R̂sn(h) is biased but asymptotically consistent.
typically has lower variance than R̂(h).
is equivariant.

Norm-POEM: Normalized Policy Optimizer for Exponential Models

Exponential Models assume: hw(y | x) ∝ exp 〈w · φ(x, y)〉.

w∗ = argmin
w

R̂sn(hw) + λ

√√√√√√√ ˆV ar(R̂sn(hw))
n

+ µ‖w‖2.

Non-convex optimization over w. Gradient descent (e.g. l-BFGS) still works well.

For a simple Conditional Random Field prototype that can learn from logged bandit
feedback to predict structured outputs, please visit
http://www.cs.cornell.edu/~adith/poem.

Experiments

Supervised 7→ Bandit [3] Multi-Label classification with δ ≡ Hamming loss on four datasets.
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Norm-POEM significantly outperforms the usual estimator (POEM) on all datasets.
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Norm-POEM indeed avoids overfitting Ŝ(h) and is equivariant.

Hamming loss Norm-IPS Norm-POEM
Scene 1.072 1.045
Yeast 3.905 3.876
TMC 3.609 2.072
LYRL 0.806 0.799

Time(s) Scene Yeast TMC LYRL
POEM (l-bfgs) 78.69 98.65 716.51 617.30
Norm-POEM (l-bfgs) 7.28 10.15 227.88 142.50
CRF (scikit-learn) 4.94 3.43 89.24 72.34

Norm-POEM still benefits from variance regularization and is quick to optimize.

Open questions

•What property (apart from equivariance) of an estimator ensures good optimization?
•Can we make a more informed bias-variance trade-off when constructing these estimators?
•How can we reliably optimize these objectives at scale?
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